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I. The Molecular Dynamics Technique 

Molecular dynamics (MD) is a powerful technique for computing the equilibrium and 

dynamical properties of classical many-body systems. Over the last fifteen years, due to the rapid 

development of computers, polymeric systems have been the subject of intense study with MD 

simulations [1].  

At the heart of this technique is the solution of the classical equations of motion, which are 

integrated numerically to give information for the positions and velocities of atoms in the system 

[2], [3], [4]. The description of a physical system with the classical equations of motion rather 

than quantum-mechanically is a satisfactory approximation as long as the spacing hv between 

successive energy levels described is hv < kBT. For a typical system at room temperature this 

holds for < ~ 0.6x1013 Hz, i.e. for motions of time periods of about t >~ 1.6x10-13 sec or 0.16 ps. 

                                                           
* Author to whom correspondence should be addressed, e-mail: vlasis@iceht.forth.gr, tel.: +30-2-610-965 214, fax: 
+30-2-610-965 223. 
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A simple flow diagram of a standard MD algorithm is shown in Figure [1] and includes the 

following steps: 

1. First, a model configuration representing a molecular-level snapshot of the corresponding 

physical system is chosen or constructed, and is initialized (initial positions, velocities of 

each particle within the system). 

2. Then the total force acting on each particle within the system is computed. For polymer 

systems such a force has two components: intermolecular (from atoms belonging to different 

polymer chains) and intramolecular (from atoms belonging to thee same chain). 

3. The integration of the equations of motion follows with an appropriate method. The most 

popular of them will be described in detail in the next section. 

4. Actual measurements are performed (positions, velocities, energies, etc, are stored) after the 

system has reached equilibration, periodically every Nk steps.  

5. After completion of the central loop (N steps), averages of the measured quantities and of the 

desired properties are calculated and printed. 

 

II. Classical Equations of Motion  

As stated above, at the heart of an MD simulation is the solution of the classical equations 

of motion. Let us consider a system consisting of N interacting molecules described by a 

potential energy function V. Let us also denote as qk and kq!  the generalized coordinates 

describing the molecular configuration and their time derivatives, respectively. The classical 

equations of motion for this system can be formulated in various ways [5]. In the Lagrangian 

formulation, the trajectory q(t) (=q1(t), q2(t), …, qk(t),…) satisfies the following set of 

differential equations: 
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k k

L d L
q dt q

 ∂ ∂=  ∂ ∂ !
     (1) 

where L is the Lagrangian of the system. This is defined in terms of the kinetic, K, and potential 

energy, V, as ( , , )q qL L t K V= ≡ −! . The generalized momenta pk conjugate to the generalized 

coordinates qk are defined as  

k
k

Lp
q

∂=
∂ !

.      (2) 

Alternatively, one can adopt the Hamiltonian formalism, which is cast in terms of the 

generalized coordinates and momenta. These obey Hamilton’s equations 

k
k

Hq
p

∂=
∂

! , k
k

Hp
q

∂= −
∂

!      (3) 

where H is the Hamiltonian of the system, defined through the equation 

( ), k k
k

H q p L= −∑p q !      (4) 

If the potential V is independent of velocities and time, then H becomes equal to the total energy 

of the system: ( , ) ( ) ( )p q p qH K V= +  [5]. In Cartesian coordinates, Hamilton’s equations of 

motion read: 

pr v i
i i

im
≡ =! , Vrp F

rii i
i

V∂= −∇ ≡ − =
∂

!     (5) 

hence 

       r q Fi i i i im m≡ =!! !                  (6) 

where Fi is the force acting on atom i. Solving the equations of motion then involves the 

integration of the 3N second-order differential equations (6) (Newton’s equations). 
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The classical equations of motion possess some interesting properties, the most important 

one being the conservation law. If we assume that K and V do not depend explicitly on time, then 

it is straightforward to verify that /H dH dt=!  is zero, i.e. the Hamiltonian is a constant of the 

motion. In actual calculations this conservation law is satisfied if there exist no explicitly time- 

or velocity-dependent forces acting on the system. 

A second important property is that Hamilton’s equations of motion are reversible in time. 

This means that, if we change the signs of all the velocities, we will cause the molecules to 

retrace their trajectories backwards. The computer-generated trajectories should also possess this 

property. 

There are many different methods for solving ordinary differential equations of the form of 

eq. (6). Criteria for the proper choice of an algorithm include the following: 

• Algorithm must not require an expensively large number of force evaluations per 

integration time step. Many common techniques for the solution of ordinary differential 

equations (such as the 4th order Runge-Kutta method) become inappropriate, since they 

do not fulfill this criterion.  

• Algorithm should satisfy the energy conservation law. It is also desirable that it be time 

reversible and conserve volume in phase space (be symplectic).  

• Algorithm should permit the use of a large time step dt. 

• Algorithm should be fast and require little memory. 

Concerning the solution of equations of motion for very long times, it is clear that no 

algorithm provides an essentially exact solution. But this turns out to be not a serious problem, 

because the main objective of an MD simulation is not to trace the exact configuration of a 
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system after long time, but rather to predict thermodynamic properties as time averages and 

calculate time correlation functions descriptive of the dynamics.  

In the following we briefly describe the two most popular families of algorithms used in 

MD simulations for the solution of classical equations of motion: the higher order methods and 

the Verlet algorithms.  

 

II.A. Higher-Order (Gear) Methods  

The basic idea in the higher-order methods is to use information about positions and their 

first, second, … nth time derivatives at time t in order to estimate positions and their first, second, 

.., nth time derivatives at time t+dt [2]. If we consider the Taylor expansion of the position 

vectors of a given particle at time t+dt including terms up to 4th order we have  

2 3 4

( ) ( ) ( ) ( ) ( ) ( )
2 6 24

p dt dt dtt dt t dt t t t t+ = + + + + +r r v r r r!! !!! !!!! "   (7) 

  
2 3

( ) ( ) ( ) ( ) ( )
2 6

p dt dtt dt t dt t t t+ = + + + +v v r r r!! !!! !!!! "    (8) 

2

( ) ( ) ( ) ( )
2

p dtt dt t dt t t+ = + + +r r r r!! !! !!! !!!! "     (9) 

  ( ) ( ) ( )p t dt t dt t+ = + +r r r!!! !!! !!!! "      (10) 

In the above equations, the superscript p denotes “predicted” values and dots denote time 

derivatives. Eqs. (7)-(10) do not generate classical trajectories, since we have not as yet 

introduced the equations of motion. To do this we estimate the size of the error incurred by the 

expansion, Δx, by calculating the forces (or, equivalently, the accelerations) at the predicted 

positions  

1 2( ( )) ( ) (1/ ,1/ ,...,1/ ) V( ( )) ( )p p p p
Nt dt t dt diag m m m t dt t dt∆ ≡ + − + = − ∇ + − +rx r r r r r!! !! !! (11) 
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The error is accounted for and corrected in a “corrector” step, that is 

   0( ) ( )r r xc pt dt t dt c+ = + + ∆       (12) 

   1( ) ( )v v xc pt dt t dt c+ = + + ∆       (13) 

   2( ) ( )r r xc pt dt t dt c+ = + + ∆!! !!       (14) 

   3( ) ( )c pt dt t dt c+ = + + ∆r r x!!! !!!       (15) 

where ci, i = 1,..,n are constants. The values of ci are such that they yield an optimal compromise 

between desired level of accuracy and algorithm stability [2]. 

The general scheme of an algorithm based on the predictor-corrector method goes as 

follows: 

(a) predict positions and their first, second, …, nth time derivatives at time t+dt using the 

values of these quantities at time t. 

(b) compute forces using the predicted positions and then the corresponding error Δx 

from the differences between accelerations as calculated from forces and 

accelerations as predicted by the prediction scheme. 

(c) correct the predicted positions and their first, second, …, nth time derivatives guided 

by Δx. 

  

II.B.  Verlet Methods  

Algorithms in this family are simple, accurate and, as we will see below, time reversible. 

Thus, the Verlet methods are the most widely used methods for integrating the classical 

equations of motion. The initial form of the Verlet equations [3] is obtained by utilizing a Taylor 

expansion at times t-dt and t+dt 
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2 3
4( ) ( ) ( ) ( ) ( ) ( )

2 6
r r v r rdt dtt dt t dt t t t dt+ = + + + +!! !!! !    (16) 

2 3
4( ) ( ) ( ) ( ) ( ) ( )

2 6
r r v r rdt dtt dt t dt t t t dt− = − + − +!! !!! !    (17) 

Summing the two equations gives 

2 4( ) 2 ( ) ( ) ( ) ( )r r r rt dt t t dt dt t dt+ = − − + +!! !    (18) 

with ( )r t!! calculated from the forces at the current positions. 

