CONVERGENCE OF RELAXATION SCHEMES TO THE
EQUATIONS OF ELASTODYNAMICS

LAURENT GOSSE AND ATHANASIOS E. TZAVARAS

ABSTRACT. We study the effect of approximation matrices to semi-
discrete relaxation schemes for the equations of one-dimensional elasto-
dynamics. We consider a semi-discrete relaxation scheme and establish
convergence using the LP theory of compensated compactness. Then we
study the convergence of an associated relaxation-diffusion system, in-
spired by the scheme. Numerical comparisons of fully-discrete schemes
are carried out.

1. INTRODUCTION

Relaxation approximations of hyperbolic conservation laws appear in di-
verse models in continuum mechanics and kinetic theory of gases, and serve
as a groundstage for the design of numerical schemes for hyperbolic systems
of conservation laws (see [9, 4, 5, 23, 2] for a range of perspectives and [16]
for the related subject of kinetic schemes). The convergence properties of
relaxation systems and associated relaxation schemes for scalar conservation
laws are presently well understood (e.g. [4, 15, 1, 21, 10, 11]). By contrast,
when the zero-relaxation limit is a system of conservation laws, the dissi-
pative effect of relaxation is subtle to capture and convergence results were
only recently established [22, 23, 17, 12].

The issue of dependence on the approximation matrix, familiar from the
theory of viscosity approximations, has a counterpart in the theory of re-
laxation approximations and their associated relaxation schemes. As a test
case to investigate this issue, we consider the system of one dimensional
elastodynamics,

U — vy =0
Ut_g(u)wzo

(1)
where u stands for the (shear) strain and v for the velocity in the direction
of the motion.
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We compare two relaxation systems, both having as zero relaxation limit
¢ — 0 the equations (1). The first system reads:

U — vy = 0
V¢t — O = 0 (2)
(0 —Bu)y = —1(0—g(u)).

It is a model in viscoelasticity [7, 23], and it may be put into the equivalent
form

u—vy = 0
v —g(u)e = e(EU:c:c_'Utt)a

(3)

of an approximation of (1) by one wave equation. The second system is of
the type proposed in Jin-Xin [9]:

ut—py = 0
v —1s = 0
4
Pt — Kug = —%(P—’U) )
re— Mg = —2(r—g(u))

and it may be written in the equivalent form

Ut — Vg = E(KIuww - 'U'tt)
Ut — g(u)z = E(A'Uzz - 'Utt) ,

()

of an approximation of (1) by two wave equations.

For stress-strain functions g satisfying ¢’ > 0 the system (1) is strictly
hyperbolic with characteristic speeds A1 o(u) = Z(¢'(u))'/2. The zero-
relaxation limit from (2) to (1) is performed in [23] under the hypotheses:
9(0) =0,

0<v<g(u)<T, uweR, (6)
for some positive constants v, I,

(u - uo)g”(u) 7£ 0 foru 7é Uo , (7)
and ¢",¢" € L? N L*®(R).

and for the parameter E selected so that £ > I'. Note that (2) is a model in
viscoelasticity and that the subcharacteristic condition ¢’ < E guarantees
that the model is consistent with the second law of thermodynamics [7, 23].
The zero-relaxation limit from (4) to (1) is established in [17], under the
hypotheses: g is stricly increasing, g convex for u > 0 and concave for u < 0
and k = ) sufficiently large.

The objective of this article is to study the effects of different relaxation
approximations on the associated numerical schemes. Each of the systems
(2) and (4) can be put into diagonal form and suggests, by upwinding, very
natural relaxing and relaxed schemes. For instance, upon introducing the
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Riemann invariants, (2) is put into the diagonal form

0 (55 + ) VEQ, (35 + 2\1}5) = _QLE(U_Q(U))
at(QE WE E) +VEd, (2}3 25@) = _EQLE(U —g(u)) (8)
du-%) = —L(glu)-o)

Performing upwinding in (8) yields a semi-discrete scheme, for the values of
(u,v,0) on the lattice Z,

tr (u(8),05(8). 05(1))

jez’
that reads:
(uj)s — %(’Uj-kl —vj_1) 2hi/E (0j41 — 205+ 0j-1)
(vi)t — 3 (UJ+1 oj-1) = \é_}?(v]—kl 20 +vj_1) 9)
(0j = Buj)e = —Z(05 — g(u;))

In a similar fashion, (4) is diagonalizable and has corresponding upwinding
relaxed and relaxing schemes (see Jin-Xin [9]).

In Section 3, we establish convergence of the semi-discrete scheme (9)
to the elasticity system, under the hypotheses (6)-(7) and E > I, in the
parameter range h — 0, ¢ — 0 with ¢ = O(h). The restriction ¢ = O(h)
does not appear in convergence results of semi-discrete schemes to scalar
conservation laws [1, 11], nor in a recent convergence result for fully disrete
schemes patterned after the relaxation system (4), see [12]. This restriction
reflects the nature of the relaxation approximation, as it is explained in this
article.

