
A comparison of macroscopic models describing the collective

response of sedimenting rod-like particles in shear flows.

Christiane Helzel∗ Athanasios E. Tzavaras †

Abstract

We consider a kinetic model, which describes the sedimentation of rod-like particles in
dilute suspensions under the influence of gravity, presented in [8]. Here we restrict our con-
siderations to shear flow and consider a simplified situation, where the particle orientation
is restricted to the plane spanned by the direction of shear and the direction of gravity.
For this simplified kinetic model we carry out a linear stability analysis and we derive two
different nonlinear macroscopic models which describe the formation of clusters of higher
particle density. One of these macroscopic models is based on a diffusive scaling, the other
one is based on a so-called quasi-dynamic approximation. Numerical computations, which
compare the predictions of the macroscopic models with the kinetic model, complete our
presentation.

Key words: rod-like particles, sedimentation, linear stability, moment closure, quasi-
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1 Introduction

We discuss different mathematical models which describe the sedimentation process for dilute
suspensions of rod-like particles under the influence of gravity. The sedimentation of rod-
like particles has been studied by several authors in theoretical as well as experimental and
numerical works, see Guazzelli and Hinch [5] for a recent review paper. Experimental studies of
Guazzelli and coworkers [9, 10, 12] start with a well stirred suspension. Under the influence of
gravity, a well stirred initial configuration is unstable and it is observed that clusters with higher
particles concentration form. These clusters have a mesoscopic equilibrium width. Within a
cluster, individual particles tend to align in the direction of gravity.

The basic mechanism of instability and cluster formation was described in a fundamental
paper of Koch and Shaqfeh [11]. In Helzel and Tzavaras [8], we recently derived a kinetic model
which describes the sedimentation process for dilute suspensions of rod-like particles. By ap-
plying moment closure hypotheses and other approximations to an associated moment system,
we derived macroscopic models for the evolution of the rod density and compared the predic-
tion of such macroscopic models to the original kinetic model using numerical experiments.
This is done in [8] for rectilinear flows with the particles taking values on the sphere.
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In the present work, in order to explain our approach, we restrict our analysis to the
simpler case of shear flows for particles with orientations restricted to take values on the plane.
While the derivations in [8] are often quite technical, the restriction to this simpler situation
provides a useful and technically simple setting in order to understand the underlying ideas.
In addition, it turns out that the form of the derived macroscopic equations is identical in both
cases apart from the values of numerical constants that capture the effect of dimensionality
in the microstructure. Therefore, we hope that this paper will make our results accessible
and useful to a wider community interested in the modelling of complex fluids. Moreover,
we also consider an alternative route to closure at the density level via diffusive scaling. The
closure via diffusive scaling leads to the classical Keller-Segel system while the quasi-dynamic
approximation leads to a variant of a flux-limited Keller-Segel system. The different effective
equations are numerically compared among each other and also compared with a computation
of the full nonlinear kinetic model.

The article is organised as follows: In Section 2, we present the kinetic model from [8]
and the non-dimensionalization of the problem. For vertical shear flows we derive a simplified
one-space dimensional model, obtained by restricting the orientation of particles to move in a
plane. In Section 3 a nonlinear moment closure system is derived (see (38)-(41)) which forms
the basis for all further considerations. Effective equations for the evolution of the macroscopic
density are obtained via two approaches: Starting from the moment system (38)-(41) in Section
4, we employ a quasi-dynamic approximation and derive an effective equation for the evolution
of the macroscopic density. The approximation amounts to replacing the dynamical behavior
of the second order moments by enslaving the second-order moments to their respective local
equilibria. An alternative approach is presented in Section 5 and Appendix A, where the
effective equation for the density is obtained directly from the kinetic equation via a diffusive
limit. The diffusive approximation leads to the well known Keller-Segel model (52), while the
quasi-dynamic approximation leads to a flux-limited Keller-Segel type model (46).

In Section 6 we present numerical results comparing the diffusive approximation and the
quasi-dynamic approximation to the full kinetic model. Although the idea of diffusive scalings
to obtain macroscopic equations is commonplace in kinetic theory (see [3, 13, 6]), it has not been
applied (to our knowledge) in the sedimentation problem. The derivation of the hyperbolic
and diffusive scaling equations for general rectilinear flows is presented in Appendix A for the
general case where the directions of the rod-like particles take values on the sphere. Finally,
in Appendix B, we present a stability analysis for the linearized moment closure system to
establish the linear instability of the rest state under a shear flow perturbation. It turns out
that a nonzero Reynolds number provides a wavelength selection mechanism. An asymptotic
analysis of the largest eigenvalue around Re = 0 explains this behavior.

2 A kinetic model for the sedimentation of rod-like particles

We describe a kinetic model for sedimentation in dilute suspensions of rod-like Brownian
particles, following Doi and Edwards [4, Ch. 8]; see also [14] and [7]. The model accounts for
the effects of gravity and hydrostatic interactions in a dilute suspension (see [8]).

Consider a suspension consisting of inflexible rod-like particles of thickness b and length l,
with b ≪ l, submerged in a solvent extending over the entire space. The rods are subjected to
a gravity field g = −ge3, with gravitational constant g and where e3 is the unit vector in the
upward direction. If m0 denotes the mass of an individual particle then G = −m0ge3 is the
force of gravity on a single particle. Some of our basic notation is depicted in Figure 1.
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Figure 1: Basic notation for rod-like molecule which is falling sidewards.

The motion of the particles is friction dominated. If u(x, t) stands for the velocity field of
the solvent, then a rigid particle is described by the position x ∈ R

d of the center of mass and
the orientation n ∈ Sd−1 of the rod. Kinematic considerations dictate that each rod obeys the
equations

dx

dt
= u+

(
1

ζ||
n⊗ n+

1

ζ⊥
(I − n⊗ n)

)

G

dn

dt
= P

n
⊥∇xun

where
P
n

⊥∇xun =
(
I − n⊗ n

)
(∇xu)n

is the projection of the vector (∇xu)n onto the tangent space at n, while ζ|| and ζ⊥ are the
frictional coefficients in the tangential and the normal direction. Note that ζ⊥ = 2ζ||, see
[4, App 8.I], implying that a particle with a vertical orientation sediments twice as fast as a
particle with horizontal orientation while a particle of oblique orientation moves also sideways.

Upon including the effects of rotational and translational Brownian motion the kinematics
of the microstructure is described by the system of stochastic differential equations

dx =
[

u+
( 1

ζ||
n⊗ n+

1

ζ⊥
(I −n⊗ n)

)

G
]

dt+

√

2kBθ

ζ||
n⊗ n+

2kBθ

ζ⊥
(I − n⊗ n) dW

dn = P
n

⊥∇xun dt+

√

2kBθ

ζr
dB

(1)

where W is the translational Brownian motion and B the rotational Brownian motion, ζr the
rotational friction coefficient, kB the Boltzmann constant and θ the absolute temperature.