Two modifications of the Verlet scheme are of wide use. The first is the “leap-frog” 

algorithm [3] where positions and velocities are not calculated at the same time; velocities are 

evaluated at half-integer time steps: 

( ) ( ) ( )
2
dtt dt t dt t+ = + +r r v       (19) 

( ) ( ) ( )
2 2
dt dtt t dt t+ = − +v v r!! .      (20) 

In order to calculate the Hamiltonian H at time t, the velocities at time t are also calculated as 

averages of the values at t + dt/2 and t – dt/2 : 

1( ) ( ) ( )
2 2 2

dt dtt t t = + + −  
v v v      (21) 

The problem of defining the positions and velocities at the same time can be overcome by 

casting the Verlet algorithm in a different way. This is the velocity-Verlet algorithm [3],[6], 

according to which positions are obtained through the usual Taylor expansion 

2

( ) ( ) ( ) ( )
2

dtt dt t dt t t+ = + +r r v r!!      (22) 

whereas velocities are calculated through 

[ ]( ) ( ) ( ) ( )
2

v v r rdtt dt t t t dt+ = + + +!! !! .     (23) 
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with all accelerations computed from the forces at the configuration corresponding to the 

considered time. To see how the velocity-Verlet algorithm is connected to the original Verlet 

method we note that, by eq. (22), 

2

( 2 ) ( ) ( ) ( )
2

dtt dt t dt dt t dt t dt+ = + + + + +r r v r!! .   (24) 

If eq. (22) is written as 

2

( ) ( ) ( ) ( )
2

dtt t dt dt t t= + − −r r v r!! ,     (25) 

then, by addition, we get 

[ ] [ ]
2

( 2 ) ( ) 2 ( ) ( ) ( ) ( ) ( )
2

dtt dt t t dt dt t dt t t dt t+ + = + + + − + + −r r r v v r r!! !! . (26) 

Substitution of eq. (23) into eq. (26) gives 

2( 2 ) ( ) 2 ( ) ( )r r r rt dt t t dt dt t dt+ + = + + +!!     (27) 

which is indeed the coordinate version of the Verlet algorithm. The calculations involved in one 

step of the velocity algorithm are schematically shown in Ref. 2 [Figure 3.2, page 80]. 

A sample code of the velocity-Verlet integrator is shown in algorithm 1. In this algorithm, 

N is the total number of atoms in the system and the subroutine get_forces calculates the total 

force on every atom within the system.  
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A

 

I

Verlet

revers

especi

essent

conser

metho

atomis

 

III. 

T

microc

simula
 ……. 
 
 do i = 1, N 
  r(i) = r(i) +dt*v(i) +dt*dt/2*F(i) !  update positions at t+dt using 
      velocities and forces at t 
  v(i) = v(i) + dt/2*F(i)  !  update velocities at t+dt using 
      forces at t 
 end do 
  
 call get_forces (F) ! calculate forces at t+dt 
  
 do i = 1, N 
  v(i) = v(i) + dt/2*F(i) !  update velocities at t+dt 
      using forces at t+dt 
 end do 
lgorithm 1: Velocity-Verlet integration method 

n general, higher-order methods are characterized by a much better accuracy than the 

 algorithms, particularly at small times. Their biggest drawback is that they are not 

ible in time, which results in other problems, such as insufficient energy conservation, 

ally in very long-time MD simulations. On the other hand, the Verlet methods are not 

ially exact for small times but their inherent time reversibility guarantees that the energy 

vation law is satisfied even for very long times [4]. This feature renders the Verlet 

ds, and particularly the velocity-Verlet algorithm, the most appropriate one to use in long 

tic MD simulations. 

MD in other statistical ensembles  

he methods described before address the solution of Newton’s equations of motion in the 

anonical (NVE) ensemble. In practice, there is usually the need to perform MD 

tions under specified conditions of temperature and/or pressure. Thus, in the literature 
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there exist a variety of methodologies for performing MD simulations under isochoric of 

isothermal conditions [2],[3]. Most of these constitute a reformulation of the Lagrangian 

equations of motion to include the constraints of constant T and/or P. Among them the most 

widely used is the Nosé-Hoover method.  

 

III.A. The Nosé-Hoover Thermostat 

To constrain temperature, Nosé [7] introduced an additional degree of freedom, s, in the 

Lagrangian. The parameter s plays the role of a heat bath whose aim is to damp out temperature 

deviations from the desired level. This necessitates adding to the total energy an additional 

potential term of the form 

lns BV gk T s=       (28) 

and an additional kinetic energy term of the form 

2 2

2 2
s

s
Q s pK

s Q
 = =  
!

.     (29) 

In the above equations, g is the total number of degrees of freedom. In a system with constrained 

bond lengths, for example, g = 3 Natoms - Nbonds – 3, with Natoms and Nbonds standing for the total 

numbers of atoms and bonds respectively; the value of 3 subtracted in calculating g takes care of 

the fact that the total momentum of the simulation box is constrained to be zero by the periodic 

boundary conditions. Q and ps represent the “effective mass” and momentum, respectively, 

associated with the new degree of freedom s. Equations of motion are derived from the 

Lagrangian of the extended ensemble, including the degree of freedom s. Their final form, 

according to Hoover’s analysis [8], is 

i
i

im
= pr!       (30) 
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p p
ri i

i

V s
s

∂= − −
∂

!!      (31) 

2

1
/pN

i
s B

i i

p gk T Q
m=

 
= − 

 
∑! , s

sp Q
s

=
!

.   (32) 

An important result in Hoover's analysis is that the set of equations of motion is unique, in 

the sense that no other equations of the same form can lead to a canonical distribution.   

The total Hamiltonian of the system, which should be conserved during the MD simulation, 

is 

22

1

( ) ln
2

N
i N s

Nose Hoover B
i i

pH V gk T s
m Q−

=

= + + +∑ p r .  (33) 

To construct MD simulations under constant P, an analogous reformulation of the 

Lagrangian was proposed by Andersen [9]. The constant-pressure method of Andersen allows 

for isotropic changes in the volume of the simulation box. Later Hoover [8] combined this 

method with the isothermal MD method described above to provide a set of equations for MD 

simulations in the NPT ensemble. Parrinello and Rahman [10] extended Andersen’s method to 

allow for changes not only in the size, but also in the shape of the simulation box. This is 

particularly important in the simulation of solids (e.g., crystalline polymers) since it allows for 

phase changes in the simulation involving changes in the dimensions and angles of the unit cell. 

 

III.B. The Berendsen Thermostat - Barostat  

Berendsen proposed a simpler way for performing isothermal and/or isobaric MD 

simulations without the need to use an extended Lagrangian, by coupling the system into a 

temperature and/or pressure bath [11]. To achieve this, the system is forced to obey the following 

equations 
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( ) /ext T
dT T T
dt

τ= −      (34) 

and 

( ) /ext p
dP P P
dt

τ= −      (35) 

where Text and Pext are the desired temperature and pressure values and τT and τP are time 

constants characterizing the frequency of the system coupling to temperature and pressure baths. 

T and P are the instantaneous values of temperature and pressure, calculated from the momenta 

and configuration of the system [2]. The solution of these equations forces velocities and 

positions to be scaled at every time step by factors χΤ and xP, respectively, with 

1/ 2

1 1T
T ext

dt Tx
Tτ

  
= + −  

  
    (36) 

( )1P T ext
P

dtx P Pβ
τ

= − −     (37) 

and βT being the isothermal compressibility of the system. 

The method proposed by Berendsen is much simpler and easier to program than that 

proposed by Nosé and Hoover. It suffers, however, from the fact that the phase-space probability 

density it defines does not conform to a specific statistical ensemble (e.g., NVT, NPT). 

Consequently, there exists no Hamiltonian that should be conserved during the MD simulation. 

 

III.C. MD in the NTLxσyyσzz ensemble  

To further illustrate how extended ensembles can be designed to conduct MD simulations 

under various macroscopic constraints, we discuss here the NTLxσyyσzz ensemble. NTLxσyyσzz is an 

appropriate statistical ensemble for the simulation of uniaxial tension experiments on solid 
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polymers [12] or relaxation experiments in uniaxially oriented polymer melts [13]. This 

ensemble is illustrated in Figure 2. The quantities that are kept constant during a molecular 

simulation in this ensemble are the following: 

• the total number of atoms in the system N, 

• the temperature T, 

• the box length in the direction of elongation Lx and 

• the time average values of the two normal stresses σyy and σzz. 

The NTLxσyyσzz ensemble can be viewed as a hybrid between the NVT ensemble in the x 

direction and the isothermal-isobaric (NPT) ensemble in the y and z directions. The temperature 

T is kept fixed at a prescribed value by employing the Nosé-Hoover thermostat; the latter 

introduces an additional dynamical variable in the system, the parameter s, for which an 

evolution equation is derived.  Also kept constant during an MD simulation in this ensemble is 

the box length Lx in the x direction; on the contrary, the box lengths in the other two directions, 

Ly and Lz, although always kept equal, are allowed to fluctuate. This is achieved by making use 

in the simulation of an additional dynamical variable, the cross-sectional area A(=LyLz) of the 

simulation cell in the yz-plane, which obeys an extra equation of motion involving the 

instantaneous average normal stress (σyy+σzz)/2 in the two lateral directions y and z, respectively;  

(σyy+σzz)/2 remains constant on average and equal to - Pext throughout the simulation. 

