VISCOSITY AND RELAXATION APPROXIMATIONS
FOR HYPERBOLIC SYSTEMS OF CONSERVATION LAWS

ATHANASIOS E. TZAVARAS

ABSTRACT. These lecture notes deal with the approximation of conservation laws via viscosity or
relaxation. The following topics are covered:

The general structure of viscosity and relaxation approximations is discussed, as suggested by the
second law of thermodynamics, in its form of the Clausius-Duhem inequality. This is done by review-
ing models of one dimensional thermoviscoelastic materials, for the case of viscous approximations,
and thermomechanical theories with internal variables, for the case of relaxation.

The method of self-similar zero viscosity limits is an approach for constructing solutions to the
Riemann problem, as zero-viscosity limits of an elliptic regularization of the Riemann operator.
We present recent results on obtaining uniform BV estimates, in a context of strictly hyperbolic
systems for Riemann data that are sufficiently close. The structure of the emerging solution, and the
connection with shock admissibility criteria is discussed.

The problem of constructing entropy weak solutions for hyperbolic conservation laws via relax-
ation approximations is considered. We discuss compactness and convergence issues for relaxation
approximations converging to the scalar conservation law, in a BV framework, and to the equations
of isothermal elastodynamics, via compensated compactness.
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1. INTRODUCTION

These lecture notes deal with the approximation of hyperbolic systems of conservation laws
via viscosity or relaxation. Despite recent successes with analyzing these questions for systems of
one-space dimension, their understanding remains incomplete and poses challenges to the theory
of hyperbolic systems of conservation laws. A challenge amplified by the mere fact that theoretical
understanding of such limiting processes reflects on the design and implementation of numerical
algorithms for hyperbolic systems.

The interface between mechanical modeling and analytical theory has been a productive ground
for the development of the theory of conservation laws. The problem of viscosity limits is in-
timately tied to the mechanical issue of passage from one continuum thermomechanical theory
to another. In a similar fashion relaxation approximations, when viewed in the framework of
continuum theories with internal variables, have analogous features. Therefore, we begin with
the general structure of viscosity and relaxation approximations, as suggested by the second law
of thermodynamics in its form of the Clausius-Duhem inequality. This presentation owes a lot to
the point of view advocated by Dafermos [D4]. Rather than stating the issues at an abstract level,
we focus on the specific theories of thermoviscoelasticity, for the case of viscosity approximations,
and thermomechanical theories with internal variables, for the case of relaxation.

We continue with a discussion of zero-viscosity limits for the scalar conservation law, in Section
3, and a presentation of self-similar viscosity limits in Section 4. The latter is an approach for
constructing solutions of the Riemann problem, as zero-viscosity limits of an elliptic regularization
of the Riemann operator. We present recent results on obtaining uniform BV estimates, in a
context of strictly hyperbolic systems and for Riemann data that are sufficiently close [Ts].
The structure of the emerging solution, and the connection with shock admissibility criteria (in
particular with the traveling wave criterion) is discussed.

In the last Section, we consider the problem of constructing entropy weak solutions for hyper-
bolic conservation laws via relaxation. Relaxation approximations exert a subtle dissipative effect
on discontinuities as well as on oscillations, which is brought forth by analyzing their compactness
and convergence properties. We present results of recent studies concerning relaxation limits to
the scalar multi-d conservation law in a BV framework [KTs], and to the system of isothermal

elastodynamics via compensated compactness [T4].

2. THE STRUCTURE INDUCED BY CONTINUUM THERMOMECHANICS

Continuum physical theories are described by field equations that are called balance laws. A
body occupying a reference configuration R C R? is deforming through the action of a map

y(-,t) : R = Ry, t > 0, which carries the typical point z € R to the point y = y(z,t) in
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the current configuration R; C R?. The map y, called motion, is required to be a bi-Lipschitz

homeomorphism. The integral balance laws,

d
(2.1) Oy / g(:c,t)da:+/ Z falz, t)ngdS = / h(z,t)de for Q C R, t >0,
Q 19 Bt Q

describe the rate of change of the vector-quantity fQ gdz, in a control volume 2, due to the effect
of flux through the boundary 99 and production (or absorption) in Q. The number of equations
reflect the number N of balance laws in the continuum theory, the vector densities g = (g*) and
h = (h?) express the balanced and produced quantities, respectively, while the flux terms are
expressed through flux densities, f*-n = Zizl fin,, where f = (f!) takes values in R¥N*? and
n is the outer normal to 2. The balance laws may be expressed in a Lagrangean description, in
terms of density fields g, f, h defined for x € R and ¢, or in an Eulerian description, by density
fields g, f, h defined for y € R; and t. The fields are connected through the formulas

(2'2) g($,t) = g(y(m,t),t) ’ f(mat) = f(y(x,t),t), h(:(?,t) = l_z(y(m,t),t) :

If g, f, and h are smooth, the balance laws can be described through the local form

d
(2'3) atg + Z aafa = h,

a=1
obtained from the integral form by using the Gauss Theorem and averaging. (The local form is
still valid for fields of bounded variation - whose distributional derivatives are locally finite Borel
measures - in which case (2.3) is interpreted as an equality of measures.)
The balance laws are supplemented with constitutive relations, characterizing the material
response, and yield evolution equations that describe the process. For instance, when the state
of the material is described by the state vector U € RY and the material response is determined

by the constitutive relations
(2.4) 9=GU), fo=FaU), h=H(U),

with G, F,, H: RY — RN o = 1,...,d, then (2.3) give rise to the first order system of

conservation laws
d
(2.5) BGU) + ) 0uFa(U) = H(U),
a=1

where z € R?, ¢t > 0 and U(z,t) takes values in RY. The constitutive relations (2.4) are

the typical, abstract example of homogeneous elastic response. The system (2.5) comprises the
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equations of compressible gas flow, the equations describing dynamic deformations of nonlinear
elastic materials and certain models of the equations of magnetohydrodynamics.

While the above derivation is appealing in its conciseness, it fails to address several mechanical
considerations. One such consideration is that constitutive theories are required to be consistent
with the second law of thermodynamics, to comply with the principle of material frame indiffer-
ence, and to reflect existing material symmetries. In the sequel, we expand on the restrictions
imposed on constitutive relations by the principle of consistency with the second law of thermo-
dynamics and the ensuing structure of viscosity and relaxation approximations. For simplicity,

the presentation is done in the context of one-dimensional thermomechanical theories.

2.a Thermomechanical theories in one-space dimension.

Thermomechanical theories seek to identify a pair of functions (y(z,t),0(z,t)) determining
a thermomechanical process. The function y(z,t) expresses the motion of the reference interval
[, B] while 8(z, t) stands for the temperature. The displacement y(-, ) is required, for each ¢ > 0,
to be a strictly increasing, bi-Lipschitz continuous map of the reference interval [, 3] onto the

current configuration [y(a, t),y(0,1t)] (see Fig. 1).

/yw)\
o X B y(ot) y y(B.t)
FIGURE 1.