We consider a suspension of many such molecules in the dilute regime, characterized by
the relation νl3 ≪ 1. In this regime the average distance of molecules is much larger than their
length and the molecules remain nearly statistically independent. By the law of large numbers
the empirical distribution of particles as a function of the center of mass x and orientation
n is well approximated by a probability distribution f(t,x,n) dndx. By the equivalence of
drift-diffusion equations and Fokker-Planck equations, the dynamics can be described by the
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Smoluchowski equation

∂tf +∇x ·

[(

u+
1

ζ⊥
(n⊗ n+ I)G

)

f

]

+∇n · (P
n

⊥∇xunf)

=
kBθ

ζr
∆nf +

kBθ

ζ⊥
∇x · (n⊗ n+ I)∇xf.

(2)

Here, ∇x and ∇x· denote the usual gradient and divergence in the macroscopic flow domain.
On the other hand, ∇n stands for the surface gradient operator (on the sphere), acting on a
scalar function ϕ = ϕ(n) by the formula ∇nϕ = ∇ϕ−n(n ·∇ϕ) where ∇ stands for the usual
gradient operator. The gradient, divergence and Laplacian on the sphere are denoted by ∇n,
∇n· and ∆n, The second term on the left hand side of (2) models transport of the center of
mass of the particles due to the macroscopic flow velocity and due to gravity. The last term
on the left hand side models the rotation of the axis due to a macroscopic velocity gradient
∇xu. The terms on the right hand side describe rotational as well as translational diffusion.
The translational diffusion is non-isotropic as is also the spatial transport term.

If an initial isotropic distribution of particles is distorted by a velocity gradient ∇xu, this
will lead to an increase in entropy. A requirement of thermodynamic consistency (see [4, Sec
8.6]) suggests to define the elastic stress tensor σ(x, t) induced by the microstructure by

σ(x, t) := kBθ

∫

Sd−1

(dn ⊗ n− I) f(x, t,n)dn. (3)

This stress resulting from the suspension is added to the stresses of the solvent (usually assumed
to be Newtonian fluid) and produce the total stress.

To derive the equation of motion for the solvent we take into account that local variations
in the density m0

∫

Sd−1 fdn of the suspended microstructure lead to spatial variations of the
specific weight of the suspension that generally can not be compensated by a hydrostatic
pressure and thus trigger a fluid motion (buoyancy). The macroscopic flow is described by the
Navier-Stokes equation. If the solvent is an incompressible fluid and its density ρf is taken
constant, then the balance laws of mass and momentum take the form

ρf

(

∂tu+ (u · ∇x)u
)

= µ△xu−∇xp+∇x · σ −
( ∫

Sd−1

fdn
)

m0ge3

∇x · u = 0

(4)

In (4) we have incorporated in the pressure p, p = p′ + ρfge3 · x, the hydrostatic pressure
caused by the effect of gravity ρfge3 on the solvent.

The equations are collected into a nonlinear system consisting of a kinetic equation cou-
pled to the macroscopic Navier-Stokes system through the zero and second moments of the
distribution function :

∂tf = −∇x · (uf)−∇n · (P
n

⊥∇xunf) +Dr∆nf

+D⊥∇x · (I + n⊗ n)
(

∇xf +
1

kBθ
f ∇xU

)

, (5)

σ(x, t) = kBθ

∫

Sd−1

(dn⊗ n− I) f(x, t,n)dn (6)

∇x · u = 0 (7)

ρf (∂tu+ (u · ∇x)u) = µ∆xu−∇xp+∇x · σ −
(∫

Sd−1

f dn
)

m0ge3 (8)
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Here Dr :=
kBθ
ζr

, D⊥ := kBθ
ζ⊥

, and D|| :=
kBθ
ζ||

= 2D⊥ stand for the rotational and translational

diffusion coefficients and U(x) = m0g(x · e3) is the potential of the gravity force G = −∇U .
The total number of rod-like particles is

∫

Ω

∫

Sd−1

f(x, t,n) dn dx =

∫

Ω

∫

Sd−1

f(x, 0,n) dn dx = N,

i.e. f has dimensions of number density.

Thermodynamical structure of the model. The free energy functional (internal energy
minus temperature times entropy) reads

A[f ] :=

∫

Ω

∫

Sd−1

(kBθf ln f + fU(x)) dndx, (9)

where U(x) = m0gx · e3 is the gravitational potential.
We next compute using (9) and (5)

∂tA[f ] =

∫

Ω

∫

Sd−1

(

kBθ(1 + ln f) + U(x)
)

ft dndx

= Itr + Idr + Ird + Itd

(10)

where Itr, Idr, Ird and Itd stand for the contributions of the transport, rotational drift, rota-
tional diffusion and translational diffusion, respectively, that are computed below.

The computations are based on vector calculus formulas for the surface gradient operator
∇n that are listed below. Let F = F (n) be a vector-valued function and f = f(n), g = g(n)
be scalar-valued functions with n ∈ Sd−1, the unit sphere in the d-dimensional space, then

∫

Sd−1

(∇n · F )fdn = −

∫

Sd−1

F · (∇nf − (d− 1)nf)dn (11)

∫

Sd−1

(∇n · ∇nf)gdn =

∫

Sd−1

(∇n · ∇ng)fdn (12)

∫

Sd−1

n⊗∇nfdn =

∫

Sd−1

∇nf ⊗n dn =

∫

Sd−1

(dn⊗ n− I)fdn (13)

The contribution of the transport term −∇x · (uf) is

Itr = −

∫

Ω

∫

S2

(

kBθ(1 + ln f) + U(x)
)

∇x · (uf) dndx

(7)
=

∫

Ω
m0ge3

(∫

Sd−1

fdn

)

· u dx

The contribution of the drift term −∇n · (P
n

⊥∇xunf) is :

Idr = −

∫

Ω

∫

Sd−1

(

kBθ(1 + ln f) + U(x)
)

∇n · (P
n

⊥∇xunf) dndx

(11)
=

∫

Ω

∫

Sd−1

kBθ∇n ln f · P
n

⊥ (∇xunf) dndx

=

∫

Ω
∇xu : kBθ

∫

Sd−1

n⊗∇nf dn dx
(13),(6)
=

∫

Ω
∇xu : σ dx.
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The contribution of rotational diffusion leads to

Ird =

∫

Ω

∫

S2

(

kBθ(1 + ln f) + U(x)
)

Dr∆nf dndx

= −
(kBθ)

2

ζr

∫

Ω

∫

Sd−1

|∇n ln f |2f dndx .