Note that (9) is a formal first order discretization of (2). Experience with
discretizations of hyperbolic systems would suggest that the behaviour of
(9) is characterized by the associated relaxation-diffusion system

Up — Vgp = hQ&—UM
Vg — Op = hﬁvm (10)
(0 — Bu)y = l(U - g(u))

In principle, the presence of diffusion should reinforce any stabilizing effect
of relaxation and provide a more stable response. Indeed, this is the case for
a relaxation-diffusion system that looks exactly like (10) with the notable
exception that the term o, is replaced by ug, (see Lu-Klingenberg [13]).
However, for the system (10) this is not the case; the slight difference in
terms makes a large difference in the analysis, which is based on using the
stabilizing effect of relaxation to compensate for the missing control of in-
complete diffusion matrix. We establish convergence of (10) to (1) as e — 0,
h — 0 in the parameter range h = o(e). Somewhat surprisingly, this is
the opposite range from the convergence-range of the relaxing semi-discrete
scheme. We discuss this discrepancy at the end of Section 4.

In order to investigate whether the parameter range ¢ = O(h) is a real
restriction for convergence (of the semi-discrete scheme) or a defficiency
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of our analysis, we performed extensive numerical runs, comparing fully-
discrete schemes based on (4) with fully-discrete schemes based on (2). It
turns out that both discretizations are very stable in the parameter region
e = O(h), but the one based on (2) develops oscillations as we move to the
boundary of the parameter region, (see Section 5). On the other hand, in
the region that both are stable, the upwind discretization of (2) is far less
diffusive than the upwind discretization of (4).

The main ingredients for both convergence results are the theory of com-
pensated compactness (Tartar [20], Murat [14]), the LP theory for the re-
duction of generalized Young measures for the equations of elastodynamics
(DiPerna [6], Shearer [19], Serre-Shearer [18]), and a-priori estimates - valid
under the hypothesis 0 < ¢’ < F - measuring the dissipative strength of the
semi-discrete relaxation scheme (9) and of the relaxation-diffusion system
(10). The a-priori estimates are quite different in spirit for the two cases:
In the former case, diffusive effects of the semi-discrete scheme dominate
the relaxation effects (using the fact that for a scheme there can be no os-
cillations below the scale of the grid), while, in the latter case, relaxation
dominates diffusion - in the range h = o(e).

To illustrate the analytical aspects, we start in Section 2 by proving con-
vergence for a variant of (4) (see (14) in S ection 2) to the equations of
elasticity in the limit ¢ — 0. This result indicates the robustness of the
method, relative to different approximation matrices. In all cases some ver-
sion of the subcharacteristic condition must be satisfied to ensure stability
and convergence.

Let us mention a different perspective that links (9) to discrete kinetic
schemes (see Aregba-Driollet and Natalini [2]). When (8) is expressed in
terms of the Riemann invariants

g v v

g g
— + s :__—’ :'U/__, ].].
"=t PTwmwE BTN E -

it leads to a system for the evolution of (f1, f2, f3)

Ofr —VEOfi = —L(fi—Mi(u,v))
Oufo+VEO fo = —%(ﬁ — Ma(u,v)) (12)
Ofs = —¢(fs — Ms(u,v))

where

w80 v g v ()

2E  2W/E’ ~ 2E  2JE’

Then (12) may be interpreted as a discrete BGK-approximation, u, v and
o are recovered as moments

E

u=fi+fotfs, v=FHVE—-fVE, o=fHE+fE, (13)
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and the Maxwellian functions M7, My, M3 satisfy
u = Mi(u,v) + Ma(u,v) + Ms(u,v),
v = Mi(u,v)VE — Ma(u,v)VE,
glu) = Mi(u,v)E + Msy(u,v)E.
Therefore, (2) describes the evolution of moments for the discrete kinetic

model (12), and the upwinding scheme studied here is the natural kinetic
scheme for (12).

2. RELAXATION APPROXIMATIONS

In this section, we discuss the convergence of the relaxation system

(1) 0 (i) o (2) () o

to the equations of elasticity as ¢ — 0. Note that (14) is an approximation
of the type proposed in Jin-Xin [9] and (4) corresponds to the special case
that A is diagonal. We refer to Serre [17] for a convergence result for (4)
under a different methodology.

