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Abstract

These lectures discuss topics in the theory of hyperbolic systems of conservation laws
focusing on the mathematical theory of fluid-dynamic limits. First, we discuss the emer-
gence of the compressible Euler equations for an ideal gas in the fluid-dynamic limit of the
Boltzmann equation or of the BGK model. Then we survey the current state of the math-
ematical theory of fluid-dynamic limits for BGK systems and for discrete velocity models
of relaxation type. This is done for the case that the limit is a scalar conservation law or
a system of two equations.

1 Introduction

These lecture notes deal with the subject of fluid dynamic limits from kinetic equations to
conservation laws. The subject is motivated by the formal derivation of the compressible
Euler equations for a mono-atomic gas as the zero mean-free-path limit of the Boltzmann
equation. While the rigorous justification of the fluid-dynamic limit for the Boltzmann equation
is a challenging open problem, it has prompted recent work on the derivation of hyperbolic
systems of conservation laws from kinetic models, in simpler situations where the limits are
scalar equations or systems of two conservation laws. The objective of the present article is to
describe some of these recent results.

We begin in section 2 with a discussion of the structure of the fluid dynamic limit for
the Boltzmann equation. On the one hand the formalism of the fluid limit for Boltzmann
circumscribes the framework that the mathematical analysis is challenged to elucidate. On the

other hand this formalism introduces some fundamental notions like the collision invariants
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and associated evolutions of moments, the H-theorem, and the closure of the conservation laws
in the fluid dynamic limit. These notions have been instrumental in the development of an
analytical theory where such a theory is currently present.

In section 3 we discuss certain kinetic models that are equipped with one conservation
law. In certain cases those models generate L'-contractions and the Kruzhkov theory can be
adapted to develop a rigorous derivation of the fluid limit to the entropy solution of a scalar
multi-dimensional conservation law. This theory is currently well understood and applies to a
variety of kinetic or discrete kinetic (of relaxation type) models. We also take the opportunity
to discuss the zero mean free path limit of a special kinetic model that motivates the so-called
kinetic formulation of scalar conservation laws. The kinetic formulation, proposed by Lions,
Perthame and Tadmor, provides a notion of solution for hyperbolic equations (and systems)
that is equivalent to the notion of entropy solution and connects the theory of conservation
laws with the theory of transport equations.

In the final section 4 we discuss some examples of kinetic models that converge to systems
of two conservation laws in one space dimension. We emphasize the fact that some kinetic
models are equipped with stronger dissipative structures than the H-theorem, what allows the
use of compensated compactness to effect the derivation of the fluid limit.

These lectures were presented at the VI School on Mathematical Theory in Fluid Me-
chanics, at Paseky of the Czech Republic. I would like to thank the organizers J. Milek, J.

Netas and M. Rokyta for providing a very pleasant and stimulating atmosphere.

2 The Boltmann equation and its fluid-dynamical limit

In the kinetic theory of gases the statistical description of a gas is given by its distribution
function f. For a monoatomic gas f is a function of the positions z € R? and the momenta
¢ € R? in the phase space. The product f (t,z,&) dxd€ describes the mean number of molecules
in an element of the phase space centered at (z, &) of range dz and d¢.

The Boltzmann equation describes the evolution of the distribution function f for a dilute

gas and has the form

(2.1) Of+&-Vaof =Q(f, ).

The collision operator Q(f, f) describes the gain and loss of the distribution function due to

collisions and is given by

(22)  QU.f = /R ) /S | BlE = 60 ) [ (62, €)F (62, €) — F (b, ) (1,2, 64) | dEadw



One arrives at the form of @) as follows: The incoming velocities ¢ and &, and outgoing
velocities ¢ and £, entering a collision satisfy microscopic balances of mass, momentum and

energy
E+é=¢+¢
€17+ 16> = €17 + 1€

These microscopic balances can be expressed with regard to the center of mass of the collision,

(2.3)

noticing that (2.3) are equivalent to

E+&=8+&, [E-&I=1¢-£]

A pair of incoming velocities £, &, defines a sphere of center % and radius |§E€*‘. Each

outgoing pair of velocities &', £ compatible with (2.3) lies on this sphere and can be obtained
by reflection with respect to a plane passing through the collision center. The planes are
parametrized by their normal w € S%~!. The outgoing velocities are determined through the

formulas

f=tw (§—w
Le=b—w- (& —Ew
The process defines a map T, : R¢ x R — R? x R? taking the incoming into the outgoing

velocity pairs
(576*) = (5’761) = Tw(g,f*) :

T,, has the properties: For w € §471,
(i) T, o T, = Id (microreversibility)
(i) |detT,| =1

(iii) T, (6, &) = (&,¢") (symmetry).

The term Q(f, f) describes the gains and losses in the distribution function due to collisions.
Gains occur from collisions at z of the type (¢,£L) — (£, &), and losses from collisions at x of
the type (&,&) — (€',€L). In the form of (2.2), it is factored the assumption that only binary
collisions are admitted and the hypothesis of detailed balancing, stating that the number of
collisions (&, &) — (£,&L) is equal, in equilibrium, to the number of collisions (¢, &) — (&, &)
(see [21]). The factor b is called Boltmann collision kernel and models the microscopic physics
of the collisional process. For mechanical reasons it has to satisfy b > 0, b is locally integrable

and the symmetries

(2.4) b(§ — & w) = b(I& = &, [(€ — &) - wl)



As an example, for collisions associated to a hard sphere potential b(g,w) = |g - w|-
We outline without proof certain properties of the collision operator that are indicative of
the structure of the equations. A function ¢ = () is called a collision invariant if, along the

collisions described by T, it satisfies

(25) 0(&) + p(é:) = (&) + 0(&)

This is written in the shorthand notation ¢ + ¢, = ¢’ + ¢..
Proposition 1 The collision invariants are given by

o) =a+b-&+c)?, a,ce R, be R®.
Proposition 2 The collision operator satisfies:

/ QLNEPOIE =7 [ = )+ o = plbdade.de

1
= F1(@' + @i — o — s )bdwd€ dE
2 RYxRIxS§d-1
(i) [ @ EInf(€)dE <0
(iii) If b > 0 then the equilibria feq of the collision operator, Q(feq, feq) = 0, are
p € ~ UIQ}
2.6 = exp< —
(2.6 = L p{-£5,

for some p,8 > 0 and v € R%.