The last term in (5), modeling the effect of translational friction and translational diffusion,
contributes

Itdf =

∫

Ω

∫

Sd−1

(

kBθ(1 + ln f) + U(x)
)

D⊥∇x · (I + n⊗ n)
(

∇xf +
f

kBθ
∇xU

)

= −
(kBθ)

2

ζ⊥

∫

Sd−1

∫

Ω
∇x

(

ln f +
1

kBθ
U

)

· (I + n⊗ n) f∇x

(

ln f +
1

kBθ
U

)

Combining these terms together yields

∂tA[f ] +DrkBθ

∫

Ω

∫

Sd−1

f |∇n ln f |2dndx

+D⊥kBθ

∫

Ω

∫

Sd−1

∇x

(
ln f +

1

kBθ
U
)
·
(
I + n⊗ n

)
∇x

(
ln f +

1

kBθ
U
)
dndx

=

∫

Ω
∇xu : σdx+

∫

Ω
m0ge3

(∫

Sd−1

fdn

)

· udx

(14)

We note that the second and third term capture dissipative mechanisms due to the Brownian
motions, while the last two terms capture the work done by the microstructure on the fluid.

Next, we multiply the Navier-Stokes equation (8) by u and integrate over Ω to obtain the
balance of the kinetic energy

d

dt

∫

Ω

1

2
ρf |u|

2dx+ µ

∫

Ω
∇xu : ∇xu dx

= −

∫

Ω
∇xu : σ dx−

∫

Ω
u ·m0ge3

(∫

Sd−1

fdn

)

dx .

(15)

Combining (14) and (15) leads to the balance of total energy.

E[u, f ] =

∫

Ω

(
1

2
ρf |u|

2 +

∫

Sd−1

(

(kBθ)f ln f + fU(x)
)

dn

)

dx (16)

In particular, it follows that the total energy dissipates and the dissipation is due to the
Brownian motions combined with the viscous dissipation of the solvent.

Non-dimensionalization. For the non-dimensionalization the units of mass, length and time
are denoted by M , L and T and we monitor the dependence on the number of particles N .
We list the dimensions of some terms that appear in the equations: The quantity kBθ has

dimensions of energy
[
ML2

T 2

]

; the translational diffusion D⊥ = kBθ
ζ⊥

dimensions
[
L2

T

]

while the

rotational diffusion Dr =
kBθ
ζr

has dimensions
[
1
T

]
; the number density f will have dimensions

of number of particles / volume
[
N
L3

]
; finally, the elastic stress of the microstructure σ ∼ (kBθ)f

dimensions of
[
MN
LT 2

]
.

Now consider a change of scale of the form

t = T t̂, x = Xx̂, u =
X

T
û, f =

N

V
f̂, p =

µ

T
p̂, σ = (kBθ)

N

V
σ̂. (17)

6



where we used two length scales: a length scale X that will be selected in the course of the
non-dimensionalization process, and a length scale L standing for the size of the macroscopic
domain and entering only through the volume occupied by the suspension V = O(L3).

In these new units the Smoluchowski equation takes the form

∂t̂f̂ +∇
x̂
·
(

ûf̂
)

+∇n ·
(

P
n

⊥∇x̂
ûnf̂

)

= TDr∆nf̂

+
T

X2
D⊥∇x̂

· (I + n⊗ n)∇
x̂
f̂ +

D⊥

X
T
m0g

kBθ
∇

x̂
·
(

(I + n⊗ n)e3f̂
) (18)

while the elastic stress tensor (6) and the momentum equation, respectively, become

σ̂ =

∫

Sd−1

(dn⊗ n− I) f̂ dn , (19)

X2

Tµ
ρf

[

∂t̂û+ (û · ∇
x̂
) û
]

= ∆
x̂
û−∇

x̂
p̂+

XT

µ

kBθ

X

N

V
∇

x̂
· σ̂ −

N

V
m0g

XT

µ

(∫

Sd−1

f̂ dn

)

e3.

(20)

The time scale T is an observational time scale (linked to the Deborah number) that will
be selected later. The ratio X/T is fixed at this point to be the velocity of sedimentation

X

T
=

m0g

ζ⊥
=: vsed, (21)

i.e. the velocity scale is proportional to the motion of a single rod falling due to gravity in a
friction dominated flow.

A review of the Navier-Stokes equation indicates that there are three dimensionless numbers
at play: (a) A Reynolds number based on the velocity X/T = vsed

Re :=
Xvsed

µ
ρf

= ρf
X2

Tµ
. (22)

(b) A dimensionless number Γ describing the ratio of elastic over viscous stresses at the fluid,

Γ :=
XT

µ

kBθ

X

N

V
=

(
X2ρf
Tµ

)(

N

V

kBθ

ρf
(
X
T

)2

)

=
inertial

viscous

elastic

inertial
(23)

(c) A dimensionless number δ describing the ratio between buoyancy forces and viscous stresses,

δ :=
N

V
m0g

XT

µ
=

(
X2ρf
Tµ

)(

Nm0g

V ρf
X
T 2

)

=
inertial

viscous

buoyancy

inertial
(24)

Note that V ρfv
2
sed = V ρf

(
X
T

)2
is the total kinetic energy of the sedimenting solution, while

NkBθ is the total elastic energy of entropic origin of the microstructure. Hence, the last term
in (23) is a ratio of elastic over inertial forces. The term V ρf

X
T 2 is the inertial force of the

solution at the selected length and time scales, while Nm0g stands for the total buoyancy
force. Hence, the last term in (24) stands for the ratio of buoyancy over inertial forces, and in
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the usual practice of fluid mechanics it will be denoted as 1
Fr

where Fr is a Froude number.
In summary, we have two dimensionless numbers:

δ = Re
1

Fr
, (25)

the ratio of buoyancy over viscous stresses, and

γ :=
Γ

δ
=

kBθ

Xm0g
, (26)

which stands for the ratio of elastic over buoyancy forces. The non-dimensional form of the
momentum equation then reads

Re (∂t̂û+ (û · ∇
x̂
) û) = ∆

x̂
û−∇

x̂
p̂+ δγ∇

x̂
· σ − δ

(∫

Sd−1

f̂ dn

)

e3. (27)

We turn now to the transport equation (18) and introduce the Deborah number

De :=
1

DrT
(28)

which as usual expresses the ratio of a stress relaxation time 1
Dr

over the observational time

scale T . By virtue of (26) and (21) we have T
X2D⊥

1
γ
= T

X2

kBθ
ζ⊥

Xm0g
kBθ

= 1. The kinetic equation
(18) is expressed as

∂t̂f̂ +∇
x̂
·
(

ûf̂
)

+∇n ·
(

P
n

⊥∇x̂
ûnf̂

)

=
1

De
∆nf̂ +∇

x̂
· (I + n⊗ n)

(

γ∇
x̂
f̂ + e3f̂

)

and depends on two dimensionless numbers: γ defined in (26) and the Deborah number De -
or equivalently the observational time scale T . For simplicity we will use the notation Dr in
the place of 1

De
.