First, we state a general estimate from [23]: Consider a system of N
conservation laws

Ui+ F(U)g =0 (15)
that is equipped with a strictly convex entropy H(U) and let Q(U) be the
corresponding flux. Recall that entropy-entropy flux pairs H — @) are gen-
erated by solving the system of linear hyperbolic equations

QI — HI . FI
where H' = VH stands for the gradient of H and H" for its Hessian matrix.
Consider the relaxation approximation of (15)
Ui+ F(U)y = e(AUzz — Uy), (16)

where A is a positive definite and symmetric matrix. We have

Proposition 1. Assume that (15) is equipped with a strictly convez entropy
H(U) satisfying, for some o> 0 and p > 0,

H'(U)—al>ul, (17)
and suppose that the positive-definite, symmetric matriz A satisfies, for some
v >0,

1
3 [(H"(U)A)T + H"(U)A] — oF'(U)'F'(U) > vI. (18)
Then smooth solutions U of (16), that decay fast at infinity, satisfy the
dissipation estimate:

Ore + 0, Q(U) + ep|Us|* + ev|Uy|? < 8x(eH' - AU, + 2%l - AU,)
(19)
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where
e = H(U+elUy) + U, - [Lal — [ [§ H"(U + erUy) dr ds|Uy
+3e2a|Ui|? + £2al, - AU, (20)

The system of elasticity is equipped with the strictly convex entropy (the
mechanical energy)
H(u,v) = 02+ G(u) where G(u) = [5' g(&)d¢
Qu,v) = —vg(u)
Under hypothesis (6) we may select @ < min{v,1}. Then (17) is fulfilled for
0 <y <min{y —a,1 —a} and

(v? 4 Tu?)

N | =

1 1
5(1)2 +yu?) < 5112 + G(u) <

Now « is fixed and (18) becomes

L (E D)0 (8 ) )o(§7 o

If (6) holds then (21) can always be fulfilled by selecting A. Proposition 1
yields for solutions (u,v) of (14):

t
E(t) + 8/ / ug? + 02 4 ug’ + vi2dzdr < O(1)E(0) (22)
0 Jr
where O(1) stands for a constant independent of € and
E(t) = / u? + v + e (u? + v+ ug? + v?) da
R

These estimates suffice to apply the L? theory of compensated compactness
and deduce:

Theorem 1. Let g € C? satisfy (6) and (7). Let (uf,v®,0°) be a family of
smooth solutions of (14) on R x [0,00) emanating from smooth initial data
subject to the e-independent bounds

E(0) = [yup?®+v§’dz
+€2 [ us (2,0)% + v5 (2,0) + ub,? + v, 2 dz < O(1),
and let A be a symmetric, positive-definite matriz subject to (21). Then,
along a subsequence if necessary,

u —u, v° v, ae (z,t) andin L (R x (0,T)), forp< 2,

and (u,v) is a weak solution of (1).

Proof. Let (u®,v®) be a family of solutions to (14). The proof uses the
theory of compensated compactness [20]. Typically, in such proofs, the goal
is to control the dissipation measure and to show

Om(uf,v%) + Opq(uf,v?) lies in a compact of H; ! (23)

loc"

for a class of entropy-entropy flux pairs n—gq for the equations of elasticity. In
the presence of uniform L*°-bounds, the theorem of DiPerna [6] guarantees
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compactness of approximate solutions and implies that, along a subsequence,
u® — u and v¢ — v a.e. (z,t).

In the present case L°°-estimates are only available in the special case
that A is a multiple of the identity matrix (see [17]) and, in view of (22), the
natural stability framework is in the energy norm. Convergence of viscosity
approximations to the equations of elastodynamics in the energy framework
is carried out in Shearer [19] (for the genuine-nonlinear case) and Serre-
Shearer [18] (for loss of genuine-nonlinearity at one point). In [19] two
classes of entropies, with growth controlled by the wave-speeds at infinity,
are constructed ([19] Lemma 2) for which Tartar’s commutation relation is
justified (Lemma 3) and are used to show that the support of the (gen-
eralized) Young measure is a point mass (Lemma 7 and Theorem 1-(iii)).
When o(u) has one inflection point, the reduction of the Young measure is
performed in [18] Lemma 3 and Sec 5.

To ensure the dissipation estimate we are operating under (6). It then
suffices to establish (23) for all entropy pairs n — ¢ satisfying

49 Ty, Ty Tuus Tuvs T ELOO(]Rz)- (24)

This class of entropy pairs contains (under the auspices of (6)) the test-pairs
that are used in [19, 18] in order to prove the reduction of the generalized
Young measure to a point mass and to show strong convergence in L]  for
p < 2. Hypothesis (7) reflects the assumptions needed in those works.

To complete the proof, we prove (23) for entropy entropy-flux pair n — ¢
satisfying (24). From (14) we have

Oyn(u®,v°) + 0zq(u®, v°) = €0, (W’-A( Zm )) — €0 (”" ( " ))

T (%7

—&(ug vg) - 1" A ( te ) +e(up v) - " ( e )
Vg Ut
=hLh+DL+I3+1,.