The derivation of the equations of motion in the NTLxσyyσzz ensemble has been carried out 

in detail by Yang et al. [12], and goes as follows: Consider a system consisting of N atoms with 

rik being the position of atom i belonging to polymer chain k. The bond lengths are kept fixed, 

with gik denoting the constraint forces on atom i. The Lagrangian is written as a function of the 
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“extended” variables {
~

kR , xiκ, A, s} where 
~

kR is the scaled (with respect to the box edge 

lengths) position of the center of mass of every chain k, and xik is the position of atom i in chain k 

measured relative to the chain center of mass. This ensemble is “extended” in the sense that it 

invokes the additional variables A and s, makes use of a scaled coordinate system and is 

formulated with respect to a “virtual” time t'. The equations of motion are derived from the 

extended Lagrangian by exactly the same procedure as for the other statistical ensembles. The 

final equations are further recast in terms of real coordinates and real time and have the 

following form: 

i xik xik xik xik
sm r F g p
s

= + −
!!! ,     (38) 

2

2 2
i yk

i yik yik yik yik

m Rs Am r F g p A
s A A

 
= + − + − 

 

!! !!!! ,   (39) 

2

2 2
i zk

i zik zik zik zik
s m R Am r F g p A
s A A

 
= + − + − 

 

!! !!!! ,    (40) 

( )
2 2 2 2

1xik yik zik
B

k i i

s p p pQs Q s g k T
s m

 + += + − + 
 
∑∑!!! ,  (41) 

( )2 1 ( ) ( )
2x yy zz ext

sAWA W s L P
s

σ σ = + − + − −  

!!!! ,   (42) 

where the forces with two indices indicate center of mass forces, while those with three indices 

are forces on atoms within a particular polymer chain. Rk denotes the center of mass of molecule 

k, while Q and W are inertial constants govern the fluctuations in the temperature the two normal 

stresses σyy and σzz, respectively. The total Hamiltonian of the extended system, derived from the 

Lagrangian, has the form: 
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( )
222 ln( ) 1

2 2 2
r

x yy zz

i
NTL ext x

i i

p Q s s W AH V g P L A
m s sσ σ β

  = + + + + + +      
∑

!!
. (43) 

The first term on the right hand side represents the kinetic energy, the second term is the 

potential energy and the last four terms are the contributions due to the thermostat and the 

fluctuating box cross-sectional area in the plane yz. Conservation of 
x yy zzNTLH σ σ is a good test for 

the simulation. 

For the solution of equations of motion, a modification of the velocity-Verlet algorithm 

proposed by Palmer [14] can be followed.  

 

IV. Liouville Formulation of Equations of Motion - Multiple Time Step Algorithms  

In section II.A we presented the most popular algorithms for integrating Newton’s 

equations of motion, some of which are not reversible in time. Recently, Tuckerman et al. 

[15],[16] have shown how one can systematically derive time reversible MD algorithms from the 

Liouville formulation of classical mechanics. 

The Liouville operator L of a system of N degrees of freedom is defined in Cartesian 

coordinates as 

1
r F

r p

N

i i
i i i

iL
=

 
 
 

∂ ∂= +
∂ ∂∑

#
.    (44) 

If we consider the phase-space of a system, Γ={r,p}, the evolution of the system from time 0 to 

time t, can be found by applying the evolution operator 

( )( ) exp (0)t iLtΓ = Γ .     (45) 

The next step is to decompose the evolution operator into two parts such that  
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1 2iL iL iL= +    with 1
1

N

i
i i

iL F
=

 ∂=  ∂ 
∑ p

,   2
1

N

i
i i

iL
=

 ∂=  ∂ 
∑ r

r
! .  (46) 

For this decomposition, a short-time approximation to the evolution operator can be generated 

via the Trotter theorem [16] as 

1 2
3 2

1 2 1

exp( ) exp( ( ) / )
                (exp( ( / 2))exp( )exp( ( / 2))) ( / )

P

P

iLt i L L t P
iL dt iL dt iL dt t P

= + =

+ Ο
 (47) 

where dt = t / P. Thus, the evolution operator becomes 

( )3
1 2 1exp( ) exp( )exp( )exp( )

2 2
dt dtiLdt iL iL dt iL dt= + Ο   (48) 

The evolution of the system at time t using the above factorization, eq. (48), is described 

through the following scheme [16] 

[ ]
2

( ) (0) (0) (0)
2
dt

dt dt
m

= + +r r v F r     (49) 

[ ] [ ]( )
2

( ) (0) (0) ( )
2
dt

dt dt
m

= + +v v F r F r     (50) 

which can be derived using the identity ( ) [ ]1exp / ( ) ( )a g x x g g x a−∂ ∂ = +   . The result is the 

well-known velocity-Verlet integration scheme, described before, which is now derived in a 

different way. 

Based on the previous factorization a very efficient algorithm can be developed, through 

the use of different time steps for integrating the different parts of the Liouville operator. This is 

the so-called reversible REference System Propagator Algorithm (rRESPA). 

 

IV.A. The rRESPA algorithm 



MOLECULAR DYNAMICS SIMULATIONS 17 

In the rRESPA algorithm, the above factorization is employed together with an integration 

of each part of the Liouville operator with a different time step. In addition, the forces F are also 

decomposed into fast (short range) forces Ff, and slow (long range) forces Fs, according to 

( ) ( ) ( )f s= +F r F r F r . The total evolution operator is broken up into 1 2 3iL iL iL iL= + +  with 

 1
1

( )
N

f
i

i i

iL
=

 ∂=  ∂ 
∑ F r

p
,   2

1

N

i
i i

iL
=

 ∂=  ∂ 
∑ r

r

#
,  3

1
( )

N
s

i
i i

iL
=

 ∂=  ∂ 
∑ F r

p
.  (51) 

The heart of the rRESPA algorithm is that the equations of motion are integrated by using two 

different time steps, i.e. a Multiple Time Step (MTS) method: the slow modes (slow forces, iL3) 

are integrated with a larger time step, Δt, whereas the fast modes (fast forces and velocities iL1, 

iL2) with a smaller time step, δt (δt = Δt/n). In this case the evolution operator becomes [16] 

3
3 1 2 1 3exp( ) exp( ) exp( )exp( )exp( ) exp( ) ( )

2 2 2 2

nt t t tiL t iL iL iL t iL iL tδ δδ∆ ∆ ∆ = + Ο ∆  
. (52) 

The force calculated n times (fast force) is called the reference force. A sample code of an 

MTS integrator is given in Algorithm 2.  
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A

IV

b

N

sc
 ……. 
 
   do i  = 1, N 
           v(i) = v(i) + Δt/2*Fs(i) !  update velocities using  
   !  slow forces at t 
 end do 
 
 do j = 1, n 
 do i  = 1, N 
           v(i) = v(i) + δt/2*Ff((j-1)δt) !  update velocities using  
   !  fast forces at t+(j-1)δt 
  r(i) = r(i) +δt*v(i) !  update positions at t+jδt  
  end do 
 
    call fast_forces (Ff) ! get fast forces at t+jδt 
 
 do i  = 1, N 
           v(i) = v(i) + δt/2*Ff(jδt)  
 end do 
 end do 
  
 call slow_forces (Fs) ! get slow forces at t+Δt 
  
 do i = 1, N 
           v(i) = v(i) + Δt/2*Fs(i) !  update velocities using  
   !  slow forces at t+Δt 
 end do 
 
 ……. 
lgorithm 2: rRESPA integration  

 

.B. rRESPA in the NVT ensemble 

For MD simulation in the NVT ensemble, a modification of the rRESPA algorithm has 

een proposed. The method uses a modification of the Lagrangian of the system based on the 

osé-Hoover approach, described in section II.B. The difference from the standard rRESPA 

heme described before is that in this case the total Liouville operator is decomposed as 

1 2 3 NHiL iL iL iL iL+ += +     (53) 
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with 

1
1

( )
N

f
i

i i

iL
=

 ∂=  ∂ 
∑ F r

p
, 2

1

N

i
i i

iL
=

 ∂=  ∂ 
∑ r

r

#

, 3
1

( )
N

s
i

i i

iL
=

 ∂=  ∂ 
∑ F r

p
. (54) 

Also,  

1
v

v

N

NH i
i i

iL Gξ ξ
ξ

υ υ
ξ υ=

∂ ∂ ∂= − + +
∂ ∂ ∂∑ #    (55) 

where  

2

1
/

N
i

B
i i

G gk T Q
m=

 
= − 

 
∑ p ,  ξυ ξ= ! ,    (56) 

and ξ is a transformation of the additional degree of freedom s, log s Nξ= . 

Two modifications of the standard RESPA method exist, depending on the application of 

the extended operator exp( )NHiL t . The first variant of RESPA is useful when the evolution 

prescribed by the operator exp( )NHiL t  is slow compared to the time scale associated with the 

reference force. It is formed by writing 

 

3 1 2 1

3
3

exp( ) exp( )exp( ) exp( )exp( )exp( )
2 2 2 2

                   exp( )exp( ) ( )
2 2

n

NH

NH

t t t tiL t iL iL iL iL t iL

t tiL iL t

δ δδ∆ ∆  ∆ =   
∆ ∆ + Ο ∆

(57) 

 

and is named XO-RESPA (eXtended system Outside-Reference System Propagator Algorithm). 