Macroscopic balance laws - H-Theorem

Let p, u and E stand for the macroscopic density, velocity and energy respectively, defined

pmmz/fw%a&

(2.7) pultyz) = [ ££(t.2,€)a¢
B(t.o) = [ 5leP (e,

through the moments of f

Since 1, ¢ and |¢|? are collision invariants, p, u and E evolve according to the moment equations

a—+d1v( u) =0

ot
(2.8) gtpu +divipu®@u+ P) =0
%—f—i—dlv(Eu—i—P-u—i—Q) =0



where (u ® u);; = u;u; and the pressure (tensor) P, heat flux @, total energy £ and internal

energy e are determined through the formulas
Py = [ (6~ ui)(& — ) st

(29) @ =5 [ (& —ule —uPst

1 1 1
B = [ 5lé~uPsd + Jptuf = e+ splup

The equations (2.8) describe the evolution of the moments p, u and E and are not a closed
system of equations. Because of the close connection with the balance equations of continuum
physics they are called macroscopic balance laws.

The Boltzmann equation is equipped with an imbalance law, considered to capture the
entropy dissipation in a rarefied gas. It is obtained by multiplying (2.1) by (14 1n f) and using
Proposition 2. The resulting identity yields the celebrated Boltzmann H-Theorem:

o[ fmpdc+adi, [ ermpas= [ QU.pmide=:s

1

(2.10)
- _Z ///Rdeded—1(f f* B ff*)(lnf f* B lnff*) bdwdé*dg S 0

The term S is called entropy dissipation (rate) and is negative. Moreover S = 0 iff f'f] = f f.

or equivalently if f is a Maxwellian.

Maxwellians
The solutions of Q(feq, feq) = 0 are called Maxwellians. They are determined by solving

f'fi = ff« and thus In f., is a collision invariant
Infeq=a+b-&+cl¢f

and feq is expressed in the form (2.6). The constants p, u and 0 entering in (2.6) are determined

from the moments of M through the relations:
o=
(2.11) /(f —u)M =0 implies /EM = pu
/2|§ ul*M = 2p9 implies E—/2|§| M= 2p\u| —|—2p9

Maxwellians are completely determined by their moments and are denoted M = M(p, u, 8, &).



The pressure and heat flux can also be computed along Maxwellians by
P = / (& — ui) (&5 — uj) Mpu9) = pO0ij

Qi=3 /(ﬁi —u)|€ —ul* M0 =0

(2.12)

Another characterization of Maxwellians is that they arise as minima of the H-functional

for the constrained minimization problem:

min / fln fd€ over all f > 0 such that

[1=0 [er=m, [Ls=p

The minimum of this minimization problem is attained at M(p,u,8,&).

(2.13)

It is instructive to outline a proof of this statement. The minimization problem leads to

computing the critical points of the functional

(2.14) J(f):/flnfd§+a(p—/f)+b-(m—/gf)+c(E—/¥f)

where a, b, ¢ are Lagrange multipliers. The critical points satisfy the equation

O=J'(f)1}=/d<1nf—(a—1)—b-§—cg)v

R
for all test functions v, which implies

(4%

lnf:(a—l)—}—b-f—}—cT

or that f is a Maxwellian M(p,u,8) with p,u,0 computed from the moments of f.
Another proof is obtained via the inequality: zlnz — zlny +y — 2z > 0 for y,z > 0. For

f > 0 with moments as in (2.13) and for M a Maxwellian with the same moments, we have

/flnfz/fln./\/H—/f—M

2/(f—M)1nM+/MlnM:/MlnM.

The Euler limit
Next, we describe the formal fluid limit of the Boltzmann equation. We present the Euler

limit which is the limit as ¢ — 0 of the scaled Boltzmann equation

(2.15) Of*+&-Vyft = éQ(fs,fE)



In this scaling e stands for the Knudsen number the ratio of “’the mean free path” (a measure
of the average distance between successive collisions) over a macroscopic length scale.
The moments p¢, u¢, E¢, P¢ and Q° satisfy the macroscopic balance laws (2.8). In addition

the H-theorem reads

8,5/Rdfglnfgd§+divm/Rd§fElnf€d§

b A it

The last term is positive and vanishes only along Maxwellians. It is then conceivable that in

(2.16)

the fluid limit & — 0 the kinetic function approaches a Maxwellian M (p,u,0,£).
Using the relations (2.11)-(2.12), we see that the formal fluid limit becomes

Op + divg(pu) =0
(2.17) Ot (pu) + divy(pu @ u + phd;j) = 0
8t(%p\u|2 + ng) + divgc((%p|u|2 + ng)u + pfu) =0
which are the compressible Euler equations for an ideal monoatomic gas. In the fluid limit the

H-theorem (2.16) gives the macroscopic entropy inequality

(2.18) 9 (pIn 0%) + divs (puln 9%) <0
2

2
The justification of the fluid-limit for weak solutions is a challenging open problem, due
to the presence of shocks and the poor understanding of the theory of weak solutions for the
compressible Euler equations. In the forthcoming sections we discuss mathematical results for

fluid-limits in simpler situations.

BGK models
A class of collision models sharing some of the properties of the Boltzmann collision operator
are the so-called BGK models (after Bhatganar, Gross and Krook). In the BGK model the

collision operator is replaced by relaxation to a Maxwellian

(219) Of € Vaf = (1~ Migup)

where M, 9)(€) is a local Maxwellian with moments

p=[ 1. pu=[er. ol +dpo= [ 1ePs

The BGK-collision operator Qpar(f) = = Mpu,p) — | has the properties

1 1
/ Qsex(N| ¢ | = / Moany N [ € | =0
i €2



[ @uar(n)inf = [(Mipug) = D f =10 Miy0)) <0
with equality iff f = M, , 9. As a result, (2.19) is equipped with the same macroscopic

balance laws as the Boltmann equation and also with an analog of the H-theorem:

@) o[ smsrai [ ermge D[ (- M) (g Yae=0

psu,0
The fluid limit for this model is again the compressible Euler equations (2.17)-(2.18) for an

ideal mono-atomic gas.