The non-dimensional form of the equations is summarized (dropping the hats):

∂tf +∇x · (uf) +∇n · (P
n

⊥∇xunf)−∇x · ((I +n⊗ n) e3f)

= Dr∆nf + γ∇x · (I +n ⊗n)∇xf (29)

σ =

∫

Sd−1

(dn⊗ n− I) f dn (30)

Re (∂tu+ (u · ∇x)u) = ∆xu−∇xp+ δγ∇x · σ − δ

(∫

Sd−1

f dn

)

e3 (31)

∇x · u = 0 (32)

Shear flows. Let x = (x, y, z)T and u = (u, v, w)T . We restrict attention to the case γ = 0,
when the effect of the translational Brownian motion in (29) is ignored and as a consequence
the effect of the elastic forces is negligible compared to the buoyancy forces. We consider an
ansatz of a shear flow in the vertical direction:

u =







0

0

w(t, x)







, f = f(t, x,n) , p = −κ(t)z . (33)
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The director n in general takes values in S2, which means that the rod-like particles are allowed
to move out of the plane described by the direction of shear and the direction of gravity. For
a shear flow, with n ∈ S2, the system (29)-(32) simplifies to

∂tf(t, x,n) +∇n ·
(
P
n

⊥(0, 0, n1wx)
T f
)
− ∂x(n1n3f) = Dr∆nf

Re ∂tw(t, x) = ∂xxw + δ

(

ρ̄−

∫

S2

f dn

)

.
(34)

The form of the pressure in (33) is the most general consistent with the ansatz of a shear
flow and κ(t) can account for an externally applied pressure gradient. The choice κ = δρ̄ in
(34), where ρ̄ describes the total mass of suspended rods, provides an equilibrated flow. Under
special boundary conditions (e.g. spatially periodic or prescribing the same distribution f at
the boundary of Ω) we have conservation of the total density which determines

ρ̄ =

∫

Ω

∫

S2

f(t, x,n)dndx =

∫

Ω

∫

S2

f(0, x,n)dndx.

An even simpler system is obtained, if we consider again a shear flow (33) but restrict the
director to take values in the (x, z) plane, i.e. the plane spanned by the direction of shear
and the direction of gravity. (While this restriction is not natural, it turns out to be much
simpler to analyze and in retrospect to provide the same form of macroscopic equations.) In
this situation the shear is again wx = ∂xw but now n ∈ S1, that is n = (cos θ, sin θ)T where
the angle θ ∈ [0, 2π] is measured counter-clockwise from the positive x-axis. The model for
shear flow can be written in the form

∂tf(t, x, θ) + ∂θ
(
wx cos

2 θf
)
− ∂x (sin θ cos θf) = Dr∂θθf

Re ∂tw(t, x) = ∂xxw + δ

(

ρ̄−

∫ 2π

0
f dθ

)

.
(35)

We now consider numerical simulations of system (35), which resemble the basic mechanism
of cluster formation that is observed in experimental studies of sedimentations of rod-like
particles. Since we are interested in the process of cluster formation, we monitor the density of
rod-like particles as a function of space and time. In our simplified situation this means that
we monitor

ρ(t, x) =

∫ 2π

0
f(t, x, θ)dθ. (36)

Initially this density is set to approximately one, i.e. ρ(x, 0) = 1+ ǫ1(x) where ǫ1(x) is a small
random perturbation, see Figure 2 (left plot). The initial values of f used in the computation
are constant in θ, i.e. we use f(0, x, θ) = (1 + ǫ1(x))/2π. The vertical velocity component w is
initially set to zero.

In Figure 2 (middle and right plot) we show ρ(x, t) as computed via (36) from the numerical
results of f at different times. We observe that after some time clusters of higher particle
density form. In applications where we are only interested in the particle density ρ(x, t) and
not in a more detailed description of the particle orientation, it would be much more efficient to
compute numerical solutions of mathematical models which directly describe the evolution of
ρ without computing f . In this paper we describe different approaches to derive such models.
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Figure 2: Numerical results for system (35).

3 Nonlinear moment closure

In this section we consider (35) and proceed to describe the evolution of a system of moments.
The macroscopic density is

ρ(t,x) =

∫

S1

f(t,x,n) dn.

We use as basis for the moments the eigenfunctions of the Laplace-Beltrami operator ∂θθ on
the circle S1. These are the functions 1, and cosnθ, sinnθ, n = 1, 2, 3, .... Since the rods are
identical under the reflection θ → −θ only the even eigenfunctions will play a role.

First we derive a nonlinear system of equations for the zero-th order moment ρ and the
second order moments s and c, defined via the relations

ρ(t, x) :=

∫ 2π

0
f(t, x, θ) dθ

c(t, x) :=
1

2

∫ 2π

0
f(t, x, θ) cos(2θ) dθ

s(t, x) :=
1

2

∫ 2π

0
f(t, x, θ) sin(2θ) dθ.

We will close the system by neglecting the moments of order higher than 2. This closure is
based on the premise that higher moments will experience faster decay, as they correspond to
a larger eigenvalue of the Laplace-Beltrami operator. The validity of this hypothesis will be
tested numerically.

In our derivation we consider the different terms of the first equation in (35) separately,
using the notation

∂tf = −∂θ
(
wx cos

2 θ f
)

︸ ︷︷ ︸

[1]

+ ∂x (sin θ cos θf)
︸ ︷︷ ︸

[2]

+Dr∂θθf
︸ ︷︷ ︸

[3]

.
(37)

The evolution equation for ρ is obtained by integrating (37) over S1. Note that there is no
contribution from [1] and [3], and

∂tρ =

∫ 2π

0
∂tf dθ

=

∫ 2π

0
∂x (sin θ cos θf) dθ = ∂xs.

10



To obtain the evolution equation for c, we compute

∂tc =
1

2

∫ 2π

0
cos(2θ)∂tf dθ.