In general, XO-RESPA can be applied to systems characterized by fast vibrations, as the time 

scale associated with the extended system variable is usually chosen to be quite slow compared 

with these motions. 
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If the motion prescribed by the operator exp( )NHiL t  occurs on the same time scale as that 

generated by the “fast” forces, then a useful RESPA algorithm must include the application of 

this operator for the small time step dt. The evolution operator takes then the form 

 

 

3

1 2 1

3
3

exp( ) exp( )exp( )exp( )
2 2 2

                 exp( )exp( )exp( )exp( )exp( )
2 2 2 2

                 exp( )exp( )exp( ) ( )
2 2 2

NH NH

n

NH NH

NH NH

t t tiL t iL iL iL

t t t tiL iL iL t iL iL

t t tiL iL iL t

δ δ

δ δ δ δδ

δ δ

∆∆ = −

 
  

∆− + Ο ∆

. (58) 

 

The resulting integrator is named XI-RESPA (eXtended system Inside-REference System 

Propagator Algorithm). 

Modifications of the RESPA method for MD simulations in the NPT statistical ensemble 

have also been formulated in an analogous manner. More details can be found in the original 

papers [15],[16]. 

 

V. Constraint Dynamics in Polymeric systems  

One of the most important considerations in choosing the best algorithm for the solution of 

the classical equations of motion is, as we saw above, the time step of integration. This should be 

chosen appreciably shorter than the shortest relevant time scale in the simulation. For long-chain 

polymeric systems, in particular, where one explicitly simulates the intramolecular dynamics of 

polymers, this implies that the time step should be shorter than the period of the highest-

frequency intramolecular motion. This renders the simulation of long polymers very expensive. 

One solution to this problem is provided by the MTS algorithm discussed above. Another 
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technique developed to tackle this problem is to treat bonds between atoms, characterized by the 

highest frequency intramolecular vibrations, as rigid. The MD equations of motion are then 

solved under the constraint that bond lengths are kept constant during the simulation. The motion 

associated with the remaining degrees of freedom is presumably slower, permitting the use of a 

longer time step in the simulation. 

In general, system dynamics should satisfy many constraints (e.g., many bond lengths that 

should be constant) simultaneously. Let us denote the functions describing the constraints by 

σi=0 with 2 2r ij ijk dσ = − , meaning that atoms i and j are held at a fixed distance dij. A new 

system Lagrangian is introduced that contains all constraints 

( )rc
k k

k

L L λ σ= −∑      (59) 

where k denotes the set of constraints and λk the corresponding set of Lagrange multipliers. The 

equations of motion corresponding to the new Lagrangian are 

r F F g
r

k
i i i k i i

k i

m σλ ∂= − = −
∂∑!!     (60) 

where the second term on the right-hand side of eq. (60) denotes the constraint forces. The 

question then is how to calculate the set of Lagrange multipliers λk. Two methods that have 

widely been used in our MD simulations are discussed here: The Edberg-Evans-Morriss method 

and the SHAKE method. 

 

V.A. The Edberg-Evans-Morriss algorithm 

This algorithm [17] starts by considering a set of a linear system of equations in {λij}, 

which are formulated by taking the second derivatives in time of the constraint equations: 

2 2 20 2 0 ( ) 0ij ij ij ij ij ij ijd− = ⇒ = ⇒ + =r r r r r r! !! !# #   (61) 
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One then solves the following set of algebraic and differential equations simultaneously: 

i i i im = +r F g!!       (62) 

g
r

k
i k

k i

σλ ∂=
∂∑      (63) 

2( ) 0ij ij ij+ =r r r!! !# .     (64) 

Note that site velocities enter this formulation explicitly. Upon substitution of the site 

accelerations from eq. (60) into eq. (64) one obtains a system of linear equations in {λij}; thus, 

the determination of λij’s reduces to the solution of a linear matrix equation which should be 

addressed in each time step.  

 

V.B The SHAKE  - RATTLE algorithm 

The approach described before suffers from the problem that it is computationally 

expensive, since it requires a matrix inversion at every time step. The problem gets worse with 

increasing chain length, with the algorithm becoming practically inappropriate for chains of 

more than about 100 atoms long. Ryckaert et al. [18] developed a simpler scheme, named 

SHAKE, to satisfy the constraints in this case. 

If one considers the classical form of the Verlet algorithm, then in the presence of 

constraints 

2 ( )( ) ( )r r
r

i

c u k
i i i k

k i

dt tt dt t dt
m

σλ ∂+ = + −
∂∑    (65) 

where rc
i are the constrained and ru

i the unconstrained  positions. If the constraints are satisfied 

at time t+dt, then σc
k(t+dt) = 0. But if the system moved along the unconstrained trajectory, the 
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constraints would not be satisfied at t+dt. In this case, by performing a Taylor expansion around 

the unconstrained positions, we get 

( )

4

1

( ) ( ) ( ) ( ) ( )
r

r r
r

u t dti

N
c u c uk

k k i i
i i

t dt t dt t dt t dt dtσσ σ
+

=

 ∂  + = + + + − + + Ο   ∂ 
∑ #  (66) 

and by using eq. (65) 

 
2

1
( )

r r

N
u k k

k k
i ki i i

dtt dt
m

σ σσ λ ′
′

′=

   ∂ ∂+ =    ∂ ∂   
∑ ∑ .   (67) 

The above equation has the structure of a matrix equation 

2( )u
k t dt dtσ + = MΛ      (68) 

By inverting the matrix, one can solve for the vector Λ. However, since the Taylor expansion in 

eq. (66) has been truncated, the σ’s should be computed at the corrected positions, and the 

preceding equations should be iterated until convergence is reached.  

This procedure is also computationally expensive, because it requires a matrix inversion at 

every iteration, as does the Edberg–Evans–Morriss algorithm. Ryckaert proposed a new method, 

SHAKE, where the iterative scheme is not applied to all constraints simultaneously but to each 

constraint in succession. Thus the need of inverting a large matrix is avoided. The key point is 

that rc
i – ru

i is approximated as  

2 ( )( ) ( )c u k k
i i

i i

dt tt dt t
m

λ σ∂+ − ≈ −
∂

r r
r

.    (69) 

By inserting the above equation into eq. (66), one gets  

2

1

( ) ( )1( )
N

u k k
k k

i i i i

t dt tt dt dt
m

σ σσ λ
=

∂ + ∂+ =
∂ ∂∑ r r

   (70) 

from which 
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k N
k k

i i i i

t dtdt
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m

σλ
σ σ

=

+=
∂ + ∂

∂ ∂∑ r r

.    (71) 

In an MD simulation, the constraints are treated in succession during one cycle of the 

iteration and the process is repeated until all constraints have converged to the desired accuracy. 

An improvement of the SHAKE algorithm is the RATTLE algorithm, which was proposed by 

Andersen [19]. In RATTLE, the velocity-Verlet algorithm is employed to integrate the 

dynamical equations.  

As was also stated above, there are several applications of MD simulations in polymer 

science. An example taken from a recent study of polymer melt viscoelasticity is presented in the 

following section. 

 

VI. MD Applications to Polymer Melt Viscoelasticity  

Despite its simplicity and unquestionable utility, a brute-force application of the atomistic 

MD technique to polymeric systems is problematic, due to the enormously large computation 

time needed to track the evolution of such systems for times comparable to their longest 

relaxation times [1],[2]. This is the well-known problem of long relaxation times. To overcome 

this problem, a number of approaches have been proposed over the last years. The first is to 

develop new, more efficient, “clever” algorithms, such as the multiple time step algorithms for 

the integration of equations of motion described in section IV, which has allowed extending the 

simulation to times almost an order of magnitude longer than what is usually achieved with 

conventional algorithms. The second is to increase the range of length scales simulated with MD 

by using a number of processors (nodes) and special parallelization techniques; such techniques 

are described in detail in the next section. 
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Alternatively, a hierarchical approach can be adopted, which uses information from many 

different levels of abstraction, ultimately connecting to the atomistic level, and a combination of 

different molecular simulation methods and theoretical approaches. Such a methodology can be 

followed, for example, for the atomistic MD simulation of the viscoelastic properties of polymer 

melts. The methodology has been described in a number of publications [20]-[13] and includes 

two variants: In the first, equilibrium atomistic MD simulations are conducted on model polymer 

melt configurations pre-equilibrated with the powerful connectivity-altering end-bridging Monte 

Carlo algorithm; the latter algorithm is not subject to the limitations associated with long 

relaxation times faced with MD. Dynamic as well as viscoelastic properties are then extracted 

either directly from the MD simulations or indirectly through a mapping of the atomistic 

trajectories accumulated in the course of the MD simulation onto an analytical coarse-grained 

model, [20]-[22] such as the Rouse model for unentangled melts or the reptation model for 

entangled melts. In the second variant, nonequilibrium MD simulations are conducted on model 

polymer melt configurations which have been pre-oriented and thoroughly equilibrated with a 

field-on MC method [23] which generates configurations representative of a melt under 

conditions of steady-state uniaxial elongational flow. The MD tracks the relaxation of the 

preoriented chains back to equilibrium upon cessation of the flow. In this case, again, the linear 

viscoelastic properties of the melt are extracted either directly by the simulation or indirectly by 

utilizing a mapping onto an analytical model coarse-grained [13]. 