The list of quantities entering in a Lagrangean description of the thermomechanical process
are: po(z) the mass density in the reference configuration, p(y,t) the mass density in the current
configuration, y the motion, u = g—g the strain (u > 0), v = % the velocity, 7 the stress, f the
body force per unit mass, 6 the temperature (8 > 0), e the specific internal energy, ¢ the heat
flux, r the radiating heat density and 7 the specific entropy. The equations

(2.6 o)L = pof)
(2.7) Ou—0zv=0
(2.8) Ot (pov) — 07 = pof
(2.9)

1
¢ (po 51)2 + poe) = 0z (Tv) + 0zq + pofv + por

express the balance of mass, the kinematic compatibility relation, the balance of linear mo-

mentum, and the balance of energy (the first law of thermodynamics), respectively. They are
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supplemented with the Clausius-Duhem inequality, which reads, in integral form,

d [* q z=b ¥ por
(2.10) E/ pondz > a(w,t) B +/ wa for [a,b] C [, f] and t > 0,
or, in local form,
T
(2.11) podim > 9:(3) + 55~

The Clausius-Duhem inequality expresses that the net production of entropy per unit time, in any
control volume [a, b], is positive, and manifests (a form of) the second law of thermodynamics.

The thermomechanical variables are connected through constitutive relations that characterize
the material response. A constitutive theory is determined by assigning a class of independent
(prime) variables and a class of dependent variables, derived from the prime variables via consti-
tutive relations. In this separation, the set of thermodynamic variables is implicitly divided into
“causes” and “effects”. From the phenomenological standpoint of continuum thermomechanics,
there is no a-priori reason why a cause in one constitutive relation should not be a cause in an-
other. Therefore, in determining the general form of constitutive theories, one imposes Truesdell’s
principle of equipresence, which states that a quantity present as an independent variable in one
constitutive relation should be present in all, except if its presence contradicts some law of physics
or material symmetry [TN]. Severe restrictions result from the second law of thermodynamics
and the invariance under change of observers, called respectively principle of consistency with the
Clausius-Duhem inequality and principle of material frame indifference.

The list of constitutive variables (prime and dependent) does not include the reference density
Po, the body force f, and the radiating heat transfer r, which are viewed as externally prescribed
fields. Given a constitutive theory, the kinematic compatibility relation, and the balance laws
of momentum and energy form a system of equations whose solution determines the thermome-
chanical process. In the Lagrangean description, the role of the balance of mass is to determine
the current density p, once the process is identified. The role of the Clausius-Duhem inequality
is subtler: For smooth processes, the Clausius-Duhem inequality is viewed as restricting the form
of constitutive relations. By contrast for non-smooth processes!, it becomes an additional con-
straint that weak solutions must satisfy. These points will be clarified in the context of specific
constitutive theories.

For smooth processes the balance of energy, balance of linear momentum and Clausius-Duhem
inequality imply the energy dissipation inequality

(2.12) 00 (Bte — Ham) — TU; — % <0.

1 The term non-smooth processes is used in a loose sense to signify processes containing shocks. It is a question
of analysis to precise the smoothness class in each specific context.
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Upon introducing the Helmholtz free energy 1 = e — 67, the latter takes the form

0
(2.13) P08t + pond,6 — Tus — % <0.
2.b The constitutive theory of thermoviscoelasticity.
In the constitutive theory of thermoviscoelasticity, the prime variables are the strain u = y;,
the strain rate w = u; = ¥y, the temperature 6, and the temperature gradient g = 0., while the
dependent variables ¥, 5, 7 and ¢ are determined through constitutive relations of the general

form

(2.14) Y =9u,w,b,9), n=n(u,wb,9), 7T="1uw,b0,9), q=qlu,w,0,g9),

following the principle of equipresence.

It is postulated that every smooth process is realizable and must be consistent with the
Clausius-Duhem inequality. The postulate that smooth processes are realizable is compatible
with both the balance laws and the constitutive relations, in the following sense. Given a smooth
process (y(z,t),0(x,t)) and the referential density py, one computes u, w, 6, g and, in turn, v,
1, 7, ¢ and the internal energy e = 1 + 07. Then, the balance of mass determines the current
density p, (2.7) is trivial, while the balance of momentum and balance of energy equations are
satisfied by externally regulating the body force f and radiating heat r.

The energy dissipation inequality (2.13) implies that constitutive relations be constrained so
that

. . ; . a9

(2.15) (Potpu = )i+ (potpw)ti + po (1 + %0)0 + (pothg)g — () <0

is satisfied for any smooth process. One constructs test processes, defined in the vicinity of
(zo,t0), such that the local values of u, w, 8 and g at (z¢,t;) are assigned arbitrarily and, in
addition, the local values of w, 6 and g are assigned independently of the former. It follows that

to comply with (2.15) the constitutive relations must be of the reduced form

oY
= _%(ua 9)
(2.16) o)
=po—+7Z
T Po o + (u,w,e,g)
q = Q(u’ w7 079)
where ) and Z are subject to the constraint

(2.17) Zw + % >0, for any u, w, # and g.
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Further analysis shows that Z(u,0,6,0) = 0 and Q(u,0,6,0) = 0. Hence,

(2.18) o(u,0) := pog—z/:

is interpreted as the elastic part of the stress, Z as the viscous part of the stress, and the elastic
part of the stress is derived from a potential. In practice, frequent use is made of the constitutive

relations
(219) Q= k(ua 0)97 Z= /'L(ua 9)11],

where the viscous and heat conducting effects are decoupled. In that case, (2.17) dictates that
the heat conductivity k(u, @) and viscosity u(u, @) coefficients are positive.

The constitutive relations of an ideal, viscous, heat conducting gas
0 0
(2.20) T:—poR——I—,uv—x, e=ch, g=k—=, u,0>0,
u u u

where R, ¢, ;4 and k are positive constants, are an example within the constitutive theory of

thermoviscoelasticity. The free energy 1 and entropy 7 are given by

(2.21) P(u,0) = —ROlnu — c(0Inf —0), n= —g—z = Rlnu+clné,
and 7 is a concave function.

Constitutive theories should also comply with the principle of material frame indifference. In
one-space dimension, the resulting restrictions are independence of the constitutive relations from
the displacement y and the velocity v, and they have already been factored in (2.14). In several
space dimensions, the restrictions are far more severe because of rotating frames, c.f. [TN].

The equations of one-dimensional thermoviscoelasticity take the form

8tu - 8$’U =0
(2.22) P00 — 070 (u,0) = (bvz)e + po f
1
Bt(_pO'UQ + poe(u, 0)) - 6$(U(ua 0)’”) = (/“):E’U)w + (kew)x + pOf'U + por

2

where we took Z, @ as in (2.19). The counstitutive class is determined by the free energy function
¥ (u,0), in conjunction with the viscosity and conductivity coefficients p = p(u,8) > 0 and
k = k(u,0) > 0. The remaining constitutive functions are determined by the thermodynamic
relations

oY oY

2.2 _, v _ oY
(2.23) o= pog s 50 © Y+ 0n
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. . . . . . de _ pdn _ 824 L
Various derivative thermodynamic relations, like 55 = 03} = —05;5, 55

= —Pog—z, connect the
thermodynamic functions.

By requirement, any smooth process is consistent with the Clausius-Duhem inequality. It is
instructive to derive (2.11) directly from (2.22), (2.16) and (2.19). A calculation shows

ko pod kG2 por
9.24 8 (u, 0) — (—””) — M | Ya .
The identity captures the dissipative structure of thermoviscoelastic materials, and is instrumental

in global existence of smooth solutions for the system of thermoviscoelasticity [Ds].