Bibliographic remarks. The books of Lifshitz and Pitaevskii [21] and Cercignani, Illner and
Pulvirenti [6] contain detailed accounts on the derivation of the Boltzmann equation. The
surveys of Perthame [32] and Golse [14] contain proofs of several of the listed properties of the

Boltzmann equation and detailed discussions of the formalism of the fluid limits.

3 Kinetic models with one conservation law

In this section we consider a kinetic model that is equipped with one conservation law and
develop the mathematical theory of its fluid dynamic limit. The presented results follow ideas
developed in [30, 18, 27, 4] for a series of kinetic and discrete-kinetic (of relaxation type)

models. The equation reads
1
atf + a(f) ) me = Ec(f(t,a:a )af)

f0,,8) = folz,€)
where z € R? and C(f, ¢) is a functional on f(t,z,-) (depending on ¢) that encodes the detailed

(3.1)

properties of a collision process. The variable £ may be continuous (¢ € R) or it may take

discrete values; in the latter case (3.1) becomes a discrete velocity kinetic model. Both cases

are treated simultaneously and we retain a common notation. A theory is developed for the

fluid limit based on structural assumptions of C' without recourse to its detailed properties.
It is assumed that C satisfies: C(0(-),&) =0, and

(hyp1) | etrode=o
R
so that (3.1) is equipped with a macroscopic balance law

(3.2) Dy + div, / a(€)fdé =0

for the "mass” u defined by

(3.3) wi= / fde.



Second, the equilibria of (3.1) are parametrized in terms of exactly one scalar parameter w,

which may be associated to the mass u. More precisely, the solutions of C(f,£&) = 0 are
(hyp2) feq = M(w, &) where /EM(w, £)d¢ = u = b(w)
where b is a strictly increasing function, so that the map w — u is invertible.

3.1 Kinetic models that generate L'-contractions

It is assumed that the collision operator satisfies

(byp3) [ (0619 - (70,9 sen (s - e de <0,

for all f(-), f(-). This hypothesis guarantees that the space-homogeneous variant of (hyp3) is
a contraction in Lé.
The property is also preserved in the space-nonhomogeneous case and, as a consequence,

the kinetic model (3.1) is endowed with a class of “kinetic entropies”.
Theorem 3 Under hypotheses (hypl)-(hyp3) :

(i) The kinetic model is a contraction in L'(R% x Rg)

(ii) For all k € R, we have
(3.4) 0 [[1 = Ml &) + div, [ a(@)lf - Mk, <0 in .
¢ ¢

(iii) If for some a,b it is M(a,&) < M(b,&) for all &, then the domain Hg[M(a,f),M(b, €)]

is positively invariant.

Proof. Let f and f be two solutions. By subtracting the corresponding equations, multiplying

by sgn (f — f), and using (hyp3), we obtain
65) o [ I - g+ aw [a©ls - 7= [ (CU6,0 - 7. )sen(s - ) <0
This shows that any two solutions f and f satisfy the L!'-contraction property:
/ /E \f — Fl(t,2,€) dzde s decreasing in .
Since [, [¢(f — f) dzdé is a conserved quantity, we have

//(f — f)T(t,z,€) dzd¢ s decreasing in t,
zJE

9



and as a result
if fo < fo then f < f

A special class of solutions of (3.1) are the global Maxwellians M (k,&). These may be used

as comparison functions. For instance
if fo(z,€) < M(a,§), for some a € R, then f(t,z,€) < M(qa,€)
From this property part (iii) follows. Finally, if f = M(k,£) in (3.5) then
[0+ a(©) - lf ~ M )1 = [ OG0, s (f ~ M, 8) <0

which shows (3.4). O

We present next two specific models that satisfy hypotheses (hypl)-(hyp3).

I. A discrete velocity model. Consider the system
d

Oifo+ag - Vifo = EZ (fi — hi(fo))
(3.6) £=

1 .
8tfi+ai‘vzfi:_g(fi_hi(fo)) 1=1,...,d.
for the evolution of f = (fo, fi,...,f4) where ag,a1,...,aq4 € R% This discrete velocity
model of relaxation type is developed in [18] as a relaxation approximation for the scalar

multi-dimensional conservation law.

We assume that
(A) h;(w) are strictly increasing, i =1,... ,d,
and let u = fo + ), fr. The Maxwellian functions are

feg = M(w, j)j=0,,..a = (w, br(w), ..., ha(w)),
where u = w + Z hi(w) =: b(w) .

%

Clearly (hypl) and (hyp2) are satisfied. To see Hypothesis (hyp3), note that

= ijo( — C(F.9))sen (f; - F5)
= [Zj; hi(fo) = hi(fo))) |sen (fo = Fo)
- 22 (fi = Fi = (hi(fo) — ha(fo)) s (fi = Fo)
= i (fz' fi — (hi(fo) — z'(fo))) (sen (fo — fo) —sen(fi — fi)) <0

10



where the last inequality follows from (A).
Under (A) the model (3.6) is also equipped with a globally defined entropy function

d n d
61 (G W) +div(aog 3+ D aWilh) + 2 D dilfo, ) =0,
=1 =1 =1
where 4
w(f)= [ htrar.
is positive and strictly convex, while
¢i(fo, £) = (fo — hi ' (£:) (ha(fo) — fi)

satisfies ¢; > 0 and ¢; = 0 if and only if f is a Maxwellian: f; = M(w,j) for some w.
The identity provides control of the distance of solutions from equilibria: If % > ¢ then
#i > c(hi(fo) — f;)? and (3.7) leads to

0o d
/ / S (halfo) — £3)? dadt < O(e).
o JRIS
I1. A BGK model. Consider next the kinetic model of BGK type
1
of +a(l) Vof = _E(f - M(u,€))
(3.8)
with u = /f
3

where 2 € R? and ¢ € R. The model is introduced in [30] for the special choice of Maxwellian
function M(u, &) = 1(u, ). The general case is developed in [27, 4].