We separately consider the different contributions from the right hand side of (37).
contribution from [1]:

−
1

2

∫ 2π

0
cos(2θ)∂θ

(
wx cos

2 θf
)
dθ = −

1

2
wx

∫ 2π

0
cos(2θ)∂θ

(
1

2
(1 + cos 2θ)f

)

dθ

= −wx

∫ 2π

0
sin(2θ)

1

2
(1 + cos(2θ)f dθ

= −wxs−
1

4
wx

∫ 2π

0
sin(4θ)f dθ

contribution from [2]:

1

2

∫ 2π

0
cos(2θ)∂x (sin θ cos θ f) dθ =

1

4

∫ 2π

0
cos(2θ) sin(2θ)∂xf dθ

=
1

8

∫ 2π

0
sin(4θ)∂xf dθ

contribution from [3]:

1

2

∫ 2π

0
cos(2θ)Dr∂θθf dθ = Dr

∫ 2π

0
sin(2θ)∂θf dθ

= −2Dr

∫ 2π

0
cos(2θ)f dθ

= −4Drc

Now we neglect higher order moments, i.e. terms that involve integrals of the form
∫ 2π
0 sin(4θ)f dθ and

∫ 2π
0 cos(4θ)f dθ. Under this assumption, the evolution equation for c has

the form
∂tc = −wxs− 4Drc.

Similarly we can derive an evolution equation for s. The complete nonlinear moment closure
system reads

∂tρ = ∂xs (38)

∂tc = −wxs− 4Drc (39)

∂ts =
1

8
∂xρ+ wxc+

1

4
wxρ− 4Drs (40)

Re∂tw = ∂xxw + δ (ρ̄− ρ) . (41)

4 The quasi-dynamic approximation

In [8], we derived various systems of evolution equations describing the macroscopic behavior
of the system (34) for intermediate and long times. We considered rectilinear flows in the
direction of gravity with the rod orientations taking values on the sphere S2 and derived the
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so called quasi-dynamic approximation (cf [8]). When we restrict our analysis to a shear flow
(33) and set Dr = 1 we obtain the system consisting of an advection-diffusion equation coupled
to a diffusion equation,

∂tρ(t, x) =
1

30
∂x

[
422

422 + 46w2
x

(

ρwx +
1

3
∂xρ

)]

Re∂tw(t, x) = ∂xxw + δ (ρ̄− ρ) .

(42)

This model belongs to the class of flux-limited Keller-Segel systems and enjoys gradient-flow
structure (see [8]). The derivation of (42) is quite technical due to the complex form of the
moment equations (and their closures) reflecting the structure of harmonic polynomials in
dimension d > 2.

To shed some light on the derivation of (42), we consider the simplified shear flow model
(35), where now the rigid-rods are constrained to move in-plane, n ∈ S1, and present a deriva-
tion of the quasi-dynamic approximation. The idea behind the quasi-dynamic approximation
is that the transient dynamics (39)-(40) of the second order moments c and s is replaced by
its equilibrium response, i.e. by

4Drc+ wxs = 0

−
1

8
∂xρ−

1

4
wxρ− wxc+ 4Drs = 0.

(43)

System (43) can be solved for s, to obtain

s =
Drwxρ+

1
2Dr∂xρ

16D2
r +w2

x

. (44)

Inserting (44) into (38), we obtain the quasi-dynamic approximation

∂tρ = ∂x

(
Drwx

16D2
r + w2

x

ρ

)

+
1

2
Dr∂x

(
1

16D2
r + w2

x

∂xρ

)

Re∂tw = ∂xxw + δ (ρ̄− ρ) .

(45)

For the special case Dr = 1 it gives

∂tρ = ∂x

(
1

16 + w2
x

(

wxρ+
1

2
∂xρ

))

Re∂tw = ∂xxw + δ (ρ̄− ρ) .

(46)

A comparison of (46) with (42) shows that we obtain the same general structure of a flux-
limited Keller-Segel model. The simplification, which restricts the director to S1, just leads to
different constants.

5 The diffusive scaling

The diffusive scaling provides another approach for obtaining a macroscopic evolution equation
for ρ. Here we present a direct derivation of the diffusive scaling for the simplified shear flow
model (35), where we assume that the director f only takes values on S1. Again we restrict
our considerations to the case Dr = 1.
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We consider (35) and rescale the model in the diffusive scale, i.e.

x =
1

δ
x̂, t =

1

δ2
t̂, u = û.

The scaled equations (dropping the hats and for Dr = 1) have the form

δ2 ∂tf(t, x, θ) + δ ∂θ
(
wx cos

2 θf
)
− δ∂x (sin θ cos θf) = ∂θθf

Re δ2 ∂tw(t, x) = δ2 ∂xxw + δ

(

ρ̄−

∫ 2π

0
f dθ

)

.
(47)

Now we introduce the ansatz

f(t, x, θ) = δf0 + δ2f1 + . . .

u = u0 + δu1 + . . . =




0

w0



+ δ




0

w1



+ . . .

ρ̄ = δρ̄0 + δ2ρ̄1 + . . .

and obtain the relations

O(δ) ∂θθf0 = 0 (48)

O(δ2) ∂θ
(
wx cos

2 θf0
)
− ∂x (sin θ cos θf0) = ∂θθf1 (49)

Re∂tw0 = ∂xxw0 +

(

ρ̄0 −

∫ 2π

0
f0dθ

)

O(δ3) ∂tf0 + ∂θ
(
wx cos

2 θf1
)
− ∂x (sin θ cos θf1) = ∂θθf2. (50)

The relation (48) implies that f0 depends at most linearly on θ. As a function on S1, f is
periodic. Thus, f0 must be constant in θ and

ρ0(t, x) =

∫ 2π

0
f0(t, x)dθ = 2πf0(t, x).

Now we integrate equation (50) over S1. The second and the last term vanish and we obtain

∂tρ0 − ∂x

∫ 2π

0
cos θ sin θf1 dθ = 0.

Using integration by parts, we arrive at

∂tρ0 = −
1

4
∂x

(∫ 2π

0
∂θθ (cos θ sin θ) f1 dθ

)

= −
1

4
∂x

(∫ 2π

0
cos θ sin θ ∂θθf1 dθ

)

.

Using (49), we replace ∂θθf1 by terms which depend on f0 and obtain an evolution equation
for ρ0:

∂tρ0 = −
1

4
∂x

(∫ 2π

0
cos θ sin θ

[
∂θ
(
wx cos

2 θf0
)
− ∂x (sin θ cos θf0)

]
dθ

)

=
1

4π
∂x

(

wxρ0

∫ 2π

0
cos2 θ sin2 θ dθ

)

+
1

8π
∂x

(

∂xρ0

∫ 2π

0
cos2 θ sin2 θ dθ

)

=
1

16
∂x (wxρ0) +

1

32
∂xxρ0.
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Thus, in the diffusive limit, the dynamics of the simplified shear flow problem (35) is described
by the system

∂tρ =
1

16
∂x

(

wxρ+
1

2
∂xρ

)

Re∂tw = ∂xxw + (ρ̄− ρ) .