 

VI.A. Study of polymer viscoelasticity through equilibrium MD simulations 
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In detail, the methodology followed for the prediction of the viscoelastic properties of 

polymer melts under equilibrium conditions is a three-stage hierarchical approach, whereby the 

dynamic properties of polymer melts are calculated through the following procedure:  

a) First exhaustive end-bridging Monte Carlo (EBMC) simulations [23] are conducted to 

equilibrate the melts at all length scales. The EBMC algorithm employs moves that modify the 

connectivity among polymer segments, while preserving a prescribed (narrow) molecular weight 

distribution.  It can thus equilibrate the long-length scale features of a polymer melt orders of 

magnitude more efficiently than MD or other MC methods, its relative efficiency increasing 

rapidly with increasing chain length. 

b) Relaxed configurations thus obtained are subjected to equilibrium MD simulations to 

monitor their evolution in time and extract dynamic properties. During the atomistic MD 

simulations, a large number of dynamical trajectories are accumulated.  

c) Finally, the trajectories accumulated are mapped onto theoretical mesoscopic (coarse-

grained) models to extract the values of the parameters invoked in the mesoscopic model 

description of the same systems. 

With the above methodology, atomistic MD simulations were performed on united-atom 

model linear polyethylene melts with molecular length ranging from N = 24 up to N = 250 in the 

canonical NVT ensemble (T = 450K, P = 1atm). To speed-up the MD simulations the multiple 

time step rRESPA algorithm, presented in section IV, was used. The overall simulation time 

ranged from 100 ns to 300 ns, depending on the chain lengths of the systems studied. Many of 

the dynamic properties (such as the self-diffusion coefficient D) were calculated directly from 

the MD simulations. Others, however, such as the zero-shear rate viscosity η0, required mapping 



MOLECULAR DYNAMICS SIMULATIONS 27 

atomistic MD data upon a mesoscopic theoretical model. As such one can choose the Rouse 

model for relatively short PE melts and the reptation model for the longer-chain melts. 

Figure 3 shows the mean-square displacement of the chain center-of-mass, 

( )( ) (0) 2
cm cmR t R− , in time for the longer-chain systems, C156, C200 and C250. From the linear 

part of these curves the self-diffusion coefficient D can be obtained using the Einstein relation, 

( )2( ) (0)
lim

6

R Rcm cm

t

t
D

t→∞

−
=      (72) 

 

Figure 4 presents predictions for the self-diffusion coefficient D as a function of mean 

chain length N. For comparison, also shown in the figure are experimental data [26]. Three 

distinct regions appear in the figure:  

a) A region of small-MW, alkane-like behavior (N<60), where D follows a power-law 

dependence D~M-b, with b>1. In this regime chain end effects, which can be described through a 

free volume theory, dominate system dynamics [21]. 

b) An intermediate, Rouse-like regime (from N=60-70 up to N=156) where b ≈ 1. System 

dynamics in this regime is found to obey the Rouse model, at least for the overall relaxation of 

the chain [20]. 

c) A long chain-length, reptation-like regime (N>156), where chain diffusivity exhibits a 

dramatic slow down, b ≈ 2.5. According to the original formulation of reptation theory, the latter 

exponent should be 2. Phenomena such as contour length fluctuations (CLF) and constraint 

release (CR) typically accelerate the escape of the chain from the tube, causing an increase in D 

and a decrease in η0 [24]. A recently proposed theory that incorporates CLF and CR phenomena 

predicts a stronger exponent, between –2.2 and –2.3 [25]. These values agree with recent 
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experimental results for concentrated polymer solutions and melts, which suggest an exponent 

between –2.2 and –2.4 for a variety of polymer systems [26]. 

In contrast to D, the prediction of other viscoelastic properties, such as the friction 

coefficient ζ or the zero-shear rate viscosity η0, require that the atomistic MD data be mapped 

upon a mesoscopic theoretical model. For unentangled polymer melts, such a model is the Rouse 

model, wherein a chain is envisioned as a set of Brownian particles connected by harmonic 

springs [27]-[24]. For entangled polymer melts, a better model that describes more accurately 

their dynamics is the tube or reptation model [24]. According to this, the motion of an individual 

chain is restricted by the surrounding chains within a tube defined by the overall chain contour or 

primitive path. During the lifetime of this tube, any lateral motion of the chain is quenched. 

The Rouse model is formulated in terms of three parameters: the number of beads N, the 

length of the Kuhn segment b, and the monomeric friction coefficient ζ. The friction coefficient ζ 

can be calculated directly from the diffusion coefficient D through 

Bk T
ND

ζ =       (73) 

while the zero-shear rate viscosity η0 can be calculated from the density ρ, the end-to-end 

distance <R2> and the diffusion coefficient D through 

2

0 36
RT R

MD
ρ

η = .     (74) 

Reptation theory is formulated in terms of four parameters: N, b, ζ, and the entanglement 

spacing (or, alternatively, the tube diameter) α. If α were known, ζ and η0 could be calculated 

through: 

2

23
Bk Ta

N R D
ζ =      (75) 
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and 

 
2 2

0 236
R RRT

M D a
ρη = .     (76) 

The calculation of the tube diameter α is a formidable task and can be addressed either through a 

direct topological analysis of accumulated polymer melt configurations thoroughly equilibrated 

with an efficient MC algorithm [29] or by utilizing a geometric mapping of atomistically 

represented chain configurations onto primitive paths [22],[30]. The latter mapping is realized 

through a projection operation involving a single parameter ξ, which governs the stiffness of the 

chain in the coarse-grained (primitive path) representation. The parameter ξ is mathematically 

defined as the ratio of the constants of two types of Hookean springs: The first type connects 

adjacent beads within the projected primitive path, and the second type connects the projected 

beads of the primitive path with the corresponding atomistic units [30]. Different values of ξ lead 

to different parameterizations, i.e., to different primitive paths and, consequently, to different 

values of the contour length L. Once a value for ξ has been chosen, the primitive path is fully 

defined which allows calculating the tube diameter a  through the following equation of 

reptation theory 

2La R=      (77) 

To find the proper value of the projection parameter ξ, one can follow a self-consistent scheme 

based on the mean square displacement of the primitive path points ( ), ;s s tφ [22]. ( ), ;s s tφ is 

defined as  

( ) ( ) ( )( )2
, ; , ,0R Rs s t s t sφ ≡ − ,    (78) 
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where R(s,t) is the position vector of the primitive segment at contour length s at time t. and 

R(s,0) is the position vector of the primitive segment at contour length s at time 0. According to 

reptation theory  

( ) ( )
2 2

2
2 2

1

4
, ; 6 cos 1 exp / d

p

R p ss s t Dt tp
p L

πφ τ
π

∞

=

   = + − −    
∑   (79) 

where the sum is over all normal modes p and τd denotes the longest relaxation or disengagement 

time. For small times (t<τd), ( ), ;s s tφ is dominated by the terms with large p and the above 

equation becomes 

( ) ( )( )
1/ 2

2 2 1/ 2
2 2

0

4 1 3, ; 6 1 exp / 6 2
2 d

Las s t Dt dp tp Dt R D t
p

φ τ
π π

∞  = + − − = +   ∫  (80) 

Eq. (80) offers a nice way of mapping atomistic MD trajectories uniquely onto the 

reptation model, through a self-consistent calculation of the parameter ξ. First, a value of ξ is 

chosen and the mapping from the atomistic chain onto its primitive path is carried out by 

following the procedure described by Kröger et al [30]. Then, eq. (78) is used to calculate 

( ), ;s s tφ for the primitive path points, averaged over all s values. For times t<τd, the resulting 

curve is compared to that obtained from eq. (80), using the values of <R2> and D (long-time 

diffusivity of the centers of mass) calculated directly from the atomistic MD simulations. The 

procedure is repeated until convergence is achieved, that is until a ξ value is found for which the 

two curves coincide. This mapping is performed self-consistently, without any additional 

adjustable parameters or any experimental input. It allows a reliable estimation of the tube 

diameter α, by utilizing atomistically collected MD data only for times shorter than τd. Thus, the 

total duration of the MD simulations required is governed solely by the time needed reliably to 
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calculate the center-of-mass diffusion coefficient D. With the values of <R2>, D and α, ζ and η0 

can be calculated using eqs. (75) and (76). 

With the above procedure the tube diameter α was calculated to be α ~ 60 Å for the longer-

chain systems C200 and C250, whereas for the shorter systems, N < 200, no proper value of the 

parameter ξ could be identified [22]. 

Figure 5 shows results for the monomeric friction factor ζ as a function of mean chain 

length N, over the entire range of molecular lengths studied. Filled circles depict results obtained 

by mapping atomistic MD data onto the Rouse model, whereas open circles depict results 

obtained from mapping the atomistic MD data onto the reptation model. According to its 

definition, ζ should be independent of chain length, its value determined solely by the chemical 

constitution of the melt. The figure shows clearly that, at around C156, a change in the mechanism 

of the dynamics takes place, which cannot be accommodated by the Rouse model unless a chain-

length dependent ζ is assumed. On the contrast, in this regime (N>156), the reptation model 

provides a consistent description of the system dynamics characterized by a constant (0.4x10-9 

dyn s/cm) chain-length independent ζ value per methylene or methyl segment.  