2.c A hierarchy of thermomechanical theories.
The theory of thermoviscoelasticity is equipped with sufficiently strong dissipative structure
to guarantee the persistence of smooth processes. On the other extreme, is the theory of ther-

moelastic non-conducting materials (Z = 0 and @ = 0), described by the system of equations
Ou—0,v=20
(2.25) po0yv — 00 (u,0) = po f

1
3 (5pov® + poe(u,0)) — 8x(o(u,0)v) = pofv + por
2

with constitutive relations (2.23). If % > 0 and g—z > 0, then (2.25) is hyperbolic with charac-
oy ”_3)1/ 2

po ' pgne

can break down and develop shock waves. The theory of thermoelastic nonconductors of heat is

teristic speeds Ay = :i:( , A0 = 0. Under conditions of compression smooth processes
regarded as a limiting theory of thermoviscoelasticity as the viscosity and heat conductivity tend

to zero. Accordingly, non-smooth thermomechanical processes inherit the constraint

poT

and the Clausius-Duhem inequality becomes a restriction on admissible non-smooth processes.
The constitutive theory of thermoelasticity is an intermediate theory, appropriate for materials

that the stress and the heat flux are independent of the strain rate. Thermoelastic materials are

characterized by the constitutive relations

(2.27) =90 (w,6) 7= po o (,6)

q=Q(u,0,9), subject to Qg >0,

that are consistent for smooth processes with the Clausius-Duhem inequality (2.11). Processes
of thermoelastic materials, with a Fourier law @ = kg, are described by the system (2.22) with

p = 0. Again non-smooth processes inherit (2.11) as an admissibility restriction.
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Isothermal motions of thermoelastic materials are processes (y(z,t),0(z,t)), where the tem-
perature is kept constant, § = 6y, and accordingly @ = Q(u,00,0) = 0. They are described by
the equations

Opu— Oz =0

(2.28)
po0sv — Oz0(u,00) = pof,

that are pertinent to a purely mechanical process. When o, > 0 the system (2.28) is strictly

Ou
Po

to formation of shock waves. It is instructive to regard this situation as a limiting case of the

hyperbolic, with characteristic speeds AL = i( )1/ 2, and non-smooth processes can appear due
theory of thermoviscoelasticity. From a mechanical viewpoint, isothermal processes are attained
by externally controlling the radiation heat transfer r so that § = 6, and Q = 0. The balance of
energy (2.22)3 and (2.24) imply

(2.29) Poat(%v2 + [e(u, 00) — Oom(u, 00)]) — Oz (0 (4, 00) v) + pv7 = (pvz)z + pofov -

In the zero-viscosity limit, non-smooth mechanical processes inherit from thermodynamics the

admissibility constraint

(2.30) o (50° + (a1, 00)) — s (021, 00) ) < pov.

In gas dynamics, it is customary to express the pressure in terms of the specific volume u and

oY

the entropy n. This can be attained by assuming that % > 0, inverting the equation n = — 7,

and writing the constitutive theory (2.23) in the form

Oe Ode

2. ]. = = — —_ — — -
( 3 ) € e(uan)a 0 8’7](,“’?7)’ o p pOaua

where p is the pressure function. Non-smooth processes of thermoelastic nonconductors of heat
have to comply with (2.26), which of course is still valid under the expression (2.31) of the
constitutive relations. Isentropic motions of thermoelastic nonconductors (n = 7y constant) are
described by the system of equations

O:u—0zv =0

(2.32)
poOsv + Ozp(u,m0) = pof,

which is strictly hyperbolic system when p, < 0. Non-smooth isentropic processes inherit from

the expression (2.26) of the second law of thermodynamics the admissibility constraint

(2.33) Poat(%'u2 + e(u,m0)) + 0z (p(u,m0) v) < pofv.
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2.d Materials with internal variables.

Viscosity and heat conduction are one of the possible ways of prescribing dissipative mecha-
nisms. Complementary descriptions of dissipation are supplied by the theory of simple materials
with fading memory and the theory of materials with internal state variables. The class of simple
materials consists of those materials for which the free energy, entropy, stress and heat flux at any
point z and time ¢ can be described in terms of the present value of the temperature gradient g at
(z,t) and the history of strain v and temperature 6 at the point x at all times prior to ¢. Under
conditions of fading memory, simple materials are equipped with a subtle dissipative mechanism,
brought forth by analyzing their thermodynamics [Co].

The class of materials with internal state variables is a subclass of materials with fading
memory, which is appealing in its simplicity and encompasses some interesting models (like the
ideal gas with vibrational relaxation). In a theory with internal variables, the thermomechanical
process is described by a vector function (y(z,t),0(z,t),a(z,t)), where y is the motion, 6 the

temperature, and the internal vector-variable a evolves according to a differential law

(2.34) oo = F(u,0,a).

The remaining thermodynamic quantities are determined by constitutive relations of the form
(2.35) Y =Y(u,0,9,0), n=H(u,0,9,0), 7=8(u,0,9,0), q¢=Q(u,6,9,c).

In rough terms, such models have fading memory when the differential equation (2.34) is expo-
nentially dissipative.

We pursue the implications of the Clausius-Duhem inequality on the form of the constitutive
functions. A remark is in order: while (2.35) satisfies the principle of equipresence, the differential
constraint (2.34) does not. In fact, (2.34) is not viewed here as a constitutive relation but rather
as defining the class of admissible processes. This simplifies somewhat the reduction process,
while it is compatible with specific examples that motivate this theory. We refer to [CG] for the
case that F' also depends on g.

Consistency with the Clausius-Duhem inequality is tested against all admissible processes,
that is all smooth processes that are compatible with the differential constraint (2.34). A count
of equations and unknowns indicates that all admissible processes can be realized, by externally
regulating f and r so as to fulfill the balance of momentum and energy. Then (2.13), (2.34) and
(2.35) imply

Q

(2.36) (p0Ty — S)it+ po (Vg + H)O + poT, g+ poPe - F(u,8, ) — 79 <0
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for all admissible processes. Since the local values of u, 8, a, g, 0;, u; and ¢g; can be assigned

independently, the constitutive relations have the reduced form

P = ¥(u,,a)
34

T=5= Pog—u
(2.37) o

T=E T 00

7= Q(u,0,9,q)
subject to the constraint

ov 1

(2.38) ~%a - F(u,0,a) + aQ(u, 0,9,)g >0 for all u,0, g, .

It follows from (2.38) that

_ov
(0%

(2.39) - F(u,0,a) >0 for all u,6, .

If @ is given by a Fourier law for heat conduction, @ = k(u, 8, a)g, then (2.38) is equivalent to
(2.39) and k£ > 0.

The thermomechanical process (y(z,t),0(z,t), a(z,t)) is described by (2.7-2.9) supplemented
with (2.34) and the constitutive relations (2.37-2.39). For smooth processes with Fourier heat
conduction, a direct computation yields
k62 por

1
= —po=Tq - F(u,0,0) + —= + 22
T

kO,
) 0 62 0

(2.40) podH (u,0, @) — (7

Equation (2.40) captures the dissipative structure of a heat conducting thermoelastic material

with internal variables.

2.e A thermomechanical model with stress relaxation.

Thermomechanical theories with internal variables provide a natural framework to consider the
structure of relaxation approximations to conservation laws, in the continuum physics context. To
develop the connections, consider a theory with one scalar internal variable « evolving according
to the differential law

(2.41) O = =Aa — h(u,8)).

1
X

h(u,0). The internal variable theory is completed with constitutive relations ¥ = ¥(u,8,a)

This law is of exponential dissipative type with relaxation time { and equilibrium states a., =

for the free energy, 7 = S(u, 0, «) for the stress, n = H(u,0,a) for the entropy and a Fourier
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law, ¢ = Q@ = k(u,6,a)g, for the heat flux. The constitutive functions are required to satisfy
(2.37-2.39), with F' = —A(a — h(u,)), so that the internal variable theory is consistent with the
second law of thermodynamics and is equipped with the dissipation estimate (2.40). Then the
function —H (u, 6, @) provides, in the terminology of [CLL], a (possibly not convex) ”entropy”
function for the emerging relaxation process. We are interested to explore the relation of the
thermomechanical model corresponding to A > 0 with the model emerging in the small-relaxation
time limit A — oo.