(51)

In Appendix A.2, we derive the diffusive scaling for the kinetic model (29)-(32) in the case
of rectilinear flow for rigid rods where the director is allowed to take values in S2. For shear
flow and in the special case Dr = 1, γ = 0, the diffusive scaling of (34) leads to the model
equation

∂tρ =
1

30
∂x

(

wxρ+
1

3
∂xρ

)

Re∂tw = ∂xxw + (ρ̄− ρ) .

(52)

Again we obtain a Keller-Segel type model. In contrast to the quasi-dynamic approximation,
the diffusive scaling does not provide flux limiting.

6 Numerical simulations

In this section we show numerical simulations for shear flow, which compare the simplified shear
flow model (35) with the quasi-dynamic approximation (42) and the diffusive scaling (51). In
Figure 3 we show results of numerical simulations using the parameter values Dr = δ = Re = 1.
The initial values are set to be

ρ(xk, 0) = 1 + 10−4

(

ǫ(xk)−
1

2

)

w(xk, 0) = 0,

(53)

where ǫ(xk) is a random number between 0 and 1. We impose the periodicity condition on
an interval of length 100. For our test simulations we used 800 grid cells in space, thus
k = 1, . . . , 800. In the simulation of the full model, S1 is discretized with 200 grid cells. We
observe the formation of clusters with higher particle density.

Both the solutions predicted by the quasi-dynamic approximation as well as the solutions
predicted by the diffusive limit compare very well with the solution structure obtained by the
full model. Only at very late times, some differences can be observed and the quasi-dynamic
approximation leads to slightly more accurate results.

Note that the model equations obtained by the quasi-dynamic approximation contain the
same non-dimensional parameters as the full model. For the diffusive limit this is not the case,
since the parameter δ does no longer appear in (51). Using our insight from the derivation
of the diffusive model, we can nevertheless set up a simulation for values δ 6= 1. In order to
simulate the problem with the diffusive model, we impose periodic boundary conditions on
a domain of length δ100 = 20 and consider numerical approximations for t ≤ δ22000 = 80.
Furthermore, we set initial values as described by (53) but multiplied by 1/δ. Finally we
replaced ρ̄ by ρ̄/δ in equation (51). To compare the numerical solution of the diffusive limit
system with the solution of the full model, we map the numerical solution to the interval
[0, 100] and multiply with δ. In Figure 4 we show simulations comparing the quasi-dynamic
approximation with the full model for δ = 0.2.
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Figure 3: Comparison of the density as predicted by the full model (black solid line) with the
prediction of the diffusive scaling (blue dashed-dotted line) and the quasi-dynamic approxima-
tion (red dotted line) at different times.

At later times the cluster start to merge. This coarsening behavior can be observed with
all of the three models. Here a slightly better agreement is observed for the quasi-dynamic
approximation.

Conclusions

Based on a simplified kinetic model, we have studied the sedimentation of rod-like particles
under the influence of gravity. Linear stability shows both instability of a well stirred initial
configuration as well as a wave length selection mechanism for a non-zero Reynolds number.
We presented two models describing the macroscopic response of the system. One of these
models, the quasi-dynamic approximation, is obtained from a moment closure system using
the assumption that the evolution equation of the second order moments can be replaced
by an equilibrium relation. The resulting macroscopic system has the form of a flux-limited
Keller-Segel model. Another macroscopic model is obtained by taking the diffusive limit of
the kinetic model. In this case we obtain a standard Keller-Segel type model. Numerical
computations confirm good agreement of the predicted solution structure of both macroscopic
models compared to the kinetic model. For very long times the quasi-dynamic approximation
shows a better agreement with the original kinetic model.

Finally, it is interesting to note the differences of the macroscopic models depending on
whether the orientation of the rod-like particles is a function on S1 or S2, respectively. The
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Figure 4: Comparison of the density as predicted by the full model (black solid line) with the
prediction of the diffusive scaling (blue dashed-dotted line) and the quasi-dynamic approxima-
tion (red dotted line) at different times. The simulation corresponds to δ = 0.2.

macroscopic models which are derived from the simplified kinetic model are less diffusive than
those which are derived from the more general kinetic model.

A Appendix: Collective behavior in scaling limits

In this appendix we derive the hyperbolic and diffusive limits for the system (29)-(32). The
description of collective behavior of kinetic models through hyperbolic or parabolic limits is well
known in several contexts in fluid dynamics or biological transport systems (e.g. [3, 13, 15]).
The novelty here is that the kinetic variable takes values in the sphere, which requires some
special calculations detailed in this appendix.

It is expedient to view the scaling limits from the perspective of describing the aggregate
behavior of a suspension. The function

ρ(t,x) =

∫

Sd−1

f(t,x,n)dn

measures the density of rod-like particles. Linear stability theory predicts an instability for the
quiescent solution; it is then natural to calculate the aggregate response of the system in long
times. To this end, we proceed to calculate the hyperbolic and diffusive limits. It turns out that
the limiting behavior in the hyperbolic scaling will be described by a Boussinesq type system.
For certain flows the hyperbolic scaling produces a trivial behavior, and it is then natural to
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consider the diffusive scaling. Such a situation occurs for two-dimensional rectilinear flows of
suspensions, where we will show that the collective behavior in the diffusive limit is described
by the Keller-Segel model. The calculations below are presented for space dimension d = 3
and n ∈ S2.

A.1 The hyperbolic scaling

We first rescale the model (29)-(32) in the hyperbolic scaling,

x =
1

δ
x̂, t =

1

δ
t̂, u = û, p = p̂.