Figure 6 presents the zero-shear rate viscosity η0 as a function of molecular weight for all 

systems studied here. For systems of chain length less than C156 the Rouse model, eq. (74), was 

used, whereas for the longer systems the reptation equation, eq. (76), was used. Also reported in 

the figure are experimental η0 values from measurements [22] conducted in a series of linear 

monodisperse PE melts. The η0 predictions from the reptation model were obtained using the 

value of α = 60 Å for the entanglement spacing. The agreement of the simulation results with the 

experimental ones is remarkable in all systems studied. 
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VI.B. Study of polymer viscoelasticity through non-equilibrium MD simulations - 

Simulation of the Stress Relaxation Experiment 

 

An alternative way to learn about viscoelastic properties of polymer melts in the linear 

regime is to conduct MD simulations of pre-oriented polymer melt configurations generated by a 

field-on MC algorithm. It involves three stages: 

(a) First, a coarse-grained description of the polymer melt is invoked through the definition 

of the conformation tensor, c$ , which is a global descriptor of the long length-scale conformation 

of polymer chains.  The conformation tensor c$  is defined as the second moment tensor of the 

end-to-end distance vector of a polymer chain reduced by one third the unperturbed end-to-end 

distance and averaged over all chains in the system: 

2

0

( ) ( )( ) 3 R Rc t tt
R

="      (81) 

In the above equation, R stands for the end-to-end vector of a macromolecule and <R2>0 is the 

mean-squared magnitude of that vector in the equilibrium, quiescent state, where chains are 

unperturbed to an excellent approximation. With the above definition, a series of detailed 

atomistic MC simulations can be initiated on model melt systems at various values of the 

orienting thermodynamic field αxx, starting from the zero value (αxx=0, equilibrium, quiescent, 

field-free state) [23]. Thus, configurations are obtained from the MC method where the chains 

are oriented through a thermodynamic field.  

(b) In the second stage, the isothermal relaxation of these configurations to thermodynamic 

equilibrium is monitored, keeping their dimension along the x- direction constant and the average 

normal pressure in the y- and z- directions equal to the atmospheric pressure. The experiment 
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simulated is that of stress relaxation upon cessation of a steady-state uniaxial elongational flow. 

The MD simulation takes place in the NTLxσyyσzz statistical ensemble discussed in section III. 

The macroscopic variables kept constant in this ensemble are the typical macroscopic constraints 

encountered in the process of fiber spinning at the end of the spinning operation, when the fibers 

are under constant extension and the stress σxx in the direction of pulling is allowed to relax from 

its initial value to the equilibrium, field-free value, equal to -Pext (i.e., σxx(t ! ∞) = -Pext). In 

addition to monitoring the temporal evolution of the stress component σxx(t) during the 

NTLxσyyσzz MD simulation, also recorded is the evolution of certain ensemble-averaged 

descriptors of the chain long length-scale configuration. These descriptors include the diagonal 

components of the chain conformation tensor (cxx, cyy and czz) and the chain mean-square end-to-

end distance <R2>. 

(c) The third stage includes the development of expressions describing analytically the time 

evolution of these quantities by solving the Rouse model under the initial and boundary 

conditions corresponding to our atomistic computer experiment. 

Results are presented here from averaging over about 100 NTLxσyyσzz MD trajectories for 

each stress relaxation experiment, initiated at ensembles of strained configurations of two PE 

melt systems: a 32-chain C24 and a 40-chain C78 PE melt.  

Figures 7a and 7b show the time evolution of the diagonal components, cxx, cyy and czz of 

the conformation tensor for the C24 and C78 melts, respectively.  For both systems, the initial 

value of cxx is significantly higher than 1, whereas those of cyy and czz are a little smaller than 1, 

indicative of the oriented conformations induced by the imposed steady-state elongational flow 

field αxx. As time evolves, cxx drops whereas cyy and czz increase continuously, approaching the 
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steady-state, field-free value of 1, indicative of fully equilibrated, isotropic structures in the 

absence of any deforming or orienting field.   

Figure 8 shows the time evolution of the stress tensor component σxx, for the C24 PE melt 

systems studied. The stress tensor is calculated in two ways. The first (thin solid line) tracks the 

evolution of σxx as obtained from applying the molecular virial theorem on the relaxing 

configurations and averaging over all dynamical trajectories. The second one (thick dashed line) 

uses the Helmholtz energy function and an affine deformation assumption for chain ends [23].  

According to the latter approach, the stress tensor at every time t is calculated from the 

ensemble-averaged values of mass density ρ, conformation tensor cxx, and partial derivative of 

the Helmholtz energy function with respect to cxx at time t, through 
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where Pext denotes the equilibrium (atmospheric) pressure and M the number average molecular 

weight of the system.  This approach tracks the evolution of σxx as obtained from applying the 

thermodynamic stress equation, eq. (82), based on the current values of cxx and ( / ) /ch xxA N c∂ ∂ , 

the latter taken from the melt elasticity simulations presented in ref. [23].  As expected, in both 

figures the estimates based on the virial theorem are subject to much higher statistical 

uncertainty, owing to the fluctuations in the instantaneous configurations. Clearly, averaging 

over many configurations is needed in order to improve the statistical quality of the virial 

theorem results. Apart from high-frequency noise, the virial theorem results display an 

oscillatory character. When the noise and oscillations are smoothed out, the ensemble averaged 

stress σxx(t) from the virial theorem is in very good agreement with the thermodynamic estimate 

obtained from cxx and ( )/ /ch xxA N c∂ ∂ .  This is an important result, as it opens up the possibility 
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of calculating stress with high precision directly from ensemble average conformational 

properties, based on a free energy function accumulated via efficient MC runs. The transverse 

components σyy and σzz are displayed in Figure 9. Both σyy and σzz fluctuate continuously around 

the constant value -Patm, as required by the macroscopic restrictions placed on the NTLxσyyσzz 

ensemble. Similar are the plots for the C78 system. Relaxation times extracted from those stress 

relaxation computer experiments are identical to those determined from equilibrium MD 

simulations (section VI.A). 

 

VII. Parallel MD Simulations of Polymer Systems  

In the previous sections, we presented two different approaches for addressing the problem 

of long relaxation times, which plagues the conventional MD method: the multiple time step 

algorithm and a hierarchical methodology that leads to the prediction of the dynamic and 

rheological properties of polymer melts by mapping simulation data onto analytical theories. 

Enhanced MD simulation algorithms can further be developed by resorting to special 

parallelization techniques that allow sharing the total simulation load over a number of 

processors or nodes. The key idea in all these techniques is to compute forces on each atom or 

molecule and to perform corresponding velocity/position updates independently but 

simultaneously for all atoms. It is also desired that the force computations be evenly divided 

across the processors so as to achieve the maximum parallelism. 

MD simulations of polymer systems, in particular, require computation of two kinds of 

interactions: bonded forces (bond length stretching, bond angle bending, torsional) and non-

bonded van der Waals and Coulombic forces. Parallel techniques developed [31]-[33] include 

the atom-decomposition (or replicated data) method, the force-decomposition method and the 
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spatial (domain)-decomposition method. The three methods differ in how atom coordinates are 

distributed among the processors to perform the necessary computations. Although all of the 

methods scale optimally with respect to computation, their different data layouts incur different 

inter-processor communication costs which affect the overall performance of each method.  

 

VII.A. Parallel MD algorithms  

Here we will focus on a discussion of algorithms for parallelizing MD simulations with 

short-range interactions where the non-bonded forces are truncated, so that each atom interacts 

only with other atoms within a specified cutoff distance. More accurate, MD models with long-

range forces are more expensive to deal with. Thus, special techniques are required for 

parallelizing MD simulations with long-range interactions. 

 

a. Atom-Decomposition (Replicated-Data) Method  

The most commonly used technique for parallelizing MD simulations of molecular systems 

is the replicated-data (RD) method [33]. In the literature there are numerous parallel algorithms 

and simulations that have been developed based on this approach [34]. The key idea of this 

method is that each processor is assigned a subset of atoms and updates their positions and 

velocities during the entire simulation, regardless of where they move in the physical domain.  

Let us consider a polymeric system with a total number of atoms N, where both 

intramolecular and intermolecular interactions are present. The system is simulated in a parallel 

system of P processors. We first define x and f as vectors of length N, which store the position 

and total force on each atom, respectively. We also define the force matrix F, of dimensions 

NxN, with Fij the force on atom i due to j. In the RD method each processor is assigned a group 
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of N/P atoms at the beginning of the simulation. Each processor is also assigned a sub-block of 

the force matrix F which consists of N/P rows of the matrix, as shown in Figure 10.  If z indexes 

the processors from 0 to P-1, then processor z computes forces in the Fz sub-block of rows. It 

also is assigned the corresponding position and force sub-vectors of length N/P denoted as xz and 

fz .The computation of the non-bonded force Fij requires only the two atom positions, xi and xj. 

But to compute all the forces in Fz, processor Pz will need the positions of many atoms owned by 

other processors. In Figure 10 this is represented by having the horizontal vector x at the top of 

the figure span all the columns of F, implying that each processor must store a copy of the entire 

x vector, hence the name replicated-data. This also implies that at each timestep each processor 

must receive updated atom positions from all other processors and send the positions of its own 

atoms to all other processors, an operation called all-to-all communication. 