It is here assumed that M (u, &) is smooth and satisfies
(B) M(-,&) is strictly increasing, u= /M(u,f)

Then (hypl) and (hyp2) are clearly fulfilled. The monotonicity of M states M(u, &) > M(@,§)

iff w > @, and, hence,

M08 ~ M@0 = s (- ) ([ Mw©) - ,0)

—tu-al=| [1-1]< [Ir-11
¢ ¢
In turn that implies (hyp3):

1= [ [ov0.0-c(G0,0] st -
- —/|f—f|+/(M<u,s> ~ M(@,&)sgn (f — ) <0
£ £

11



The model also posseses an analog of the H-theorem. If we multiple the equation (3.8) by
(M~Y(f,€) — u), integrate over ¢ € R and denote by

f
u(f, ) = /0 M (g,€)dg

then (-, &) is convex and we have

o [ () +div, [ a(@)u(s) - (O -+ div. [ al6)r)

(3.9)
b1 M09 - 0 - M) =0

The third term vanishes due to the conservation law, the last term is positive due to the
monotonicity assumption. If we further assume that 9, M > c¢ then the last equation yields
the bound

(3.10) /OT / /6 f - M(u, ) < /OT / /6 (M A(£,6) — u)(f — M(u.€)) < O(e)

stating that the Maxwellians are enforced in the fluid limit ¢ — 0.

We next consider a family of solutions f¢ of (3.1) and study their limiting behavior € — 0.

Let u® = [ f¢ and set
W — b—l(/fs)

From (3.2) we obtain

Byb(w?) + div, /£ (&) M(w?, €) = divx( /5 a(€) (M(w?, &) — f5)>

We will see in the next section that the L'-contraction property and the conservation laws
allow to conclude that {u} is precompact in L], oz, and (along a subsequence) u® — u and,
since b is strictly increasing, w® — w = b~ (u) a.e.

To conclude a hypothesis is needed dictating that Maxwellian distributions are enforced in
the limit ¢ — 0:
(hyp4) /a(f)(fg — MW, €)) =0 inD', where w® = bl(/f5>.

3 ¢

Both (3.6) and (3.8) verify such a hypothesis due to (3.7) and (3.10) (see Sec 3.2 for the model
(3.8)). Under this framework it is a technical issue to show that the limiting u = b(w) satisfies
the scalar conservation law

(3.11) Bib(w) + divy /g (&) M(w, €) = 0

12



3.2 The fluid-dynamic limit for a kinetic BGK-model

We provide the main technical details for the fluid dynamic limit of the BGK-model
1

Ouf" +al§) - Vaf* = = (= M(u",8))

fE(O’ :1:7 é‘) = fOE(:L.’ é‘)
where uf = [ f¢, z € RY, ¢ € R. It is assumed that a(¢) is uniformly bounded and that the

(3.12)

Maxwellians are smooth functions that satisfy M(0, &) = 0,

M(u,-) € L%, M(-,€) is strictly increasing
(@) u:/ M(u, &) d€.
R

Then (hypl) and (hyp2) and (hyp3) are fulfilled. Let w(7) be a positive, increasing function

denoting a modulus of continuity, limsup,_,(, w(r) = 0.

Theorem 4 Let |a(§)| < M and assume the initial data satisfy
M(a,§) < fo(z,&) < M(b,€) for some a < b

(3.13) [ fviteeyiasic <
[ e+ 1.0) — fito. 0 dsd < wtil) for b B
Then

(3.14) u® —/f€—>u a.e. and in IP ((0,T) x R?) for 1< p < oo

loc
The limiting u € C([0,T); L' (IR%)) N L>®((0,T) x R?) is an entropy solution:
(3.15) Otu — k| + divy(F(u) — F(k))sgn(u —k) <0 in D', fork € R,
where F(u fg (u, &) dE.

Proof. The proof proceeds in three steps. From the L' contraction property, the invariance

under translations, and the use of Maxwellians as comparison functions we have

M(a, &) < fo(t,z,&) < M(b,€) fora < b

(3.16) /|u tx|<//|f5|<//|fo\<0

and

/|u€(t,w+h) —wf(t, )] < //§|f€<t,x+h,f) ()
(3.17) ’ ’
< / /)E o+ 1 €) — 15(2,€)] < w(lh)

13



Using the lemma in the appendix and the bound |a(£)| < M we conclude that for £ > 0
(3.18) / (¢ + , ) — u (¢, )| do < Cu(k)
T

From (3.16), (3.17) and (3.18) we obtain that u® is precompact in L' ((0,T) x IR%) and, along

loc

a subsequence, u® — u a.e. From (3.18) and Fatou’s lemma u € C([0,T]; L*(R?)).
Note that a < u® < b is uniformly bounded and that (3.10) implies |f¢ — M(u®,&)| — 0 a.e
(t,z,€). Using (3.16) we conclude

/§|f5—M(uE,£)| —0 ae. ()

Along a further subsequence, f¢ — M(u, &) a.e., and passing to the limit in the kinetic entropies
(3.4) we see that

) / M, €) — M(k,€)] + divg / a(€)| M, €) — Mk, €] d€ < 0
3 3

in D'. The latter inequality is recast in the form (3.15) by using (a) and the property
sgn (M(u, &) — M(k,€)) = sgn (u — k). Since u is an entropy solution, it is unique and the

whole family u®* — u in LP |1 < p < cc. O

loc?
3.3 The connection with the kinetic formulation

Consider the scalar conservation law

(3.19) {Btu + divF(u) =0

u(z,0) = uo(z)

with data u, € L' N L. There are two equivalent notions of solution for this problem: The
notion of Kruzhkov entropy solution stating that u is an entropy solution of the initial value

problem (3.19) if

(3.20) ess limt_>o/ |u(z,t) — uo(z)|dz =0
and w satisfies the entropy conditions

(3.21) on(u) + divg(u) <0

in D' for all entropy pairs 7 — ¢ with n convex. (Recall that entropy pairs  — ¢ are required
to satisfy g;(u) = n'(u)F;(v) withi=1,... ,d.)

14



The second notion is the kinetic formulation of Lions-Perthame-Tadmor [22] and is based

on the Maxwellian

]10<§<u if u>0

L(u, &) =<0 ifu=0 = %[sgn(u—f)—%sgn{]

It is equivalent to the notion of Kruzhkov entropy solution and states that u is a solution
of (3.19) if it takes the initial data as in (3.20) and there exist a positive bounded measure

m =m(t,z,&) on Rf x R x Re so that
(3.22) Oy M(u, &) + a() - Voll(u,§) = O¢m

Moreover, the measure m is supported on the shocks.