The scaled equations (after dropping the hats) are

δ∂tf + δu · ∇xf − δD(n)e3 · ∇xf + δ∇n · (P
n

⊥∇xunf)

= Dr∆nf + δ2γ∇x ·D(n)∇xf

Re δ (∂tu+ (u · ∇x)u)− δ2∆xu+ δ∇xp− δ2γ∇x · σ = −δ
( ∫

S2

fdn
)

e3

δ∇x · u = 0,

(54)

where D(n) = I + n⊗ n.
We introduce the ansatz

f = f0 + δf1 + . . .

u = u0 + δu1 + . . .

p = p0 + δp1 + . . .

to the system (54) and obtain equations for the various orders of the expansion:

O(1) ∆nf0 = 0 (55)

O(δ) ∂tf0 + u0 · ∇xf0 −D(n)e3 · ∇xf0 +∇n · (P
n

⊥∇xu0nf0) = ∆nf1 (56)

O(δ) Re (∂tu0 + (u0 · ∇x)u0) +∇xp0 = −
(∫

S2

f0dn
)

e3

O(δ) ∇x · u0 = 0

It follows from (55) that f0 is independent of n and thus

f0(t,x,n) =
1

4π

∫

S2

f0dn =
1

4π
ρ0(t,x)

Then integrating (56) over the sphere, we deduce that ρ0 =
∫

S2 f0dn and u0 satisfy the
Boussinesq system

∂tρ0 +∇x ·

(

u0ρ0 −
( 1

4π

∫

S2

D(n)dn
)
e3ρ0

)

= 0

Re (∂tu0 + (u0 · ∇x)u0) +∇xp0 = −ρ0e3

∇x · u0 = 0.

(57)
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A.2 The diffusive scaling

Next, we confine to rectilinear flows with a vertical velocity field obeying the ansatz

u(t, x, y) = (0, 0, w(t, x, y))T , f = f(t, x, y,n) (58)

depending only on the horizontal variables (x, y). The flow cross section is the domain D and
we assume that the boundary conditions are either periodic or no-slip. This restriction to the
two-dimensional case is motivated by experimental observations of long clusters with higher
particle density. We note that for this ansatz the nonlinear transport terms u ·∇f and (u ·∇)u
drop out and the pressure must be of the form p = −κ(t)z. One checks that under the ansatz
(58) the system (57) reduces to the trivial problem

∂tρ0 = 0, Re ∂tw0 = (ρ̄− ρ0) , p0 = −ρ̄z

which can be easily solved in terms of the initial data.
The objective then becomes to calculate the next order correction in the diffusive scale.

We return to (29)-(32) and introduce the diffusive scaling, i.e.

x =
1

δ
x̂, t =

1

δ2
t̂, u = û, p = p̂, f = f̂ . (59)

The scaled equations (after dropping the hats) have the form

δ2∂tf − δD(n)e3 · ∇xf + δ∇n · (P
n

⊥∇xunf) = Dr∆nf + δ2γ∇x ·D(n)∇xf

δ2 Re∂tu+ δ∇xp = δ2∆xu+ δ2γ∇x · σ − δ
( ∫

S2

fdn
)

e3

δ∇x · u = 0

We introduce the ansatz

f(t, x, y,n) = δf0 + δ2f1 + . . .

u(t, x, y) = u0 + δu1 + . . . =







0

0

w0







+ δ







0

0

w1







+ . . .

p = δp0 + δ2p1 + . . .

(60)

to the above system and collect the terms of the same order,

O(δ) ∆nf0 = 0 (61)

O(δ2) −D(n)e3 · ∇xf0 +∇n · (P
n

⊥∇xu0nf0) = Dr∆nf1 (62)

O(δ3) ∂tf0 −D(n)e3 · ∇xf1 +∇n ·
(
P
n

⊥

(
∇xu1nf0 +∇xu0nf1

))

= Dr∆nf2 + γ∇x ·D(n)∇xf0 (63)

The same procedure applied to the Stokes system yields

O(δ) ∇x · u0 = 0

O(δ2) ∂tu0 +∇xp0 = ∆xu0 −

(∫

S2

f0dn

)

e3 (64)
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We proceed to derive an evolution equation for ρ0 and w0. In order to do this, we first
summarise a few tools. Recall that n ∈ S2 has the form

n =







sin θ cosφ

sin θ sinφ

cos θ







, 0 ≤ θ < π, 0 ≤ φ < 2π.

Furthermore, recall that the components of the tensor 3n ⊗ n − I are the surface spherical
harmonics of order 2. This means, they are harmonic polynomials on R

3 of order 2, restricted
to S2. The surface spherical harmonics are eigenfunctions of the Laplacian on S2 with corre-
sponding eigenvalue −ℓ(ℓ+ 1), where ℓ is the order [1, App. E]. Hence

△n(3ni nj − δij) = −6 (3ni nj − δij). (65)

Finally, note that for any 3× 3 matrix κ, the equation

∇n · (P
n

⊥κn) = tr κ− 3n · κn , (66)

holds, where tr stands for the trace operator. Also, using symmetries of S2, we obtain the
formula

1

4π

∫

S2

n⊗ndn = 1
3I. (67)

Now we are ready to derive an evolution equation for ρ0. Equation (61) implies that f0 is
independent on n, that is

f0 =
1

4π

∫

S2

f0dn =
1

4π
ρ0(t, x, y)

Next, integration of (63) over the sphere and use of (67) and the fact that e3 · ∇xf1 = 0 for
our ansatz gives that ρ0 satisfies

∂tρ0 = ∇x ·

∫

S2

(

D(n)−
1

4π

∫

S2

D(n)dn

)

e3f1 dn

︸ ︷︷ ︸

=:I1

+γ∇x ·
1

4π

∫

S2

D(n)dn

︸ ︷︷ ︸

=:I2

∇xρ0 (68)

where the terms I1 and I2 are computed in terms of f1 solving (62) for f0 =
1
4πρ0.

It remains to compute the terms I1 and I2. Observe now that we have the identities:

∫

S2

(n⊗ n−
1

3
I)dn

(65)
= −

1

6

∫

S2

△n(n ⊗ n−
1

3
I)dn = 0

I2 :=
1

4π

∫

S2

D(n)dn =
1

4π

∫

S2

(n⊗ n+ I)dn =
4

3
I (69)

D(n)−
1

4π

∫

S2

D(n)dn = n⊗ n−
1

3
I

These, in conjunction with (61), (62) and (66), imply that f1 satisfies

∆nf1 = −
(
D(n)−

1

4π

∫

S2

D(n)dn
)
e3 ·

1

4π
∇xρ0 +

1

4π
∇n · (P

n
⊥∇xu0n) ρ0

= −
(
n⊗n−

1

3
I
)
e3 ·

1

4π
∇xρ0 −

3

4π
ρ0(n · ∇xu0n). (70)
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Next, we compute I1

I1 :=

∫

S2

(

D(n)−
1

4π

∫

S2

D(n)dn

)

e3f1 dn

=

∫

S2

(
n⊗ n−

1

3
I
)
e3f1dn

(65)
= −

1

6

∫

S2

△n

(
n⊗n−

1

3
I
)
e3f1dn

(70)
=

1

24π

∫

S2

(
n⊗ n−

1

3
I
)
e3

[(
n⊗ n−

1

3
I
)
e3 · ∇xρ0 + 3ρ0(n · ∇xu0n)

]

dn

=
1

24π

∫

S2







n1n3

n2n3

n2
3 −

1
3







[

(3ρ0w0x + ρ0x)n1n3 + (3ρ0w0y + ρ0y)n2n3

]

dn

Observe that, due to symmetry considerations, the integrals

∫

S2

n1n
3
3 −

1

3
n1n3dn = 0

∫

S2

n2n
3
3 −

1

3
n2n3dn = 0

∫

S2

n1n2n
2
3dn = 0,

while the remaining integrals are computed via spherical coordinates

∫

S2

n2
1n

2
3dn =

∫ π

0
sin3 θ cos2 θ dθ

∫ 2π

0
cos2 ϕdϕ =

4π

15
∫

S2

n2
2n

2
3dn =

∫ π

0
sin3 θ cos2 θ dθ

∫ 2π

0
sin2 ϕdϕ =

4π

15
.