In practice, one is often faced with the question: under what conditions is a given set of
constitutive functions ¥, S and H achieved from a theory consistent with the second law of
thermodynamics. For example, suppose we are given a stress distribution S(u,#,«). Then the

question becomes to investigate if there a free energy function ¥(u, 8, «) such that

U 1
(g— = —S(u,6,a)
(2.42) - “opo
subject to —(a — h(u,0)) >0 for all u,6, c.

Oa
Note that (2.42) implies in particular that ¥ satisfies

9% >0 for a > h(u,0)
(2.43) g—i’ =0 for o = aeq = h(u, )
9% <0 for a < h(u,0),

and that, since solutions of (2.42); are given by
U
(2.44) po¥(u,0,0) = G(O,0) + [ S(€.0.0) de.
0

the inequality (2.42), is satisfied if and only if there is a function G(@, ) such that

(2.45) (Ga(ﬁ, a) + /Ou Sa(€,0, ) d.f) (a — h(u, 0)) >0 forall u,0,a.

We emphasize that solving (2.45) is equivalent to deciding whether the given model with internal
variables is consistent with the second law of thermodynamics, and that, for (2.45) to admit

solutions, conditions must be imposed on the functions S and h. For instance, (2.43) implies

(2.46) G0, h(u,0)) = — /0 " 86,0, h(u, 0)) d

Given a solution G, the associated free energy function is given by (2.44).

We next consider a special case, where the given stress distribution is

(2.47) S(u,0,a) = f(u,0) + .
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This case is completely solvable. Indeed, (2.45) reads: is there a function G(6,a) such that
J(0,a) := —Gyo(0, o) satisfies

(2.48) (u —j(6, oz)) (a - h(u,@)) >0 forallwu,b,ca.

It is easy to see that this happens if and only if A(u, 6) is strictly decreasing in u, j(0, «) is strictly

decreasing in «, and j = h™! is the inverse function of h for 6 fixed,
j(0,h(u,0)) =u, h(j0,),0)=a.

For simplicity, we assume the slightly stronger condition A, (u,#) < 0 and note that the associated

G is given by the formula

o [4
(2.49) G,a) = —/0 j(G,C)dC—/l s(z)dz

where s is an arbitrary function of 8. In turn, the constitutive functions of the internal variable

theory are S(u,0,a) = f(u,0) + «, as requested, and

potp = po¥(u,0,0) = — [ j(0,()d¢ — z)dz+ou+ [ f(&0)dE,
as [ [t [

ponzpoH(u,o,a)zfo Jo(0,0)dC + 5(6) /fo£9

As an application, consider a model for a viscoelastic material where the total stress 7 is
decomposed into a viscoelastic part, evolving according to stress relaxation, and a viscous part
with Newtonian viscosity,

T=0+pvg, p=>0

(2.51)
O¢(0 = f(u,0)) = —A(o — g(u,0)) -

The viscoelastic part of the stress may be put into the integral form,

(2.52) o(-,t) :f(u,H)(-,t)+/_ Ae M9 (g(wu,0) — f(u,0))(-,s)ds,

of a Maxwell type viscoelastic fluid with memory. The function f(u, @) describes the instantaneous
elastic stress-strain response, while g(u, #) describes the equilibrium stress-strain response.

The inviscid version of (2.51) is formulated in the context of internal variables by setting

o= f(u,0)+

(2.53)
oo = —Aa — h(u, ) with h(u,0) := g(u,0) — f(u,8).
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The model is achieved from a theory consistent with the second law of thermodynamics if and
only if the functions f and g satisfy (g — f)(u, 8) is strictly decreasing in u. Henceforth, we focus

on functions satisfying

(2.54) Gu(u,0) < fu(u,0)

while the free energy 1 and entropy 7 are determined by (2.50) for « = o — f(u, ).
The thermomechanical process (y(z,t),0(z,t), o(z,t)), associated to the material model (2.51),

is described by the system of equations
Ou—O0;v=0
P00 — 0,0 = (pvz)z + pof

(2.55) 1,
0, (pon” + poe) = Bu(ov) = (uvs)s + (ko) + po v+ por

o (0 - f(ua 0)) = _>‘(U - g(uae))
where the internal energy is determined by
poe =po (¢ +0n) = po(¥ + 0H)(u,0,0 — f(u,0))
o—f(u,0) 6
(2.56) :/0 (650 — ) (6,C)d¢ + (05(6) — /1 5(2) dz)
o= ot [ (£ =0s)E0)d.

A direct computation using (2.55), in conjunction with (2.37), (2.47) and (2.50), shows that

the thermomechanical process is equipped with the dissipation estimate

K.\ 1 L
pode(H(w 0,0~ f(w.0) = (5 ) =Xl —hT@e)a—hawo)|
k02 pv? por
2. —_—z -z L
(2.57) ettt

which, in view of (2.54) and (2.48), implies that smooth processes satisfy the Clausius-Duhem
inequality, for all values of A > 0 and pu, & > 0, and yields an estimate for the amount of
dissipation.

The model (2.51), for materials with stress relaxation, gives rise to a hierarchy of thermome-
chanical theories as the parameters describing the viscosity p and heat-conductivity k£ tend to
zero, and to a second hierachy of theories as the relaxation parameter A tends to infinity. In
the limit A\ — oo, one formally obtains the theory of thermoviscoelasticity presented in Section

2.b. As both A — oo and g and/or k tend to zero one can obtain the various thermomechanical
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theories mentioned in Section 2.c. Any non-smooth limit processes inherit the limit form of the
dissipation estimate (2.57).
We close by considering the case of isothermal motions, that is processes along which 8 = 6,

is kept constant and () = 0. The process is described now by the equations

Ou—0,v=20
(2.58) poOtv — 030 = (Wvg)z + pof
0 (o — f(u,00)) = =A(o — g(u, 00))

and inherits from thermodynamics the dissipative structure

0. (500" + po (o1, 00,0 — F(1,60))) — B (ov)

+ pvg + A(u — h ™1 (6o, @) (a — h(u, b)) = (Lvgv)e + pofv.
a:U_f(u700)

(2.59)

The limiting theory u — 0 is described by

O:u—0zv=20
(2.60) Po0v — 00 = pof
0 (0 — f(u,00)) = —X(o — g(u,60)) -
It is known that the stress relaxation equation exerts a subtle dissipative effect on smooth pro-
cesses, and as a result the system admits smooth solutions for initial data close to equilibrium.