This notion arises naturally as the ¢ — 0 limit of the BGK model

S +ale) - Vot = —L(f° — (5, 8))

e
f50,2,8) = Muo(2),£)
The variable £ € R and the model (3.23) is a special case of (3.1). The special form of the
Maxwellian allows to calculate the kinetic equation that the limiting f satisfies. Following
[30, 22] we show:

(3.23)

Theorem 5 Asec — 0,
u® = u  ae, fE—= F=1(u,) ae
and F satisfies (3.22) for some positive bounded measure m.

Proof. As before the BGK-model (3.23) defines an L!-contraction and one shows u® — u a.e.
Comparisons with the Maxwellians 1(V,€) and 1(—V,€), V = sup |u,(z)|, give
—1<f°<1,  suppef© C[-V,V]
ff>0for (>0, f°<0 for<O.

Next introduce m® by

>0 for & <uf
<0 for & >uf

=L 9=]

The function
¢ 1
me = [ 2(a,0) - £4(6) e

oo £

15



satisfies m®(—oo) = 0, m®(4+o00) = 0 by conservation and m® > 0 for £ € R.

We write the BGK-model in the form
Orf* +a(f) - Vo ft = 0gm,

We multiply by ¢ and integrate over [0, 7] x R? x R. Taking account of the compact support

/OTLLms:_/z/gffs(t,w,f)dﬁdx—l-/m/‘gffo(%f)dfdx
SV/w/gf”+V/w/§\folsc

in ¢ we obtain

Using the relations
u® —u ae., fE—1w¢) —0inD, Au€) — L(u,f) ae.
and the property (along subsequences)
m® —m weak-x in measures

we pass to the limit e — 0 in D’ to obtain (3.22). ]

Bibliographic remarks. The development of the model (3.23) is due to Perthame-Tadmor [30],
the model (3.6) is produced in Katsoulakis-Tzavaras [18] as a discrete velocity approximation
of the scalar multi-d conservation law. The discrete kinetic version of the BGK-model (3.8)
is proposed in Natalini [26, 27] while the continuous variant is developed in Bouchut [4]; see
also Bouchut-Guarguaglini-Natalini [5] for a discussion of the diffusive limit. The convergence
in the hyperbolic limit is based on the Kruzhkov theory [20]. Early kinetic theory motivated
schemes for scalar conservation laws appear in [13, 2]. Related issues appear in relaxation
limits to scalar one-dimensional conservation laws [26, 40]. Applications of fluid-limits can be
found in derivations of hydrodynamic limits for stochastic interacting particle systems [31, 19].

The kinetic formulation of Lions-Perthame-Tadmor [22] provides a notion of solution for
scalar conservation laws equivalent to the Kruzhkov entropy solution [20]. It provides a descrip-
tion of the regularizing effect [22] through the use of the averaging lemma, proofs of uniqueness
and error estimates [33], and a perspective to issues of propagation and cancellation of oscil-
lations [34]. It is a rapidly developing subject both in the context of scalar equations, e.g.

[3, 29], but also for systems of two conservation laws, e.g. [23, 24, 16, 34].
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4 Fluid limits to systems of two conservation laws

In this section we discuss certain discrete kinetic models whose fluid limits are systems of two
conservation laws in one space dimension. These results are motivated from the theory of
relaxation approximations for hyperbolic systems. We begin with a system for the evolution
of the kinetic vector variable f¢ = (ff, f5, f5)

Oufs = eufs = = (fi = Mi(w,0))
(4. Oufs + Bufy = —— (> — Ma(w,v))
O f3 = —é(fa% — Ms(u,v))

where

u=fi+fot+fs, v=cfi—cfr, o=cfi+cf

are the first three moments. The system is a dicrete kinetic model of BGK type. Under the
hypotheses

M (u,v) + Ma(u,v) + Ms(u,v) = u
(4.2)
cMi(u,v) — eMo(u,v) = v

it is equipped with two conservation laws
U — vy, =0, vp—0,=0.

The Maxwellians are now selected as

(43) FYR(C) B VI (C) BN VIS (C),

where g(u) is a strictly increasing function with g(0) = 0. This choice is consistent with (4.2)
and g(u) = M (u,v)c? + Ma(u,v)c?. The system governing the evolution of the moments is

closed and reads

ou—0; v = 0
(4.4) Ow—0,0 = 0
O(o—ctu) = —1(o—gu).

The kinetic model (4.1) can be viewed as the system for the evolution of the Riemann invariants

g v g
4. = — 4+ — = - — =y — —
( 5) fi + b 2 2¢’ f3=u 2’

2
associated with the hyperbolic operator in (4.4).
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The formal limit of a solution (uf,v¢,0%) of the equation (4.4) is the system of isothermal
elasticity
u—0,v=0
(4.6)
0w — 0zg9(u) =0

Insight on the nature of the approximation process is obtained via an adaptation of the
Chapman-Enskog expansion familiar from the theory of the Boltzmann equation. One seeks
to identify the effective response of the relaxation process as it approaches the surface of local
equilibria. It is postulated that the relaxing variable o° can be described in an asymptotic

expansion that involves only the local macroscopic values u®, v® and their derivatives, 7.e.
0° = g(uf) + eS(uf, v, us,ve,...) + O(e?)

To calculate the form of S, we substitute the expansion in (4.4),
Opu® — 9pv* =0
O — Opg(uf) = Sz + O(€?)

d(g(uf) — uf) + O(e) = =S + O(e),

whence we obtain
S = [c? — gu(u)]vE + O(e),
and conclude that the effective equations describing the process are
Oruf — 0z,v° =0
(4.7
Ov° — Oug(u®) = €0, ([¢” — gu(u)]v7) + O(?).

This is a stable parabolic system when g, < ¢? is satisfied. The formal expansion suggests that
the limit of (4.4) will be the equations (4.6) provided 0 < g, < c?, a condition stating that the
characteristic speeds +,/g,, of the hyperbolic system (4.6) lie between (and not in resonance
to) the characteristic speed ¢, 0 of the hyperbolic system (4.4).