From (22) and (24), the terms I, I lie in a compact of H~!, the terms I3,
I, are bounded in L!, and the sum 3 I; lies in a bounded set of W1,
Murat’s lemma [14] implies that (23) holds and concludes the proof. [

3. CONVERGENCE OF UPWIND SEMI-DISCRETE SCHEMES

3.1. Derivation of a numerical scheme. In this paragraph, we construct
stable numerical approximations for solutions of system (2) by a natural
upwinding treatment of the linear convective part. We place the hypotheses
g(0) = 0 and (6) on the function g, which ensure strict hyperbolicity for
(1). We introduce a regular grid on the real axis with a uniform space-step
denoted by A > 0. It is expedient to formulate the problem in terms of the
Riemann invariants:

U:tiando—Eu.

VvVE
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Then (2) is put into diagonal form:

0+ )~ VEw+ ) = —o(0—gw)
(0= 2) VB -2 = (o —glu)
(0 — Eu)y = —%(a—g(u))

We derive a numerical approximation by means of the following semi-
discrete algorithm, which consists in an upwind treatment of the character-
istic variables (whose propagation speeds are fixed):

(v + e = Mg+ D) — oy + )] = — (o —g(uy))
(o = 7+ 70 s = )~ g1 = Y] = oy — ()

(0j — Buj)y = —1(oj — g(uy))

Let ¢ — (u;(t),v;(t),0;(t))jcz denote the solution of the preceding differ-
ential system on the lattice Z for £ > 0. The subscript 7 means that the
quantity is an approximation of the average of the exact solution of (2) in
the interval centered at xz; = jh of length h. The system may be rewritten
as:
j E 1 g — ]

()t — YE (vj 11— vjo1) — g (0441 — 205 + 0j_1) = W
(v))t — 2 (0511 — 75-1) = YE (V41 — 205 + v 1) =0

(05 — Buj)y = —L1(0j — g(uy)) (25)

It is convenient to replace the first equation by

1 1
(ug)e = g (Vi1 = vj-1) = TG
The classical theory of differential equations in Banach spaces implies
that, for fixed h,e > 0 and for initial data (v;(0),u;(0),0;(0)) in £°°(Z),
there exists a unique solution of (25),

(Uj-i—l — 20’j + O'jfl) =0 (26)

(uj,vj,0;) € CH([0,+00),£2(Z)) .

This is a consequence of the Cauchy-Lipschitz theorem (cf. [3] p.104), since
each equation in (25) depends on a finite number of values.
We define for each h > 0, > 0 approximations of (2) denoted by

(uh*, 0™, 0"*) € C*([0, +00), L®(R))
such that:

(uh’ga 'Uh’sa Uh"g)(wv t) = (uj (t)’ Uj (t)7 gj (t))

fora:EKj:[(j—%)h,(j+%)h)’t€R+. (27)

The goal is to prove compactness of the sequence of approximations as €
and h are sent to zero with e = O(h).
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3.2. Energy and relaxation estimates. In this paragraph, we work with
the upwind discretization (25). Following the ideas previously introduced
for the continuous problem [23], we first prove:

Lemma 1. Let (ugs,vgs,ao ) be uniformly bounded in L?(R). If0 < ¢’ <
FE then we have the following bounds for all T > 0:

o [[uh=(, )IIL2 + [ (., )||L2(R) + [jo™ ( )||L2(R) <0(1)

° ||7'h('Uh’E) — P HLZ([O TIxr) T ITh(a"€) — 0" HL2 (0,T)xR) = O(h)

o [|o"% — g(u"*)|[72 0.1 xm) < O(€) (28)
where T, stands for the h-translation operator:

(V") (1) = " (. + by 1).

Proof. The viscoelastic model (2) is endowed with a free energy function

2

$(u,0) = o=+ $lo — Bu), where ¢'(a) = -7 —h7'(a),

and h™! is the inverse function of h(u) = g(u) — Eu. For 0 < ¢’ < E, the
function ¢ is well defined and has the properties:

0 < g < ¢"(0) = 57y < 7Ty (29)
(u— h_l(a))(a —h(w) 2 z(a —h(w)?.

Multiplying the three ordinary differential equations of the scheme (25)
by = \/E’ vj, ¢'(0j — Euy;) respectively and adding yields

’U'2 a
4 (&8 + G+ 4(0; - Buy)

— 58 (i1 = vjm1) = 5r=l0)(0j41 — 7)) — 0j(0j — 0j-1)]
_%(UJH 0jo1) — YE[vj(vj1 — vj) — vj(v; — vj_1)]
+2[% + (05 — Buy)l(o; — 9(u;)) =0

From (29),

1
(% + 6005~ Bup) (05 - o) > (05 -~ 9(u))
Summing over ] € Z and using
Z h[vj(oj41 — 0j-1) + 0j(vj41 —vj-1)] =0,
]EZ
we obtain
)2
% Zjez h [% + ¢(“ja Uj)] + \z/_hﬁ Zjezh(“jﬂ - 'Uj)2
+onvs LiezMoj+1 — 05)? + 75 Tjez hloj — g(u;))* < 0.
As a first consequence, we have for ¢ > 0