By contrast, for data away from equilibrium shock waves can develop in finite time, [Dy4]. The

inviscid theory inherits the dissipative structure

0. (50" + po¥ (v, 00,0 — £, 60)) — Bu(ov)

—I—/\(u—h_l(OO,a))(a—h(u,Go)) SpOfIUa
a:a’—f(u,ﬁo)

(2.61)

with equality for smooth isothermal processes.
In the limit A — oo, the internal variable theory (2.60) yields the equations of one-dimensional
isothermal elasticity,
Ou — Ozv=20
(2.62)
ﬂoatv - awg(ua 90) = pOf’
a strictly hyperbolic system when g, > 0. If f,, > g, the internal variable theory is consistent with

the Clausius-Duhem inequality. (Remarkably, this is precisely the subcharacteristic condition for



VISCOSITY AND RELAXATION APPROXIMATIONS 17

the associated relaxation process, i.e. consistency with the second law of thermodynamics implies,

in this context, the subcharacteristic condition.) The function

(2.63) po (a1, B, @) = /0 B (60, C)dC + au + /0 £(¢,60)de

provides an ”entropy” function for the associated relaxation process, which is convex in (u, a) if
—0uh™ 10, f > 1 for all u and o

Bibliographic remarks. We refer to books on Continuum Mechanics, e.g. Truesdell and Noll [TN],
on the topics of consistency of constitutive relations with the second law of thermodynamics, the
principle of material frame indifference, and the effect of material symmetries. The requirements
imposed by consistency with the Clausius-Duhem inequality are developed in Coleman-Noll [CN]
and Coleman-Mizel [CM] for the theory of thermoviscoelasticity, in Coleman [Co] for simple
materials with fading memory, and in Coleman-Gurtin [CG] for materials with internal state
variables. The thermodynamical structure of mechanical theories with internal variables has
been extensively investigated in the mechanics literature, c.f. Coleman-Gurtin [CG], Gurtin-
Williams-Suliciu [GWS], Faciu and Mihailescu-Suliciu [FM], Suliciu [Su] and references therein.
Since consistency with the second law of thermodynamics leads to ”entropy” functions for the
relaxation process, the issue is important in both the design of numerical relaxation schemes,
Coquel-Perthame [CPe|, as well as for theoretical investigations of relaxation, Tzavaras [T4].
There is an extensive literature on the classification of the strength of dissipation, for various
mechanical theories, and the related issue of global existence of smooth processes. We refer to

Dafermos [Dy] for a survey of results prior to 1985.

3. ZERO-VISCOSITY LIMITS FOR THE SCALAR CONSERVATION LAW

The problem of zero-viscosity limits consists of constructing weak solutions of the hyperbolic

system

(3.1) U+ 0, F(U) =0, ze€R t>0,
as € — 0 limits of the viscous system

(3.2) QU + 8, F(U) = £ 8,(BU)U.),

where U (z,t) takes values in RY and B(U) is a positive semidefinite diffusion matrix expressing

the viscous structure.
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Most of the analysis regarding this question is based on the notion of entropy-entropy flux
pairs. A scalar-valued function 7(U) is called an entropy with corresponding entropy flux ¢(U) if

every smooth solution of the conservation law (3.1) satisfies the additional conservation law
(3.3) Oyn(U) + 0:q(U) =0.

Pairs (n(U), ¢(U)) are generated by solving the system of linear differential equations

(3.4) Vq(U)=VnU)-VFU).

Trivial solutions are provided by (c¢- U, c¢- F(U)), with ¢ any constant vector in RY. Since
(3.4) is underdetermined of N = 1, determined for N = 2 and overdetermined for N > 3, for
systems of two equations there exist many entropies, but for larger systems the existence of
nontrivial entropies is the exception rather than the rule. Nevertheless, specific systems arising
in applications are often endowed with some entropy-entropy flux pairs.

In the sequel we present the convergence of viscosity limits
(3.5) ut + f(u)e = eUgs
to the scalar conservation law
(3.6) ut + f(u)z = 0.

Let A(u) = f'(u). Consider a family of approximate solutions u® emanating from initial data u§

that are stable in L2 N L™. By the maximum principle the family u¢ is stable in L>®
(3.7) W[ <C,

and, by the representation theorem for Young measures [Ta], there exists a subsequence (denoted

again by u°) and a measurable family of probability measures v = v(; ;) such that
(3.8) fw®) =<, f(k) >, for any continuous f.

Solutions of the viscosity problem satisfy the uniform bound

(3.9) / 2d:v+s/ /u </ 22dz < O(1)

Let (7, q) be any C? entropy pair, ¢’(u) = A(u)n'(u). Along solutions of the viscosity problem
(3.10) Bim(u®) + Bpq(u) = €0, (1 (u*)u) — enuu (u)us? = I + I

The term I; converges to zero in H~!, the term I, is uniformly bounded in L!, and the sum
I —|— I, is uniformly bounded in W1, Tt follows from [M,] that I; + I lies in a compact of
H_

loc

taken out of [PTz].

One concludes with the following theorem due to Tartar [Ta]. The proof presented here is
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Theorem 3.1. Suppose that
(3.11) on(u®) + 0,q(u’) lies in a compact of H; '

loc

for any (n,q) with n, € CL(R). Then either the support of the Young measure v is a point or

else it is contained in an interval where f is linear,

(3.12) SUpp V(g C 1€ € I : A(&) = const.}

Proof. Consider the following classes of entropy-entropy flux pairs (motivated by the kinetic

formulation of the scalar conservation law):
m) = [ o0 = [ Lol
o= [ NO#OE = [ Toer@aed

o) = / "y (0)do = [ ducavo)io
42(u) = / A(O)p(60)d0 = / 1o MO)(0)d0

where ¢, 1 € C}(R). Both pairs are constant near infinity, the first pair represents entropies that
vanish at —oo and the second entropies vanishing at oco.

Applying the usual compensated compactness bracket,
(3.13) <v,mge — ey >=< v, >< Vg > — < v, >< v, q1 >,

to the pairs, we obtain, following an application of Fubini’s Theorem,

(3.14) JRLGERG) e vy wevg o) PTGVIOFE LD

where the notation
]lu>§ = /]lu>§d1/.

From (3.14) we deduce

(3'15) [)\(9) - ’\(5)] (]lu>£]1u<0 - ]1u>§ ]1u<0) =0 ae 550

and in turn

(3.16) A0) = M&)] Tuse Tucp =0 forae ¢, 0 with & > 0.
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Let F (&) be the distribution function of v, defined by F(£) = v((—o0,&]). Then F is right

continuous, increasing and
F(¢) = /]lu<§d1/ a.e &.

Using (3.16), we conclude (upon taking limits)
(3.17) AO) =X (1 =F())F(0)=0 forall & 0 with &> 6.

If the supp v is not a point, let £, 8 be two points in supp v with £ > 6. Then 0 < F/(§) < F(§) < 1
and (3.17) implies A(§) = A(#) and concludes the proof. O

Bibliographic Remarks. The notion of entropy-entropy flux pairs Lax [Las] and the theory of
compensated compactness of Murat [M;] and Tartar [Ta] play an important role in the analysis
of viscosity limits - in one space dimension - for the scalar conservation law, Tartar [Tal, for several
systems of two equations, e.g. DiPerna [Dp;, Dps], Serre [Se], Chen [Ch], Lin [Lin], Shearer [Sh],
Serre-Shearer [SeSh], Lions-Perthame-Tadmor [LPT5] and Lions-Perthame-Souganidis [LPS], and

for systems containing rich families of entropies, e.g. Heibig [H].

4. THE RIEMANN PROBLEM AND SELF-SIMILAR VISCOSITY LIMITS

We consider the strictly hyperbolic system of conservation laws
(4.1) U+ 0, F(U)=0, ze€R t>0,

where U (z,t) takes values in RY and the Jacobian matrix VF(U) has real and distinct eigenvalues
AM(U) < A2(U) < ... < An(U). The right and left eigenvectors r;(U) and [;(U) are linearly
independent and are normalized,
0 it
(42) VF’I"lz)\ZTZ, IZVF:)\ll“ 117"‘7:(513:{1 Z#j,
i=]
{r;} and {I;} form a pair of local bases in the state space RV .

The Riemann problem consists of solving (4.1) with initial data a single jump discontinuity

U_ x<0,
U.|_ xz > 0.