We work under the standing hypotheses

(h) g(0) =0, 0<y<g,<T <

for some constants 7,I". The system (4.4) may be viewed as a model in viscoelasticity. Mo-
tivated from deliberations of consistency of constitutive theories of materials with internal
variables with the second law of thermodynamics [12, 42], one can check that smooth solutions
(u,v,0) of this viscoelasticity model satisfy the energy dissipation identity

8t<%'02 + ¥(u,0 — Czu)) — Og(ow) + é(“ - h_l(a))(a — h(u)) =0.

a=0—c2u
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where o "
—/ hl(g)dg+au+/ Eede
0 0

2u and k™! is the inverse function of h. We remark that the

a = o —cu, h(u) = g(u) — ¢
associated constitutive theory is compatible with the second law of thermodynamics iff g, < ¢?,
and that the function %112 + ¥ provides an "entropy” function for the associated relaxation
process, which is convex in (v,u, a) iff g, > 0.

It follows that under (h) the viscoelasticity system (4.4) admits global smooth solutions

(for smooth data) which satisfy the e-independent bounds

(4.8) /R(u2—|—v2+o da:+—// og—g dmdt<C/ (ug + v + of)dz

for some C independent of € and ¢. This estimate indicates that the natural stability estimate
of the problem is in L2. It is also clear that while this estimate is in a sense the analog of
the H-theorem in this simplified context, and while it provides a control of the distance from
equilibrium as € — 0, it is not sufficient to guarantee strong convergence.

However, as it turns out (4.4) is endowed with a stronger dissipative structure, analogous
to the one associated with viscosity approximations of the equations (4.6). To this end, note

that (4.4) can be put in the form,
Ou—0zv=20
O — 0z9(u) = Op(o — g(u)) = 6(02%3c — vy,

of an approximation of (4.6) via the wave equation.

(4.9)

Lemma 6 For initial data satisfying

(d) / vg + uf + ogdz + 62/ ud, + vd, + obdr < O(1).
R R

and under hypothesis (h) solutions of (4.4) satisfy the e independent estimates

t
(4.10) e/ / uZ 4+ v2 + o2dxdt < O(1).
o /R
Proof. From (4.9) we obtain the natural energy identity

1
(s

21)2 + W (u) + evvy) — 0 (vg(u)) + (P02 — v7) = €0y (c*vvy),

where the stored energy function W (u fo £)dé. The term c?v2 —wv? is not positive definite.
To compensate, we multiply the second equation in (4.9) by the natural multiplier of the wave

equation v; to obtain
20, (c vy + vt) + &(207 — 2guugvy) = 2620, (Pvyvy) -
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Using the identity a;b; — atb, = 0¢(azb) — 9, (arb), we have
guui = uz 01 (v + €vp) — ULV
= [utaw('u + evy) + O (uw(v + evt)) — Oy (ut(v + evt))] - e@t( 2 2)
and, in turn,

1 1
628t(204u2 — 5021)2) — e (cQuw(v + EUt)) + e(Agyul — v?) = —€d, (CQ’U,t('U + EUt)) .

Adding the identities, we arrive at the strengthened dissipation estimate

Bt( (v + evy — ec®ug)? + 6 2(v2 + 02 + W (u )) — 0z (vg(u))
2

+ e[vf — 2g,uzv; + P guul] = e*(Fvg)s
Because of (h) the second term is positive definite:
8[ — 2gyugvs + ¢ Gully ] > egu(c — gu)u >0.

We conclude

1 1
/2(’1)—}-61)15—80211,,;) + o€ 2(v2 + 02) + W (u)dz

—i—s//guc —guuda:dt

1
< / 2(’1)0 + €00z — ectugg)? + 3¢ 2(0d, + c*vi,) + W (uo)dz < O(1)
R

t
6/ / gu(c? = gu)uidzdt < O(1)
0o Jr

s/t/ o2dzdt < O(1)
/ / vidzdt < O(1)

We come next to the convergence Theorem.

and, due to (h) and (d),

and

which completes the proof of (4.10).

Theorem 7 Let g € C? satisfy the subcharacteristic condition (h) and

9" (uo) = 0 and g"(u) # 0 for u # uo,
g// , g//I E L2 n LOO
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Let (uf,v®,0°) be a family of smooth solutions of (4.4) on IR x [0,T] emanating from smooth

initial data subject to the bounds (d). Then, along a subsequence if necessary,

€ £

u —u, v°—=v, ae (z,t)andin L) (R x(0,T)), forp<2,
and (u,v) is a weak solution of (4.6).

Sketch of Proof. Let n(u,v), q(u,v) be an entropy pair for the equations of isothermal elasticity.
Using (4.9) we obtain

Oy (u®,v°) + 0zq(u”, v°) = 10z (0” — g(u”))
= 0a(10(0° = 9(u))) = (Moue 2 + Moo 70f)
=11+ I
The dissipation measure 0;n° + 0,q° is tested for entropy pairs n—¢q that are uniformly bounded
up to second order derivatives. Due to (4.8) and (4.10) the term If lies in a compact of H™1,

the term I§ is uniformly bounded in L', and the sum I{ + I§ is uniformly bounded in W 1>

One concludes from Murat’s lemma

on(u®,v%) + 9,q(u®,v") lies in a compact of H.

loc

Using the LP theory of compensated compactness developed in [38, 36] for the equations of
elasticity, one obtains strong convergence u®* — u and v®* — v a.e. (z,t) along a subsequence
(see [42] for the details). O

Next we present a second discrete kinetic model that may be treated with techniques of

similar flavor. For k, A > 0 consider

Oif1 — KOp f1 = é(fl M;)
Oufa+ KOy fo = == (f2 = Ma)
(4.11) i
Oifs — A0 f3 = g(f3 M3)
Oifs+ NOpfs = —é (fa — My)
where M; = M;(u,v), i =1,...,4, are Maxwellians depending on the “moments”
(4.12) u=rfi—Kfo, v=Afs—Afa,
that are assumed to satisfy
(4.13) = KM (1, 0) — kMo (1,0), v = kM, v) — KMa(u,v) .
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Then (4.11) is equipped with two conservation laws for u, v. In fact, if we introduce also the

moments

(4.14) RA(fi+fa) =a, N(fs+f1) =b,
the moments (u, v, a,b) evolve according to the closed system
ur—a; =0 v —by, =0