 A single timestep of an RD algorithm comprises the following steps: 

(1) First every processor z computes its own part of the non-bonded forces Fz. In MD 

simulations this is typically done using neighbor lists to calculate non-bonded 

interactions only with the neighboring atoms. In an analogous manner with the 

serial algorithm, each processor would construct lists for its sub-block Fz once 

every few time steps. To take advantage of Newton’s 3rd law (that Fij = - Fji), each 

processor also stores a copy of the entire force vector f. As each pairwise non-

bonded force between atoms i and j is calculated, the force component is summed 

both for atom i and negated for atom j. Next, the bonded forces are computed. Since 

each processor z knows the positions of all atoms, it can compute the non-bonded 

forces for its sub-vector xz and sum the resulting forces into its local copy of f. 
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Calculation of both bonded and non-bonded forces scale as N/P, i.e. with the 

number of non-bonded interactions computed by each processor. 

(2) In this step, the local force vectors are summed across all processors in such a way 

that each processor ends up with the total force on each of its N/P atoms. This is the 

sub-vector fz. This force summation is a parallel communication over all processors, 

an operation known as fold [35]. In the literature there are various algorithms that 

have been developed for optimizing this operation. The key characteristic is that 

each processor must receive N/P values from every other processor to sum the total 

force on its atoms. This requires total communication of N times N/P; i.e. the fold 

operation scales as N. 

(3) Once each processor has the total force on its sub-vector xz in step (3) it can update 

the positions and the velocities of each atom (integration step) with no 

communication at all. Thus, this operation scales as N/P. 

(4) Finally the updated positions of each processor xx should be shared among all P 

processors. Each processor must send N/P positions to every other processor. This 

operation is known as expand [35] and scales as N. 

A crucial aspect in any parallel algorithm is the issue of load-balance. This concerns the 

amount of work performed by each processor during the entire simulation, which ideally should 

be the same for all processors. As we saw before, the RD algorithm divides the MD force 

computation (the most time consuming part in typical MD simulations) and integration evenly 

across all processors. This means that steps (1) and (3) scale optimally as N/P. Load-balance will 

be good so long as each processor’s subset of atoms interacts with roughly the same number of 

neighbor atoms. This usually occurs naturally if the atom density is uniform across the 
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simulation domain (e.g., bulk simulations). In a different case (e.g., polymer chains at interfaces 

or adsorbed polymers) load-balance can be achieved by randomizing the order of the atoms at 

the start of the simulation or by adjusting the size of the subset of each processor dynamically 

during the simulation to tune the load-balance; these are called dynamic load balancing 

techniques [36]. 

In summary, the RD algorithm divides evenly the force computation across all processors. 

At the same time, its simplicity makes it easy to implement in existing codes. However, the 

algorithm requires global communication in steps (2) and (4), as each processor must acquire 

information from all other processors. This communication scales as N, independently of the 

number of processors P. Practically this limits the number of processors that can be used 

effectively. 

 

b. Force-Decomposition Method 

The next parallel MD algorithm discussed here is based on a block-decomposition of the 

force matrix rather than the row-wise decomposition used in the RD algorithm. The partitioning 

of the force matrix F is shown in Figure 11 and the algorithm is called force-decomposition (FD) 

algorithm [37]. The method has its origin in block-decomposition of matrices, which is 

commonly encountered in linear algebra algorithms for parallel machines.  

The block-decomposition, shown in Figure 11, is actually done on a permuted force matrix 

F’, which is formed by rearranging the columns of the original F in a particular way. The (ij) 

element of F is the force acting on atom i in vector x due to atom j in the permuted vector x’. 

Now the F’
z sub-block owned by each processor z is of size (N/P1/2)x(N/P1/2). As shown in the 

figure, to compute the non-bonded forces in F’
z, processor z must know one N/P1/2-length piece 
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of each of the x and x’ vectors, i.e. the sub-vectors xa and x’
b. As these elements are computed 

they will be accumulated into the corresponding sub-blocks fa and f’b. The subscripts a and b 

each run from 0 to P1/2 and reference the row and the column position occupied by processor z.  

As in the RD algorithm, each processor has updated copies of the atom positions xa and x’
b 

needed at the beginning of the timestep. A single timestep of the FD algorithm consists of the 

following steps: 

(1) The first step is the same as that of the RD algorithm. First the non-bonded forces 

F’
z are computed. The result is summed into both fa and f’

b. Next, each processor 

computes a fraction N/P of the bonded interactions. A critical point here is that in a 

pre-processing step of the run, we should guarantee that each processor knows all 

the atom positions needed for the bonded (intramolecular) interactions. This steps 

again scales as N/P. 

(2) Step (2) is also the same as that of the RD algorithm. The key difference is that now 

the total force on atom i is the sum of the elements in row i of the force matrix 

minus the sum of elements in column i', where i' is the permuted position of column 

i. Thus this step performs a fold of fa (f’
b) within each row (column) of processors to 

sum these contributions. The important point is that now the vector fa (f’b) being 

folded is only of length (N/P1/2) and only the P1/2 elements in one row (column) are 

participating in the fold. Thus, this operation scales as N/P1/2 instead of N as in the 

RD algorithm. Finally, the two contributions are jointed to yield the total forces fz 

(f’z) on the atoms owned by processor Pz. 

(3) The processor can now perform the integration for its own atoms, as in the RD case. 

This operation scales as N/P. 
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(4) Step (4) shares these updated positions with all the processors that will need them 

for the next timestep. As with the fold operation the processors in each row 

(column) expand their xa (x’
b) sub-vectors within the row (column) so that each 

acquires the entire xa (x’
b). This operation scales again as N/P1/2 instead of N, as in 

the RD algorithm. 

The FD algorithm, as the RD algorithm, divides the force computation evenly across all 

processors. The key point is that the communication and memory costs in steps (2) and (4) scale 

as N/P1/2, rather than as N as in the RD algorithm. When large number of processors are used, 

this can be very important. At the same time, although more steps are needed, the FD algorithm 

retains the overall simplicity and structure of the RD method. 

 

c. Domain-Decomposition Method 

The third parallel method discussed here for MD simulations of systems with short-range 

interactions is the domain-decomposition (DD) method [31],[38]-[40]. In this method the 

physical simulation box is divided into small 3D boxes, one for each processor. The partitioning 

of a simulation box of length L in a DD algorithm is shown in Figure 12 (2D projection). Now 

each processor z owns a box labeled Bz with edge length Lz (Lz = L/P) and will update the 

positions of all atoms within its own box, xz, at each timestep. Atoms are reassigned to new 

processors as they are moving through the physical domain. In order to compute the forces on its 

atoms, a processor must know the positions of atoms in nearby boxes (processors), yz. Thus the 

communication required is global in contrast to total in the AD and FD algorithm. As it 

computes the force fz on its atoms, the processor will also compute components of forces f n
z on 

the nearby atoms. 



MOLECULAR DYNAMICS SIMULATIONS 42 

A single timestep of a DD algorithm consists of the following steps: 

(1) The first step concerns, for each processor Pz, the calculation of bonded and non-

bonded forces for atoms within box Bz. This step scales with the numbers of atoms 

N/P per processor. 

(2) In step (2) the forces gz are shared with the processors owning neighboring boxes. 

The received forces are summed with the previously computed fz to create the total 

force on the atoms owned by the processor. The amount of data exchanged in this 

operation (and consequently the scaling of this step) is a function of the force cutoff 

distance and box length. 

(3) After computing fz, the atom positions xz are updated. This operation also scales as 

N/P. 

(4) Next the updated positions are communicated to processors owning neighboring 

boxes so that all processors can update their yz list of nearby atoms 

(5) Finally, periodically, atoms that have left box Bz are moved into the appropriate new 

processor. 

The scaling of steps (1) and (3) in the DD algorithm is again the optimal N/P. The 

communication cost involved in steps (2), (5) and (6) is more complicated. It proves to be 

dependent on the relative value of the cut-off distance rc in comparison with the sub-domain 

edge length Lz [31]. More specifically, if Lz > rc the scaling goes as the surface-to-volume ratio 

(N/P)2/3. If Lz ≈ rc, then the communication scales as N/P. In practice, however, in the MD 

simulations of polymer systems there are several obstacles to minimizing communication costs 

in the DD algorithm. 
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• If Coulombic interactions are present then because of the 1/r dependence long cutoffs 

should be used. Thus Lz < rc and extra communication is needed in steps (3) and (5). Data 

from many neighboring boxes must be exchanged and the communication operation scales 

as rc
3. Special techniques such as Ewald summation, particle-particle or particle-mesh 

methods can be implemented in parallel [41]. 

• As atoms move to new processors in step (6) the molecular connectivity information 

should be exchanged and updated between processors. This requires extra communication 

cost, depending on the type of the bonded interactions. 