(4.3) U(z,0) = {

Due to the invariance of (4.1), (4.3) under dilations of coordinates (z,t) — (az,at), a > 0,

solutions of the Riemann problem are sought in the form of functions U(¥) of the single variable
T

§ = %, where U = U(§) is a weak solution of the boundary value problem

U+ FU) =0,

(P) U(:tOO) = U:t -
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In solving (P) one encounters lack of uniqueness that is accounted for by imposing admissibility
restrictions on solutions. We refer to Dafermos [Ds] for a detailed discussion of the issue of
admissibility together with historical references.

For weak waves in strictly hyperbolic systems it suffices to impose admissibility restrictions
only at shocks. The classical solution of the Riemann problem proceeds in two steps: First, special
solutions of rarefaction waves, shock waves or contact discontinuities are constructed and are in
turn used for constructing the elementary wave curves. There is one elementary curve associated
with each characteristic field with the parametrization of the curve serving as a measure of the
strength of the associated wave. Second, it is shown that the compound curves emanating from a
fixed left state U_ give rise to an invertible map that covers a full neighborhood of right end states
U,.. The construction provides a unique solution for the Riemann problem, in the class of weak
waves, for genuinely nonlinear systems (Lax [La;]) as well as for a large class of non-genuinely

nonlinear systems (Liu [Liy, Lig]).

4.a The problem of self-similar viscosity limits.
The method of self-similar viscosity limits, introduced in Dafermos [D;], provides a comple-
mentary approach for solving the Riemann problem in the spirit of viscosity approximations. An

elliptic regularization of the Riemann operator in (P) is introduced

!

—EU' + FU) = s(B(U)U')
U(xoo)=Uy,

(PE)B

where ¢ > 0 and B(U) is a positive matrix accounting for the viscous structure. The admis-
sible solutions of (P) are selected as € N\, 0 limit-points of solutions to the problem (P.)g. In
contrast to shock admissibility criteria, self-similar viscosity limits penalize the whole wave-fan
simultaneously, and the resulting admissibility criterion is called viscous wave-fan admissibility
criterion.

In this section we review the method, in the framework of weak waves for strictly hyperbolic

N x N systems with B(U) = Id,
—¢U' + F(U) = eU"
(Pe)
U(too) =Uy.

We start with a summary of the result [Ts].

Theorem 4.1. Let (4.1) be strictly hyperbolic, B(U) = Id and suppose the jump of the Riemann
data Uy — U_| is small.
(i) There ezists a family {Ue} of smooth solutions to (P.) such that U, satisfy the uniform bounds

(V) \Uc| +TVU. < C,
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a2

and |UL()| < %e_e , |l > A, for some a and A independent of .
(i) Let U., be a subsequence of {U.} such that U., — U(§) pointwise for & € R. Then U is a
BYV function that satisfies

(4.4) —¢U ' +FU) =0
in the sense of measures and the Rankine Hugoniot conditions,

(4.5) —EUE+) —UE)] + [FU(EF)) - FUE-)] =0,

at any point of discontinuity & € Sy.

(iii) The function U consists of N wave fans separated by constant states. Each wave fan consists
of an alternating sequence of shocks and rarefactions so that each shock adjacent to a rarefaction
on one side is a contact on that side. At a shock & € Sy belonging to the k-th wave fan, a weak

form of the Lax shock conditions is satisfied

(4.6) A(U(E+)) €< M(U(E-)) -

Finally, if £ € Sy then the sequence U, has at £ the internal structure of a shock profile.

The theorem provides an alternative route to the solution of the Riemann problem, requiring
strict hyperbolicity but no geometric conditions on the wave curves. In that sense it provides
a general theory within the class of strictly hyperbolic systems and weak waves. The proof
is analytical, replacing the construction of the wave curves with the construction of a class of
solutions to (P.), that we call approximate wave curves. The main issue towards proving (V') is to
construct a framework for measuring the total variation of approximate solutions that persists in
the e — 0 limit. This construction may provide insight to the understanding of the corresponding
issue in the (harder) problem of viscosity limits.

The study of self-similar viscosity limits may be decomposed into three steps:

(i) Construction of smooth solutions to the problem (P:)p, € > 0.
(ii) Performing the passage to the limit € N\, 0, from (P.)p to (P).
(iii) Study of the structure of the emerging solution.

Step (i) is technical but routine, and general results can be established under weak assumptions:
If (4.1) is equipped with an L? estimate then (P.) has smooth solutions for each ¢ > 0, [Ts].
This applies in particular to the class of symmetric hyperbolic systems.

The usual framework for Step (ii) is uniform stability in BV ([a,b]; RY),

(V) |U|+TVU. <C.
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If (V) holds on an interval [a,b] then Helly’s Theorem implies that there exists a subsequence
{U., }, with €, = 0, and a function U € BV such that U,,, — U for { € [a, b].
Suppose now that the family {U.} of solutions to (P.)p satisfies the uniform BV-bound (V)

and, for some C, a > 0 and A independent of ¢, the uniform estimates

() Ul < Lot por e 2 A,

(M) e/R\U'Pdfs c.

We show how to construct solutions of the Riemann problem. (Note that if (4.1) is strictly
hyperbolic and the family {U.} is bounded in L*, then (D) can be proved in both the case
B(U) = Id as well as in some cases with singular diffusion matrices [T5, T3, Ki]. Also, that (M)
follows, if there is an entropy-entropy flux pair (7, q) such that V27 - B > cId for some ¢ > 0.)

Consider a subsequence {U,_} such that
(4.7) U, (&) 2 U(E) foréeR.

From (P.)p we obtain, for a test function 1,

(48) /R U.- (&) - F(U.) o' dé = — /R B(UU. - ' de.

Using (V'), (M) and (4.7) we pass to the limit €,, — 0 and obtain

(4.9) /RU- (ep)' — F(U) -4 de =0.

As U € BV, its domain can be decomposed into two disjoint sets : Cy the set of points of
continuity of U and Sy the set of points of discontinuity, respectively. The set Sy is at most
countable, and the right and left limits U({+), U({—) exist at each £&. The equation (4.4) is
satisfied in the sense of measures. In particular, at £ € Sy, the Rankine-Hugoniot conditions
(4.5) are satisfied. Finally, (D) implies that U = U_ on the interval (—oo,—A) and U = U4 on
(A, +00). The function U(%) is a weak solution of the Riemann problem (4.1), (4.3), and the set
Sy is the set of shocks for this wave-fan solution.

In Sections 4.c and 4.d, we outline the derivation of uniform variation estimates for the problem
(P.) with B(U) = Id, first for the single conservation law and then for a strictly hyperbolic
system. In Section 4.b, we show that stable BV-families of solutions to (P.) have, near shocks,

the internal structure of shock profiles.
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4.b The connection with shock profiles.

First, we investigate the relation between self-similar viscosity limits and shock profiles. Let
{U.} be a family of solutions to (P.) satisfying (V'), (D) and (4.7).

Fix a point of discontinuity £ of U and note that U ({+) satisfy the Rankine-Hugoniot conditions

(4.5). Consider a sequence of points £, — & as € — 0. Define the functions
(4.10) Ve(@)=Ue(ée+€(), —o0<(<o0.

This transformation introduces a stretching of the independent variable centered around &.; the

point £, is a shift of the shock speed £&. The functions V. are uniformly bounded in BV,
(4.11) TV Ve() =TV Ue(§e +e) =TVe Ue(1) < C.

Using Helly’s theorem and a diagonal argument we establish the existence of a subsequence and

a function V such that

(4.12) Ucs(é: +e¢) = V(¢) pointwise for —oo < ( < 00 .