Zhvj T (1), 05t <Zhr” + 9 (u(0), 7;(0))

JEZ JEZ
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Since % +1)(u, o) is equivalent to the L? norm, this inequality implies the
energy estimate (28); and the bounds

t
/ /(Th(,uh,s) o ,Uh,E)Q + (Th(o_h,s) - O'h’s)2d.’13dt < O(h)
0 JR
and
t
| [ (@.5) = gtu) (@, 9)dads < O(e)
forallt>0. O

Lemma 2. Under the hypotheses of Lemma 1, we have for T > 0

7 (6™ = w2 g0 10y < OB) + O(e). (30)
Proof. Using the identity
Th(g(u")) = g(u"*) = (g (u"?) = o™F) + (1 (™) — ™) + (6™ — g ("))
and the estimates in (28) we derive the desired result. O
Remark 1. Lemma 2 shows that control of the numerical derivative for
o™¢ and the distance from equilibrium o®¢ — g(u/¢) entails control on the
numerical derivative of g(u/¢). Such a result is clearly false for actual deriva-

tives, and is due to the fact that for numerical approximations there are no
oscillations below the scale of the grid.

3.3. Entropy consistency and convergence. In order to use the L? the-
ory of approximate solutions for (1) [19, 18], under the framework of (6), we
need control of the entropy dissipation for entropy pairs n — ¢ satisfying the
growth restrictions (24) (¢f. Theorem 1).

Lemma 3. Under the hypotheses of Lemma 1, if € = O(h) then
n(u, "), + g(uF, v"), lies in a compact of H, (R x RT)
(31)
for any entropy-entropy flux pair n — q satisfying (24).
Proof. We introduce the notations

Dg(0j) = (01— 0j-1)/2h
AMoj) = (9441 — 205 + 0j1)/h?

and write the scheme in the form:

(uj)e = DE(vj) = 50=A"a;) = 0
()t — Dl (g(uy)) — BYEAR(v;) = DP(oj — g(u;))

Let K denote the cell [(j — 2)h, (j + 3)h). A computation shows that

O (u"®,0"%) + 8pq(u"*, ") = A+ B+ C,
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where
A = @q(uh’ﬂv"’f)+zjez[<nu)~Dh<vj)+( 0); D ()1
B = #Ejez (1) AM(0j) 1k + Y E]EZ (m0); A" (07) 1
= 2f31 + ‘/QEB2
C = Z]ez(nv) D?(Uj_g(“j))]lKj

and we used the notation

(Mu)j = nu(ug,vi), (M) = mo(uy,v5) .

Now A, B, C are considerered as elements of D'(Rx R") and are estimated
for e = O(h). For instance, for ¢ € D(R x (0,00)) a test function, we have

< Bi,o> = fR+z]€Z (nu) AR ( (0 ngodxdt

||77u||L°°||Zh( )h—Cf’”IIL2II<Pac||L2
+5 1 (0™) = o™ 2 |7 (1) — ullz2 el co

IN

and

<Cp> = [o+Xjer (m)jDEoj — g(uy)) [y, ¢ dzdt
||77f||L°° 0" — g(u™#) |12 |zl 2
+#16™¢ — g(um)|| 12 [1Ta(10) — Mol 22 0]l co

IA

Therefore, B and C are split into two terms: one going to zero in H~', and
one that is bounded in measures.

Since (u"*,v"#) are piecewise constant functions, g(u « 1S a count-
able sum of Dirac masses. We split the centered differences into the average
of two upwind differences, A = 3[AT + A~], where the terms A* read:

h,s, ,Uh,s)

AT = Ejez [Q(u]+1avj+1 _qu]’v])]é +1h
3 [(1)3 (051 = v7) + (1) (g(uz41) — 9(u7)) ] 1
AT = Z:jEZ[ (ujavj) uj 1,Vj— 1)]5

+h[( w)j (V5 —vj-1) + (1) (g(us) — (U] 1))]]119-

By the mean-value theorem, we can linearize the jumps of ¢ and g. For a
test function p € D(R x R"), we have:

<A+7Q0> = fR+{ZjEZ I:’f]u(’u],’l]])fK](p(
Hao(Ey1p) [ 0l2y1p, 0 da] 257
tYjez [m(uga )9 (1) [, ela,t) dz
)

1
+3
+au(11) Ji, 011, )dx]w}dt

2

t) dx

NIH

41
+3
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Using the entropy/entropy flux compatibility gives:

<A 0 >= for{ T [, v5) = mu(€00)) [, o(@, 1) da
+1u(8511) [, 9@, 8) = @@y, 1,1) dw]w%%
+ ez [(m(<j+% 9'(Cir1) = M0(E140)9 €1)) Ji, ol ) da
(€14 1)9' (€54 0)) i, 9(3,8) = @(@;y1,1) do
(105, 05) = 10(Ci1))9 (G 41) S, 9(@51) dw] L=t} gy
This implies:
< A%, >< e fiin () — o [l (@he) — 02+
) = | 2 (7 (0-9) = 710-gl 22 + 19| 17 ) = 012 }
[ lmallzee 7 (0"2) = 012 + ol oo llg” l1zoo 7 (™€) = w2 pel 2
Then (24), in conjunction with Lemma 1 and Lemma 2, ensures that

< A% 9 ><0()|¢llco + O(VR)llgsll2

Similar estimates hold for A~. The statement follows from Murat’s lemma
[14]. O

We conclude as in the proof of Theorem 1 :

Theorem 2. Let (u0 ,vgg,ao ) be uniformly bounded in L*(R), let g sat-

isfy (6), (7) and E > T. Consider the family (v u® o™¢) of numerical
approzimations of (9). If e,h — 0 with e = O(h) then, along a subsequence,

u s, V™ v, ae (x,t) and in LV (R x (0,T)), for p < 2,

and (u,v) is a weak solution of (1).

4. CONVERGENCE OF RELAXATION-DIFFUSION APPROXIMATIONS
In this section, we study the relaxation-diffusion system

Ut — Vg = %Uzz
v — Oy = ahvgy (32)
(0 — Bu)y = —;(0 — g(u)),

inspired by the semi-discrete numerical scheme (9). Comparing to (9), the

quantity a stands for vE and h stands for half of the cell width. Note that
(32) approximates the equations of elasticity when ¢ and h are small:

h
Ut — Vg = ,O0zz 33
vt — 9(u)y = havgg + [0 — g(w)]s (33)
where
(0 —g(u))e = —e(0— Eu)y
= e(a®vyy + 2havys — h2a?Vppze — Vi) -

Hypotheses (6) and (7) are imposed on the function g.
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The system (32) may be written as a reaction-diffusion system

%at — vy = %am — ELE(O' —g(u))
v — 0z = havgy (34)

(0 — Bu)y = —¢(0 — g(u))

Due to (6), the reaction term in (34) is globally Lipshitz and global existence
follows from general semigroup theory (e.g. Henry [8]). If the data vy, og €
H?(R), ug € H*(R) then for any T' > 0 there exists a unique globally defined
solution

v, 0 € C([0,T], H*(R)), ue€C(0,T],H (R)).

We assume that the data satisfy the uniform bounds
Jolug™?2 + (5™ + (™2 de < O(1)
(35)
b b b b
e? Jo(ugz ) + (v + (002 + 1P (ugy,)? dz < O(1)
and proceed to study the compactness of the family of solutions

{(us,h’ ,Us,h,’ O'E’h)}s,h>0

as h and ¢ are sent to zero. For notational simplicity we drop the super-
scripts. In the course of the proof we use estimates that require additional
smoothness for their derivation. This can be removed by using standard
density arguments.

4.1. Energy estimates on the relaxing approximations. As in the
former section, we use the free energy function % (u,o) introduced in the
proof of (28).

Lemma 4. If E > T and the data satisfy (35)1 then for all T > 0:

o lul, D)llcz@) + lv( Tl 2 @) + llo(, Tl p2@) < O(1)
. h||")sc||%2([o,T}xR) + hHUw”%z([o,T]xR) <0(1) (36)
o |lo— 9(“)||%2([0,T]><R) < O(e)
Proof. First (32)3 is rewritten as
1 1
— Bu) = ——(0 — = (0 — Bu— (g(u) — Eu)).
(0~ Bu)y = ~2(0 — glu)) = —~(g — B~ (glw) ~ Bu)
a h(u)
We multiply the equations in (32) by o, v, (u — h~!()) respectively and use
(29) to obtain
(% +9(w,0)), = (0v)s + L(02)? + ha(vs)? + 2 (0 — g(w))?
< (%aaw + havvw)

T

Then (36) follows from integration over [0,7] x R. [
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Lemma 5. The following identities hold:

’

O (% + G(u) + evv + 6ha(’uw)2) — Oz(vg(u))
+ela?(ve)? — (v4)?] + eh?a® (vpy)?
(37)1 < +%g(u)$0$ + h’a’(vﬂc)2 = ax(Fl)

F = %g(u)az + (ea + h)avv, + 2ehavvy
—eh?a®VV0y + €h%0V, V5,

O (%(ha + &‘a?)(vm)Q + %5h2a2(ﬂww)2 + %E(Ut)2)
(37)2 < +[(v1)? — g(u)zvi] + 2eha(vy)? = 05(F)

| Fs := (ea + h)avivy + 2ehavivg — eh?a® (Viveee — VotVzs)

(O, (%5a2(uz)2 — (v+eog)ug — 2(e+ 2)(v,)?