4.15 1 1
(4.15) ar — K ug = —g(a — KX (M1 +Mz)) b — N, = —g(b — N (M3 + My))

If the Maxwellians are selected

_u v v 9w

Mi=o-+355 o T ox2
u v

My =2 _ v g

2K 2K2 My 22 + 2)2

a choice consistent with (4.13), the system (4.15) takes the form

u—ay, = 0
v — bw =0
(4.16) a; — K*uy = —i(a—v)
b~ Mo, = —1(b—g(u))

of a relaxation approximation for the equation of elasticity (4.6) of the type proposed in Jin-
Xin [17]. The convergence of (4.16) to (4.6) when x = X is carried out in Serre [37]. The
proof utilizes the L* compensated compactness framework of DiPerna [11], but differs in the
methodology for controlling the dissipation measure from the one presented above. It is based
on the idea of extending entropy pairs of (4.6) by viewing them as ”equilibrium” entropy pairs
for the hyperbolic operator in (4.16), an idea first developed for scalar conservation laws by
Chen, Levermore and Liu [7, 8]. It is proved in [37] that, remarkably, the system (4.16) is
endowed with invariant regions and its solutions converge to the entropy solutions of (4.6).
For the model (4.16) one can also give a convergence proof based on strengthened dissipation
estimates (see Gosse-Tzavaras [15]). One proceeds by writing (4.16) in the form
Ut — Vp = 6(:“62um - Utt)

4.17
( ) Ut — g(u)m = 5(A2'Uzz - Utt) ;

of an approximation of (4.6) by two wave equations. It turns out that under the subcharac-
teristic condition min{x2, A2} > g, the system (4.17) is endowed with a stronger dissipative
structure, similar to the one characteristic of viscosity approximations. This is the key obser-

vation allowing to carry out the e — 0 limit to the equations of elasticity (see [15]).
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Such strong dissipation estimates are known in more general contexts of approximations

by wave operators [42]. Consider the hyperbolic system
(4.18) Ou+ 0, F(u)=0, z€eR,t>0,

where u(z,t) takes values in R"™ and assume that it is endowed with a strictly convex entropy

n(u). Consider the approximation of (4.18) by a wave operator,
(4.19) Opu + 0, F (u) = e(Augy — uy) ,

where A is a positive definite symmetric n X n matrix. This can be written in the form of the

relaxation approximation

Ou— 0y =0

4.
(4.20) O — AOzu = —é(v — F(u)).

Using the notations 7, := V1, 1y, for the Hessian of 1, and I for the n X n identity matrix,

we prove:

Proposition 8 Assume that (4.18) is equipped with a strictly convex entropy n(u) that satis-
fies, for some o > 0,

nuu(u) <al,

and suppose that the positive definite, symmetric matriz A satisfies
1 T 1T !
E(A Nuw (1) + Ny (W) A) — aF'" (u)F'(u) > v

Then smooth solutions of (4.19), that decay fast at infinity satisfy the dissipation estimate
/Rn(u + euy) + %€2a\ut|2 +auy - Aug dz + /Ot /Rs?’a|utt — Augy|? + evlug|?dzdr
< /Rn(uo + euy(0)) + ce?|ug(0)|? + %ugy - Augg da
where c is a constant independent of €.

Proof. Taking the inner product of (4.19) with u;, we obtain
L2 1 2 1
8t(§6|ut\ + 5 eUs Auz) + (|ut\ +u - F (u)ux) = Oz(euy - Auy)

Next, taking the inner product with 7, we arrive at

(4'21) O (77(“) +eny - ut) + 8&6(](“) + E(nuuuw - Aug — uyg - nuuut) = 58w(77u : Auw) .
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We multiply the first identity by 2ae, add the second identity, and use that

1 s
n(u + eur) = n(u) + eny(u) - up + euy - (/ / T (U + sTut)des) gy
0o Jo

to obtain, after some rearrangements of terms,
2 1 b L, 2, .2
Oy (n(u + euy) + e7uy - [iaI — Nuw (U + 6T’ut)d7’d8] up + € alug]” + e auyg - Auw)
0o Jo

+ 02q(u) + euy - (o — nuu)uy + ealuy + F' (u)ug|® + eug - (Nuud — ozF’TF’)um

= 0, (eny - Aug + 2%y - Auy) .
In view of the hypotheses

1 1 S
Uy - [5(1] — / / Nuw (U + ETut)deS] us >0,
0o Jo

and (4.21) follows. O

Bibliographic remarks. Dissipation induced by damping appears in a variety of subjects from
kinetic theory and continuum physics, prime examples being the theory of viscoelasticity and
many models in the kinetic theory of gases. There is a prolific literature in the domain of
viscoelastiicity (c.f. Renardy, Hrusa and Nohel [35]) and in particular related issues appear
in studies of weak solutions for conservation laws with memory [10, 28, 9]. On the realm of
relaxation, the importance of the subcharacteristic condition was recognized from the early
studies of Liu [25] and Whitham [43]. A general framework for investigating relaxation to
processes containing shocks is proposed in Chen-Levermore-Liu [7, 8], and the mechanism is
exploited in Jin-Xin [17] to introduce a class of nonoscillatory numerical schemes. We refer to
Yong [44] for a discussion of stability conditions for general relaxation systems.

The connection between discrete kinetic models and relaxation approximations is exploited
in Aregba-Driollet and Natalini [27, 1] in order to develop numerical schemes. The problem
of constructing entropies for relaxation and kinetic systems can be systematically addressed
by considerations motivated by either continuum physics [12, 41] as well as by kinetic theory
[4]. The existence of strong dissipative estimates for certain relaxation models is noted in [42].
Convergence results to weak solutions of systems of two conservation laws can be found in
Tzavaras [42], Serre [37] and Gosse-Tzavaras [15], and in Slemrod-Tzavaras [39] for self-similar

limits of the Broadwell system.