We conclude that

I1 =
1

90
(3ρ0w0x + ρ0x , 3ρ0w0y + ρ0y , 0 )T

and that ρ0 satisfies the equation

∂tρ0 =
1

30

(

∂x

(
1

3
ρ0x + ρ0w0x

)

+ ∂y

(
1

3
ρ0y + ρ0w0y

))

+ γ
4

3
∆(x,y)ρ0

=
1

30
∇(x,y) ·

(
ρ0∇(x,y)w0

)
+

1

3

(

4γ +
1

30

)

△(x,y)ρ0

Finally, we derive the evolution equation for w0. From (64) we obtain

∂xp0 = ∂yp0 = 0 (71)

Re∂tw0 −∆(x,y)w0 + ∂zp0 = −ρ0. (72)

Since the right hand side of (72) depends only on (x, y), the pressure is of the form p = −κ(t)z,
where κ(t) reflects the effect of an imposed pressure gradient. If there is no imposed pressure
gradient and the boundary conditions ensure conservation of density (e.g. periodic) then the
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pressure is hydrostatic and we may select κ(t) := ρ̄ = 1
|D|

∫

D
ρ(t, x, y)dxdy the conserved

density. For periodic boundary conditions and for the case γ = 0, the functions (ρ0, w0) solve
the coupled system

∂tρ0 =
1

30
∇(x,y) ·

(
ρ∇(x,y)w0

)
+

1

90
∆(x,y)ρ0

Re∂tw0 = ∆(x,y)w0 + (ρ̄− ρ0),
(73)

where ρ̄ is the average density.

B Appendix: Linear stability theory

In this appendix we study the linear stability of the shear flow problem and give an asymptotic
expansion of the most unstable eigenvalue of the linear system in the Reynolds number Re.

We linearize the moment closure system (38)-(41) around the state w = 0 and ρ = 1 and
consider the simplest case γ = 0, Dr = 1, which gives

∂tρ = ∂xs

∂tc = −4c

∂ts =
1

8
∂xρ+

1

4
wx − 4s

Re∂tw = ∂xxw − δρ.

(74)

We take the Fourier transformation of (74) and consider first the case Re = 0. The last
equation of (74) gives

ξ2ŵ(ξ) = −δρ̂(ξ), (75)

while the remaining once lead to

∂t







ρ̂

ĉ

ŝ







=







0 0 iξ

0 −4 0

1
8 iξ −

iδ
4ξ 0 −4













ρ̂

ĉ

ŝ







. (76)

The matrix on the right of (76) has the eigenvalues
{

−4,−2−
1

4

√

64 + 4δ − 2ξ2,−2 +
1

4

√

64 + 4δ − 2ξ2
}

.

The last eigenvalue, which we denote by λ0, is larger than zero provided that δ > 0 and ξ2

is small enough. Thus, the linear moment closure system coupled with the Stokes equation
is most unstable for waves with wave number ξ → 0. The eigenvector corresponding to the
eigenvalue λ0 has the form

x0 =

(
2iξ

2δ − ξ2

(

8 +
√

64 + 4δ − 2ξ2
)

, 0, 1

)T

.

Now we consider the case Re > 0, for which the linearized coupled system can be expressed
in the form




ẋ

ẏ



 =




A B

1
Re

D 1
Re

C








x

y



 . (77)
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with x = (ρ̂, ĉ, ŝ)T , y = ŵ and

A =







0 0 iξ

0 −4 0

1
8 iξ 0 −4







, B =







0

0

1
4 iξ







, D =
(

−δ 0 0

)

, C = −ξ2.

Our goal is to give an asymptotic expansion for eigenvalues of the matrix arising on the right
hand side of (77), which is valid for small values of Re. For ε = 1

Re
we consider the ansatz

Axε +Byε = λεxε

Cyε +Dxε = ελεyε,
(78)

set
λε = λ0 + ελ1 + . . . , xε = x0 + εx1 + . . . , yε = y0 + εy1 + . . . .

and calculate the first two orders:

O(1) :




A− λ0I B

D C








x0

y0



 =




0

0



 , (79)

O(ε) :




A− λ0I B

D C








x1

y1



 =




λ1x0

λ0y0



 . (80)

The left null space of the matrix on the left hand side of (80) is given by

uT =
(

−8−
√

64 + 4δ − 2ξ2, 0,−4iξ, 1
)

. (81)

We multiply both sides of Equation (80) from the left with uT and obtain

0 = uT ·




λ1x0

λ0y0



 . (82)

From the second equation of (79) we obtain

y0 = −C−1Dx0 =
−2iδ

ξ

(8 +
√

64− 2ξ2 + 4δ)

2δ − ξ2
.

Using the expressions for λ0, x0, y0 and u in Equation (82), we can now calculate λ1, which
has the form

λ1 = −
δ

2ξ2

(2δ−ξ2)
(8 +

√

64 + 4δ − 2ξ2)2 + 4ξ2
. (83)

In Figure 5(a) we plot the eigenvalue λ0 as a function of the wave number ξ. This eigenvalue
describes the linear stability behavior of the system for Re = 0. The longest possible waves
are most unstable and there is no wave length selection. In Figure 5(b), we plot λ0 + Reλ1

vs. the wave number ξ for ε = Re = 1 and δ = 0.2. A non-zero Reynolds number provides a
wave length selection mechanism. The curve attains its maximum for a wave number ξ ≈ 0.27.
Thus, the linear theory predicts the wave length of the most unstable wave to be approximately
2π/0.27 ≈ 23.27. On an interval of length 100, we expect the formation of 4-5 clusters. This
is in agreement with our numerical result shown in Section 6, Figure 4.
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Figure 5: Positive part of the (a) λ0 and (b) λ0 + λ1 vs. wave number ξ for δ = 0.2.
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