+(g(u)wuz - (Uw)2)

(B7)3 ¢ —(cha + h2)(vaz)? — L(02e)? + hatgver = Oy (F) (37)

A

a

L F3:= —(cha + h?)vgvzy — ug(v + €0y)

( O (%(0’1)2 + %(%)2) — Oy (o2vg)

(37)4 ‘|‘EL50':£[0' —g9(uw)]s + %(wa)Q + ha(vm)Q = 0x(Fy)

A

. h
\ Fy:= 2 920zz + havgvg,

o (%(v + €0y — eBug)? + G(u) — %eha(vw)Q)
—0r(vg(u) + 52E0wvm) + ha(")x)2 + %g(u)xaw + eha®usvgy
+e

(37)5 [(Uw)Q - g(u)wgw + Eg(u)zu;c - ('Ut)z] = az(F5)

A

{ Fy = %g(u)aw + havv, — ehavyvy — €2a%v,0,

where
G(u) = /Ou g(s)ds.

Proof. The first identity is obtained if we multiply (33); by g(u), (33)2 by
v, add the results and rearrange the terms via some integrations by parts.
For the second identity, one has to multiply (33)2 by v; and perform a
few integrations by parts.
To derive the third identity, we multiply (33)2 by u, and use (32)3 to
arrive at

g () (ug)? = ug(vy — havgy — eBugs + e0yt)
= uy(v+€0y)r — haugvy — ea’ugtyy .
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At this point, we use the equality: e;f; = erfr — (fer)s + (fez): for f =
v + €03, € = u. This leads to the identity
(%&:E(um)2 — Uy (v + 50m))t + ¢'(u) (ug)? + haug vy,
—(vz + %Jm)(vx +e03z) = —[ur(v + €0g)]s -

Then the third equality follows from (38) and the observation that, due to
(32)2, there holds:

(38)

1
VgOgx = 5[(Uw)2]t - ha(vwvww)w + ha(vww)Q

From (34) we have

%awt — Ugg = %o':mw - SLE(O' —9(u)s
(39)
Vgt — Ogz = havgey

The fourth identity is obtained from multiplications of (39); by o, of (39)2
by v, adding the resulting equations and integrating by parts.
To derive the fifth identity, one adds (37)1 + ¢E(37)3 + e2E(37)4. After
rearranging the terms and using (33)2, one obtains the desired result. [
We introduce the notations:
Ly = 3(v+e0s — eBug)’ +G(u) + G[E(02)? + W E(vra)? + (00)?]
Ly = wvg(u)+e’Eou,
Combining £(37)2 and (37)5, we get :
(L1)¢ + €[(02)? — 2g(u)z0z + Eg' (u)(ug)?] + 262ha(vg)? + ha(vg)?

+%g(u)%05C + ehaPugvyy — ehag(u)zvee = (Lo + eFy + Fy)y (40)

Observe now that, under the condition E > ¢'(u) > 0, the quadratic form
Q = (02) —2¢'(Wuzo, + By (u)(uz)?
= (00— 9(ua)” +¢'(W)(E ~ ¢ (w)(uz)* 2 0
is positive definite.

4.2. Entropy consistency and convergence.

Lemma 6. Under the assumptions (6), E > T and (35) the following esti-
mates hold for h = o(e) and T > 0:

€||u$||%2(R><[O,TD + 6||U$||%2(R><[O,T]) + 6“0‘%”%2(RX[07TD

<
e Mvaallis e xjo,ry) + € Plozal To@upory <

Proof. From (40), we obtain with unambiguous notations:

(1) + ()2 + oy l(ua)® + (02)%] < O(Dh[(us)? + (02)]
+0(1)eh|uzvyy| (42)
where I1 > 0. From (37)2, we get:

(I2): + (J2)z + (v)” < O(V)e(ug)”

9
o(1)
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where Iy > 0. From (37)4, we have:

2
€ 9 €°h

where I3 > 0. We add these relations with a large weight factor onto (42)
and we obtain:

I+ Jy + %[(uwy + (02)? + vt 2] + 5 og ol am + (v22)?]
O(1)h[(us)? (1)eh|uzvaq|
Provided h = o(e), the rlght—hand—51de can be absorbed in the left for ¢
small enough. Since I > 0, this yields that
Jexorel(ua)? + (02) + (00)°] + €2hl(00a)? + (var)?] ddt

< O(1) [Jz(u0)* + (v0)? d
+ Jo€[(u0s)? + (v0z)? + (002)?] + €202 (v0gs)? da] (43)

is bounded in terms of (35). The L! estimate on gv?2 follows from (37)1, (35)
and (43). O

Lemma 7. Under the assumptions of Lemma 6,

n(u, )t + q(u, )y lies in a compact of H, (R x R") (44)

(I3)t + (J3)e + 2+ (va0)?] < O(V)e(uz)”

for any entropy-entropy flux pair satisfying (24).