Proposition 4.2. Let £ € Sy and suppose that {€.} is a sequence of points with & — €. Then
V(¢), defined in (4.12), is continuously differentiable and satisfies on (—o0,00) the traveling wave

equations

(4.13) —E[V - U(=)]+ [F(V) - (W&—))]z%

with initial condition V(0) = lime—,0 Uc(&). The limits ) liin V(¢) =: Vi ezist, are finite, and
—+o00

Vi, V_ solve the algebraic equations
(4.14) =V -UE-)|+[F(V)-F{U(¢-))]=0.

Proof. We integrate (P.) between the points & + ¢ and # and then integrate the resulting

equation in § between & and £ + 4, for some § # 0, to arrive at

1 &40
(& +e QULE +2 O+ FIULE +< )~ [ [-00.0) + FUL0)]d0

&40 §a+sC d 1 [&to /
/ / 7) dTdf = d—C(UE(ge + &) — 55/5 UL(0)do .

After an integration in { we get

¢ 1 [Et9
[ @ eovite e+ FUte +epldas= 3 [ 1-00.0)+ PO 0)] 0

/ /EH /§€+Es 7)drdfds = Uc (€ + ¢) — Ue (&) — % /:M U (9)do .
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Letting € — 0 and using (4.7), (4.12) and (V'), we deduce

¢ 1 [E€t9
[ 1-eve) + Fve)1ds—¢ 5 [ 1-o0(0)+ FU6))ds
0 3
E+6 €
+ C%/.g /0 U(r)drdd =V (¢) —V(0).

Letting consecutively § — 0+ and § — 0—, we obtain

¢
(4.15) /0 [ —£(V(s) = U(ED) + F(V(5)) - FU(ER)) | ds = V() - V(0) .

It follows that V(¢) is a continuously differentiable function that satisfies the traveling wave
equations (4.13). Since V is of bounded variation on R, the limits : liIf V(¢) =: Vi exist and
— %00

are finite. Also, for any integer n

n+1
/ [ —&(V(s) = U(E-)) + F(V(s) = F(U(§-)) |ds = V(n+1) = V(n) .

Taking the i-th component and using the mean value theorem, we see hat there are ¢! with
ngtﬁl < n + 1 such that

—£(Vilth) ~ UH(6-)) + FUV(H) - FU(E-) = Vit + 1) = Vi(n),  i=1,.,N.

Letting n — oo shows that V, is an equilibrium of (4.13). Similarly, V_ satisfies (4.14). O

The function V' as well as the limiting values Vi depend on the choice of the sequence {¢.}.
For several choices of {{.} it may happen that the traveling wave disintegrates to a constant
solution. Two questions arise: (i) Is it always possible to choose {£.} so that the resulting V
does not disintegrate to a constant solution of (4.13). (ii) What is the relation of U(¢—), U(£+)

and nontrivial heteroclinic orbits. These questions are taken up in [T3, Sec 9]. It turns out:

Proposition 4.3. Let £ € Sy be fized and suppose the set of solutions of (4.14) is not connected.
There ezists a sequence of shock shifts {£.} such that the resulting V in (4.12) is a nontrivial

heteroclinic (or homoclinic) orbit.

The hypothesis in Proposition 4.3 is violated only for shocks associated with a linearly degen-
erate characteristic field : Vg (U) - 7 (U) = 0 for all U. Addressing (ii) is quite complicated
at the full level of generality. We give one result indicating what can happen if there is a finite

number of equilibria in Bg, the ball of radius C where the functions U, take values.



26 ATHANASIOS TZAVARAS

Proposition 4.4. Let £ € Sy and suppose that (4.14) has a finite number of solutions in
Be. There ezists a subsequence €, — 0 and choices {&1c, }, {€2e, } of the shock shifts such that

glsn S £2sn7 glsn — ga §2En — f,
Ue, (&1c, +enC) = V1(C), Ue, (&2, +€nC) = V2(¢), pointwise for —oo < ( < o0,
and Vi, Vs are nontrivial solutions of (4.13) that satisfy Vi(—o0) = U(€—), Va(+00) = U(E+).

Associated to characteristic fields that are not linearly degenerate, there exists one heteroclinic
orbit of (4.13) that emanates from U({—) and one that concludes at U(£+). If more than two
states in B¢ satisfy the Rankine-Hugoniot conditions at a given ¢ € Sy, or if multiple heteroclinic
connections between two equilibria are possible, then the precise relation between self-similar
limits and shock profiles requires a detailed analysis of the shock profiles. The structure of
traveling wave solutions is well understood for weak shocks, even for general diffusion matrices
(Majda and Pego [MP]). By contrast, relatively little is known for strong shocks. In general, it
is possible that there are intermediate states V;, 7 = 1,...,J, finitely many or even countable,
satisfying (4.14) and a chain of shock profiles, at the same shock speed &, that connect successively
U(&—) to Vi, each of the points V; to the next, and V; to U({+). The latter situation occurs for
the equations of isothermal elasticity in the presence of multiple inflection points in the stress-

strain relation, for specific positions of the Riemann data relative to the stress-strain curve [Ts).

4.c The scalar conservation law.

In this section we consider the problem of self-similar viscosity limits for the scalar conservation
law, and discuss the proof of the uniform bounds (V') and the structure of the emerging solution.
Let {u.}e>o be a family of scalar-valued functions satisfying
(4.16) eug = —§ul + f(ue)

Ue (£00) = uy .

It is easy to see that solutions of (4.1) satisfy the representation formula
exp{—1 fj s — AMue(s)) ds}
2 exp{-1 fpg s — Muc(s)) ds} d¢

where A(u) = f’(u) denotes the characteristic speed and p is any real number. Above, we used

(4.17) ug (§) = (uy —u-) = 719:(£),

the notations 7 = (u4 — u_), as a measure of the strength of the wave, and

e~ 19:(8) 1

(4'18) (Pe(g) = Ws[us](f) = ffo _%ga(od( = I—Ee_%gs(g)

where 9:(&) = glue( / — Mue(s)) d
o

and I, :/ e 9:d¢
—0o0
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Note that ¢. and g. depend implicitly on the solution u., through the dependence on the char-
acteristic speed A(ug).

It follows from (4.17) that u. has a sign, and thus
min{u_,us} <ue < max{u_,us}, TVu, = |us —u_]|.

Another way to see (V) is to observe that ¢, are positive functions and uniformly bounded in L?,
hence {u.} is of uniformly bounded variation. Given the bound (V'), we can pass to the ¢ — 0
limit and obtain a solution of the problem (P) for the scalar case.

In the sequel, we study the quantities ¢, in (4.18), under various frameworks of uniform

bounds. For a family of solutions {u.} bounded in L™, we have
(4) Ao < Aue) < Ay

Lemma 4.5. Under Hypothesis (A), ase — 0 :
(i) Ifd= Xy — A_ >0, then ﬁ% <I.<d++V2me, and

O(1) $emz " £ <,
(4.19) 0< ()< 0(1)¢ £ER,
0(1) e 2 E=2)" g5,

(1) If d = Ay — A= =0, then I, = /27e and ¢, = \/21”—5 e~ (62-)7,

Proof. The estimates for . reflect the property that, under Hypothesis (A), g. has the form
of a potential-well function (cf. Figure 2). We select p as the point where g. achieves its global
minimum. Then p satisfies A_ < p = Aue(p)) < Ay, and g (&) > g-(p) = 0.