5 Appendix: An estimate of S.N. Kruzhkov

In this Appendix we consider the conservation law

(5.1) Ou + divf = uAg
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and we prove that an L'-modulus of continuity for the functions u, f and ¢ in the variable
induces a modulus of continuity in ¢ of the function u. This idea was introduced in one of the
central lemmas of the celebrated work of Kruzhkov [20]. The presented version indicates that
there is no loss of modulus of continuity in ¢.

In what follows we use the notation

(5.2) olh) = sup /R (e +y) — (x| do

for the L'-modulus of continuity of the function w. Also, for k,h > 0 and t > 0 we let M I
denote the quantity

t+k t+k

(53)  M(k,h) :/ sup/ |f(:1:+y,7')—f(a:,7-)|d:1:d7-:/ w;(h,7) dr
t ly|<h JRZ t

associated to the function f. We prove.

Lemma 9 Let u,g and fi, j = 1,...,d, in L'((0,T) x R?) satisfy (5.1) in the sense of
distributions. If

(5.4) wy(e) = ‘315 /Rd |u(z + ez,t) — u(z,t)| dz

is the L*-modulus of continuity of the function u then for t >0, k > 0 (with t + k < T) and

any € > 0 we have

1 1

(5.5) / jua, 4 k) — (e, O] de < Cwn(e) + My(h,e)® +udy(k,) 5 )

Rd 9 (3
and
(5.6)

1 1
u(z,t + k) —u(z,t)|de < C min (wy(e,t) + k= sup wyr(e,7) + pk— sup wyle, T

[ et ) (e de < O min (wu(e,t) +k s w(e,r) +ukg swp wyle,n))

Proof. From the weak formulation of (5.1)

—//uwt+f-V<p+ugA<pdwdt=0, p € CX((0,T) x RY),

we readily obtain using Lebesgue’s theorem that

t+k
(5.7) / (u(z, t + k) — u(z, 8))p(z) do = /t / Fla,7) - V(@) + pgla, 7 Av(z) dzdr

for any 0 < k < T — t and for 9 = () € C*(RY).
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Step 1. We proceed to estimate the right hand side of (5.7). In what follows we use
extensively mollifiers. Let p; be a positive symmetric kernel supported on (0, 1) with fR p1=1
and consider the positive symmetric kernel on [0, 1]¢ defined by p(z) = p1(x1) ... p1(z4). The

kernel p generates a sequence of mollifiers p.(z) = Eid p(%) which satisfy

PEGCSO(]Rd), suppp. C B, /pedlea pe > 0.

Let pe * 9 denote the convolution of p. and .
Consider the splitting of the integral

/tm / f(z,7) - Vip(z) dedr = /tHk / f(z,7)- (V¢(w) _v(ps*d,)(w)) dedr
+/tt+k/f($a7)'v(pe*¢)(:c) drdr

=L+

The term I is rewritten as

I, = /t+k/f (z,7) Vw / P(z —ez) dz)dach
= /tH—k/w/z f(.’L‘,T) —f(£C+€Z,T)) - V(x)p(z) dedzdr

and is estimated by

t+k
|I1] < / sup / |f(z,7) x—l—&:z,’r)|dwd7) sup\V¢(a:)|/pdz
t T z

2|<1
= M;(k,e) sgpIVQ/J(w”

(5.8)

Using the property [ V.p(z)dz = 0 the term I, is rewritten as

I, = / o / flz,T)- ! / V.p(2))(z — €2) dz dzdr
/H—k/f (z,7) /Vzp (x —ez)dz — %/szP(Z)Qﬁ(.’E) dz] dzdr

_ /t Hk /m / flz+ez7) - f(:c,r))-évzp(z)iﬁ(x)dzd:ch

which in turn yields

t+k
|Z5] < / sup / |f z,7) — f(x +ez,7 ‘d.’Ed’T —SupW) /|Vp|dz
(59) t |z|<1

< CMj(k,e) —Suphb( )
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In a similar fashion the last integral in (5.7) is split in two terms

/tt+lc /g(;c,r)Aqﬁ(zc) dodr = /tt+lc/g(w,7) (AT/J(x) — A(pe * ) (x)) dadr

t+k
T)A(pe * dzxdr
+/t /g<w,> (ps * 9)(z) do
=J1+ Jo

The terms J; and Jo are estimated by similar arguments as the terms I; and Is using the
property [, Ap(z)dz = 0. This leads to the bounds

t+k
(5.10) |J1] < / sup / ‘g z,7) —g(z +ez,7) |d:BdT) sup|A1p( )|
t |z<t
t+k 1
(5.11) | 2] < C / sup / l9(z,7) — g(z + e2,7)| dacd7) — sup |¢(z)|
t|z<1 e,

Finally, combining (5.7) with (5.8), (5.9), (5.10) and (5.11) we have

C
| [ (a4 1) — ula, ) (o) do| < My(k,) (5 sup i(o)] + sup V)
(5.12) i *
C
+ My (k. ) ( 5 sup (@) + sup | Ag()])
x
Step 2. Set now
w(z) = ula,t+k) —u(z,t), v(z) = sgnw(z) = sgn (ulz,t + k) — u(z, 1))
and consider the choice 1 = p. * v. Since v is bounded we have
C C
suplp(@)] <1, sup|Vy(@)| < L, sup|ag(a) < 5
For 1) = p. * v the estimate (5.12) gives

C C
(5.13) ‘/ ) (pe * sgnw) ( )dx‘ < sz(k,a) +M6—2Mg(k,€)

On the other hand the identity

/ ()| — w(x)(pe *sgnw)(z) dz = / w(z)sgnw(z) - w(z)( / p(2)sgnw(w - £2) dz) dz

_ /x / (w( — e2) — w(x))sgnw(z — e2)p(z) dodz

yields the estimate

(5.14) ‘ /|fw(x)| —w(z)(pe * sgnw)(z) dz| < i}lg/z lw(z — ez) —w(z)|dz < 2w, (e, 1) .
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Combining (5.13) and (5.14) we obtain the bound

1 1
/Rd [w(z)ldo < O (wnle) + My(k,e)- +pMy(k,) )
which is precisely (5.5). Then (5.6) follows from the estimation

My(k,e;t) <k sup wy(e, 7).
t<T<t+k
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