Proof. We consider the system (32) written in the form (33). We use the
chain rule for the smooth approximate solutions:

h
n(u, )t + q(u,v)g = Eﬁu(u, )05z + Mo (U, v) [havgy + (0 — g(u))]
We split the right-hand-side the following way:
B (Lo (1, )0 + 1y (,0) [hawg + (0 — g(u))] )

—%nuu(u, V)UgOg — Mo (U, v)[%vmam + hatgvg] — Ny (1, v)ha(vy)?
—[o — g(w)][Muw (u, V) Uz + Moo (4, v) V4]

d
< (Zo)z +Th + I
We notice that 7y rewrites:
o —g(u)
NG
Under the assumptions of Lemma 6, Zo — 0 in L?(R x [0,7]) and Z;, T, are

bounded in L'(R x [0,7]) for all entropy pairs satisfying (24). Then (44)
follows from Murat’s lemma [14]. O

—e [ (1, V) g + Ny (U, V) V]

As in Theorem 1 we conclude:

Theorem 3. Let the initial data satisfy (35), let g satisfy (6), (7) and
E >T, and consider a family of solutions {(u®", v>" a®M)}, 5o of (33). If
h = o(¢) then, along a subsequence,

uh 5w, " 5w, ae (z,t) and in LY (R x (0,T)), forp <2,
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and (u,v) is a weak solution of (1).

Remark 2. Theorem 2 guarantees convergence for the semidiscrete scheme
in the range ¢ = O(h) while Theorem 3 states convergence of the associated
relaxation-diffusion system on the complementary range h = o(eg). The
origin of this discrepancy at the level of the proof is the following: For
the scheme it is easy to control the numerical derivative of u, (see Remark
1). By contrast, for the relaxation-diffusion system, the energy estimate in
Lemma 4 does not yield control of u,. In our proof we used the stabilizing
control of relaxation to obtain control of u,;, what leads to the restriction
h = o(e) stating that relaxation dominates. We do not know if the analytical
result for the relaxation-diffusion system is optimal. Regarding the scheme,
the numerical experiments in Section 5 suggest that the range ¢ = O(h) is
optimal and that oscillations develop as we approach the boundary of this
parameter range. This indicates that the behavior of the relaxation-diffusion
system does not accurately describe the behavior of the relaxing scheme.

5. NUMERICAL EXPERIMENTS

In this section, we present and discuss some numerical experiments that
we obtained for fully-discrete versions of the scheme (25). We also display
comparisons between this approach and the Jin-Xin algorithm [9]. In all
computations, we used a splitting technique to treat the stiff relaxation term.
This type of algorithms has been studied for instance in [1] in the context
of relaxation approximations for one-dimensional scalar conservation laws.

5.1. Comparison with the Jin-Xin scheme for ¢ = h?. We considered
a Riemann problem for (2) with the following initial data:

up = 2 Uy =1
y=2 and { v, =2 (45)
o =1 or=1

We chose g(u) = u + u® and fixed E = 100. The CFL condition implies
that the time step At and the cell width A have to satisfy the relation
At < h/20. The Figures 1, 2, 3, display the numerical results obtained for
both relaxation schemes with step h = 0.01 at time 7' = 0.2, and also for
the associated relaxed schemes (obtained by fixing 0 = g(u) in (25)). We
selected ¢ = h/100, in order to let the relaxation process fully operate in
each cell of the computational grid. It is clear that a first-order scheme of
the current approach is less diffusive than a first-order Jin-Xin scheme (for
which we fixed the parameter K = A = v/E so as to use the same CFL
numbers).

5.2. Comparisons in the range ¢ ~ h. The preceding results ensure
the convergence of the relaxation scheme (25) for values of ¢ which are
of the order of h. In practise, one notices easily that oscillations degrade
these numerical approximations as soon as a certain value of €/h is reached.
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For example, we illustrate in Figures 4, 5 the appearance of oscillations
in the relaxation term for the problem (45) at T = 0.1. On the other
hand, the relaxation terms involved in the diffusive Jin/Xin approach remain
acceptable. This provides a numerical justification of the restriction on the
ratio ¢/h made in Theorem 2.

On the other hand, the approximations generated by the Jin-Xin approach
are more diffusive, but remain stable in any range of parameters €,h. We
illustrate this statement in Figure 6 in which the u variable is shown for
h = e'% and 0.0002 < h < 0.02.

5.3. Large-time behaviour of the proposed scheme. To check the sta-
bility of the numerical wave profiles, we performed a numerical run on a
bigger domain and during a longer time 7" = 3. On Figures 7, 8, we display
both relaxing and relaxed numerical solutions for the two possible relaxation
schemes. On Figure 9, we compare the values of the relaxation term for both
schemes. We fixed h = 0.1, € = 0.005 and used the same Riemann problem
(45) and the same CFL restrictions.
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FIGURE 7. Long-time behavior of the proposed approach on u
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