• If macromolecular systems are simulated uniformly in a simulation domain, then all boxes 

have a roughly equal number of atoms (and surrounding atoms); load-balance occurs. This 

will not be the case if the physical domain is non-uniform (e.g., for polymers in vacuum or 

with surrounding solvent). In this case it is not trivial to divide the simulation domain so 

that each processor has an equal number of atoms. Sophisticated load-balancing algorithms 

have been developed [36] to partition an irregular or non-uniformly dense physical domain, 

but the result is sub-domains which are irregular in shape, or connected in an irregular 

fashion to their neighboring boxes. In both cases the communication operation between 

processors becomes more costly. If the physical atom density changes with time, then the 

subject of load-balance becomes more problematic. Dynamic load-balancing schemes are 

again needed, which require additional computational time and data transfer. 

 

In general, the DD algorithm is more difficult to integrate to existing serial codes than the 

RD and FD ones. This fact, coupled with the specific problems for macromolecular systems, has 

made DD implementations less common than RD in the simulations of polymer systems. For 
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simulations with very large systems, however, and in terms of optimal communication scaling, 

DD is more advantageous. It allows distributing the computational work over a large number of 

processors, and this explains why it is nowadays preferred in commercial MD packages such as 

LAMMPS [41],[42], NAMD [43] and AMBER.  

 

VII.B. Efficiency - examples 

Examples of applications of the above techniques can be found in various articles that 

describe parallel MD applications for systems consisting of many thousands (or even millions) of 

atoms performed on a large number of processors [31],[40]. Here we focus on the 

implementation of the parallel algorithm to the united-atom polyethylene melt MD simulations 

described in the previous section [44].  

A critical point in any parallel implementation of an existing serial code is the percentage 

of the code that can be parallelized. To measure the performance of parallel implementations of 

existing sequential algorithms, the speed-up parameter S is used. This is defined as the ratio of 

the execution time of the serial (sequential) algorithm on a single processor to the execution time 

of the parallel algorithm running on P processors   

( ) s

p

S P τ
τ

=       (83) 

where τs and τp denote the execution time of the algorithms on one and P processors, 

respectively. For a fully parallel code running on P processors, τp = τs / P and S(P)=P (linear 

speedup). 

A typical example where parallel implementation of atomistic MD algorithms can 

substantially speed up code execution is in NTLxσyyσzz simulations described in section VI.B 

(stress relaxation simulations). In this case the simulated systems are independent and 
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parallelism is straightforward to achieve by assigning each relaxing configuration to a different 

node (processor). Since no data communication between different systems is required in this 

case, excellent speed-up is achieved.  

This has been verified with trial runs on a Cray T3E 900 machine at the Edinburgh Parallel 

Computing Center (EPCC) using the standard MPI approach [45]. Figure 14 presents a graph of 

the speed-up of the (parallel) code for a number of simulations, each one being executed with a 

model system containing 40 chains of C78 PE melt. As was expected, the speed-up is practically 

perfect (linear). 

Figure 14 presents the corresponding speedup graph for a system containing 24 chains of a 

C1000 PE melt (a total of 24000 atoms). The runs were executed on a shared memory machine 

(Sun Enterprise 3000/3500 cluster at EPCC) using OpenMP Fortran [46], which is suitable for 

developing parallel MD applications in machines with shared memory architecture. Results are 

shown from parallel runs with different numbers of processors, ranging from 1 to 8 (dotted line) 

[44]. For comparison, the optimal (linear) speed-up is also shown (solid line). A speed-up of 5.5 

is easily reached by using only 8 processors. 

 

VIII.C Parallel Tempering 

A trend in modern MD (and MC) simulations is to enhance system equilibration at low 

temperatures by the use of novel parallel techniques. One such a technique which has recently 

attracted considerable attention in different variations is “parallel tempering” (PT) [47],[48]. PT 

was introduced in the context of spin glass simulations, but the real efficiency of the method was 

demonstrated in a variety of cases, such as in the study of the conformational properties of 

complex biological molecules [49],[50]. Sugita and Okamoto [51] used a similar method called 



MOLECULAR DYNAMICS SIMULATIONS 46 

“replica exchange molecular dynamics” to simulate protein folding and overcome the multiple-

minima problem. They also used multiple-histogram reweighting techniques to calculate 

thermodynamic quantities in a wide temperature range. Recently, Yamamoto and Kob [52] used 

the same method to equilibrate a two-component Lennard-Jones mixture in its supercooled state. 

They found that the replica-exchange MC method is 10-100 times more efficient than the usual 

canonical molecular dynamics simulation. 

PT has also been used successfully to perform ergodic simulations with Lennard-Jones 

clusters in the canonical and microcanonical ensembles [53]. Using simulated tempering as well 

as PT, Irbäck and Sandelin studied the phase behavior of single homopolymers in a simple 

hydrophobic/hydrophilic off-lattice model [54]. Q. Yan and de Pablo [55] used multidimensional 

PT in the context of an expanded grand canonical ensemble to simulate polymer solutions and 

blends on a cubic lattice. They indicated that the new algorithm, which results from the 

combination of a biased, open ensemble and PT performs more efficiently than previously 

available techniques. In the context of atomistic simulations PT has been employed in a recent 

study by Bedrov and Smith [56] who report parallel tempering molecular dynamics simulations 

of atomistic 1-4 polybutadiene polymer melts, in the 323K-473K temperature domain at 

atmospheric pressure. It has also been employed in the context of MC strategies in order to 

access the regime of small temperatures in the simulations of cis-1,4 polyisoprene melts [57]. In 

both of these works, it was shown that for a polymer melt well above the glass transition 

temperature, PT ensures a thorough sampling of configuration space, which is much more 

effective than afforded by conventional MD or MC simulation methods. 

In PT, not a single system but an extended ensemble of n systems, labeled as i=1,...,n, is 

considered. Each such system is viewed as a copy of the original system, equilibrated, however, 
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at a different temperature Ti, i=1,...,n, with T1 < T2 < ... < Tn. The partition function of this 

extended ensemble is given by 

 ∏
=

=
n

i
iQQ

1

     (84) 

where iQ  denotes the individual partition function of the ith system in its relevant statistical 

ensemble. The strategy of simultaneously equilibrating not a single but a number of systems at 

different temperatures accelerates the equilibration of the lowest temperature systems by 

accepting configurations from the higher temperature systems, for which the rate of the system 

equilibration is higher. Thus, in the PT method, configurations are swapped between systems 

being equilibrated at adjacent temperatures. The acceptance probability of a swapping move 

between system configurations i and j=i+1 within a parallel tempering series of NPT simulations 

is given by: 
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with U, P, V symbolizing the potential energy function, pressure and volume, respectively [57]. 

For swapping to occur between two systems, it is important that their U+PV “instantaneous 

enthalpy” histograms overlap, since only then can there be a non-zero probability to exchange 

configurations. In this case, the success rate of configuration swapping can increase by 

performing the simulation with smaller size-systems characterized by larger (U+PV) fluctuations 

or with systems whose temperatures are not too wide apart. 
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PT is ideal to implement in parallel architectures by assigning each system to a single node, 

and by using standard MPI libraries  [45] for inter-node communication. 
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Figure 1 A simple flow diagram of a standard MD algorithm. 
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Figure 2 The NTLxσyyσzz statistical ensemble (after [12]). 
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Figure 3 Mean square displacement of the center of mass for the C156 (solid), C200 (dot) 

and C250 (dashed) systems. 
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Figure 4 Predicted and experimental [26] self-diffusion coefficients D vs chain length N 

in a log-log plot (T=450K, P=1atm). 
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Figure 5 Monomer friction coefficient ζ vs chain length N, obtained from mapping the 

atomistic MD data onto the Rouse model (squares) or the reptation model (circles).  
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Figure 6 Zero-shear rate viscosity η0 vs molecular weight M, obtained from the MD 

simulation and the Rouse model for small M (circles) or the reptation model for the high M 

(squares). Also shown in the figure are experimentally obtained η0 values (triangles).  
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Figure 7 Evolution of the diagonal components cxx, cyy and czz of the conformation tensor 

c with time t for (a) the C24 and (b) the C78 PE melt systems. Results are averaged over all 

NTLxσyyσzz trajectories (T = 450 K, Pext = 1 atm).  
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Figure 8 Evolution of the component σxx of the stress tensor with time t for the C24 

system.  The results at every time t have been obtained by applying either the virial theorem and 

averaging over all dynamical trajectories (dotted line) or by using a thermodynamic expression 

based for the free energy as a function of the conformation tensor (thick solid line) (T = 450 K, 

Pext = 1 atm).  
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Figure 9 Evolution of the components σyy and σzz of the stress tensor with time t for the 

C24 system (T = 450 K, Pext = 1 atm).  
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Figure 10 Division of the force matrix among P processors in the atom-decomposition 

method (after [31]). 
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Figure 11 The division of the force matrix among P processors in the force-decomposition 

method (after [37]). 
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Figure 12 Partitioning of the simulation domain in a DD algorithm. 

L 

Lz 



MOLECULAR DYNAMICS SIMULATIONS 65 

 

 

 

0 10 20 30 40 50 60 70

0

10

20

30

40

50

60

70

 

 

 linear
 NTLxσyyσzz MD program

S(
P)

#PEs
 

Figure 13 Speed-up graph of the parallelization of the NTLxσyyσzz MD simulation runs and 

the optimal (linear) speed-up.  
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Figure 14 Speed-up graph of the parallelization of the NVT MD simulation runs (dotted 

line). Shown with the solid line is the optimal speed-up.  

 

 