Assume first that d > 0. Then

(C—p)?+d(C—p) for¢>p
(C—p)2—d((—p) for(<p

NI= N

9:(¢) = /: s — Mue(s))ds < {

In turn,
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On the other hand, estimating g. from below yields

(C—A_)% for (< A_
for \_ < (¢ < At
(C=A4)? for (> Ay

9:(¢) >

= O Nl

whence

A= 0o
I g/ e~ 2e((A-)° d<+d+/ e~ ge = d+ V2 re.
A

—o0 +
The proof of (4.19) now follows from (4.18). Finally, if d = 0 then A(u.) remains constant, say

A_, and part (ii) follows from a direct calculation. [J

The family {u.} is uniformly bounded in BV, while {¢.} is uniformly bounded in L'. There

is a subsequence u.,, ¢., and a finite positive Borel measure ¢ such that

Ug, — U, pointwise in R,
(4.20)

Ve, — ¢, weak-x in measures.

By (4.19) no mass escapes at infinity and the total mass of the measure ¢ is one. The distribution

function of ¢ is the right continuous function % (u(é+) —u_). Along the same sequence
4 £
(4.21) g, (&) = / s — AMue, (s))ds — / s — Mu(s))ds =: g(&)
Pen 14

uniformly on compact subsets of (—oo,00). We show that points in the support of ¢ are global

minima for the function g.
Proposition 4.6. If £ € supp ¢ then g(C) > g(&) for all ¢ € (—o0,0).

Proof. Fix £ € R, a > 0 and consider the set

(4.22) A={CeR : g(¢)—g(¢) < —a<0}.

Step 1 : If the Lebesgue measure m(A) > 0, then & & supp ¢.
Since g(¢) — oo as |(| — oo, A is contained in some compact interval [a, b]. By (4.21) and the

continuity of g there are § and ¢ such that

(0%
Ge,, (C) — Ge, (0) < _5
fore <ep, (€ Aand € J=(£— 0, +0). Hence,
1 e Ten

(4.23) R TS R P (S PRy Pr TPV
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Let x € Cc(J). Then (4.23) and (4.20) give

/ e, (0) x(0)dd -0, ase, =0,
(§—0,¢+9)

and thus £ ¢ supp ¢.
Step 2 : If £ € supp ¢, then m(A) = 0 and thus A is empty for any o > 0. Hence, g(¢) > g(§)
for (e R O

The minimization property for g provides information on the structure of the BV-function .

In particular, a weak form of the Lax shock conditions is induced at points of discontinuity.

Corollary 4.7. Let &, & € supp ¢ C [A_, \y] with £ < &'.
(a) If € € C,, then & = Mu(€)).
(b) If € € Sy, then u satisfies at & the jump conditions (4.5) and the inequalities

(4.24) Au(é+)) <& < Au(é-)) -

(c) If &, & € supp ¢ then A(u(é+)) =&, A(u(€'~)) =¢&'. Moreover, at any 0 € (£,£'),
0=Xu(®) if 0€Cy,

(4.25)
Aw(0+) =0 = Au(0—)) if 0€S,.

Proof. The function g is continuous, satisfies g(§) — oo as || — oo, and the limits

L 90— 9(©)

—g6) . 1 [ e
(wex (=& Cl—lgli ¢-¢ /5 § 7 A ds = &= AulE)

exist. Proposition 4.6 implies that if £ € supp ¢ then & — A(u(é+)) > 0 and &€ — A(u(é—)) <0. In
turn, this implies (a) if £ € C, and (b) if £ € S,,.

It remains to show (c¢). Let &, &' € supp ¢ with £ < &'. Then &, &' are both global minima for
g with g(&) = g(¢'). We claim

(4.26) 9(6) = g(§) for any 6 € (£,¢') .

If (4.26) is violated, there exist a, b with £ < a < b < ¢’ such that

g(a) =g(b) =g(&), g(0)>g() fora<f<b.

At the points a, b we have

(4.27)
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On the other hand, at any 0 € (a,b) the set A = {( € R: ¢({) — g(f) < —a} is nonempty for
some o > 0. Proposition 4.6 implies that 8 ¢ supp ¢ and the function u({) remains constant
on the interval (a,b). Hence A(u(a+)) = A(u(b—)) and the inequalities (4.27) yield b < a. This
contradicts a < b and (4.26) follows. O

In summary, the region where u is nonconstant consists of one closed interval I, (which could
degenerate to one single point). The solution u takes the values u_ and uy on the complement

of I, and looks like a wave-fan consisting of rarefactions, shocks and contacts at points of Iy.

4.d BV stability for self-similar viscosity limits.
Next, we outline the derivation of the uniform BV bounds, for weak waves in N x N strictly

hyperbolic systems:

Theorem 4.8. Let (4.1) be strictly hyperbolic and U_ be fized. If Uy — U_| is sufficiently small,
the problem (P.) admits a smooth solution U, for each € > 0. Moreover, the family of solutions

{Ue}e>0 1is of uniformly bounded (and small) oscillation and total variation.

Sketch of Proof. First, (P.) is recast into an alternative formulation. Let U, be a solution to

P.) connecting U_ to U, and consider the decomposition of U! in the basis {ry(U.)},
+ €

N
(4.28) ULE) = are(&) e (U=(9)) -
k=1
The amplitudes ag. can be recovered from the formula

(4.29) ake (€) = U(U=(€)) - UL(E) ,

and a simple calculation, taking the inner product of the system in (P.) with [ (U;), shows that

ae satisfy the equations

N
(430) ga;ce + [é - Ak(Us(g))] Age = € Z [Vlk(Ug(f)) Tm(Us(g)) : 'rn(Us(g))] Amelne -
m,n=1
Integrating (4.28) over (—oo, o), we have
N (9]
(4.31) U == =Y [ QU0 de.
k=1 Y~

Equations (4.30)-(4.31) provide an equivalent formulation of the problem (P.). Henceforth we
suppress the e-dependence of functions and introduce the notation
Ap = Ak(Us(f))

(4.32)
ﬁk,mn = ﬁk,mn(UE(E)) = Vlk(UE(g)) Tm(UE(g)) . Tn(Us(s)) .
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The functions a satisfy the coupled system of ordinary differential equations with variable coef-

ficients
N
(433) € a’;c + (5 - >\k) ag = € Z IBk,mn m Qp -
m,n=1

We consider the following question: Assume we are given a family {U, }.>¢ of solutions that

are of uniformly bounded, small oscillation

(Co) sup |U6 (5) - U—| < p.
—o0o<é<+00

Examine under what conditions the given family is of uniformly bounded variation
(S) TV(—oo,+00) (U:) < C.

Note that (C,) imposes the restriction |[U; — U_| small on the Riemann data, and dictates that
Ue satisfy the uniform L°°-bound, sup_. c¢c o0 |Ue(§)| < M, with the constants M and p
independent of € and p also small. Along the family {U. }, each wave speed is bounded

(4.34) A < Ak (Ue(€)) < My

by constants A\y_, A+ independent of €. If the oscillation of U, is sufficiently small, then the

wave speeds are totally separated, that is

M. Phe A

FIGURE 2.
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Ao < A(U(8) < Mg < Ao <0 (U()) < Aog < ..

(4.35)
<AN-1)= S AN-1(Ue(8)) < Avonys < An- < AN (Ue(8)) < Ay

Finally, the coefficients S, are uniformly bounded, |Bx,mn| < B, by a constant B depending
on yu but not on ¢.

The L' norm of the function chvzl |ax| provides a natural measure of the variation of U..
Hence, in order to prove (S) it suffices to estimate in L! the solutions ax. of the system (4.33),
under the hypotheses that the wave speeds A\, are totally separated and the coefficients B mp
are bounded. The quadratic terms in (4.33) represent the effect induced on the k-family by
interactions of waves of all the families, and (3 ., measure the weights of such contributions.
There are three problems to be resolved : First, to find a natural framework for measuring the L!
norm of Zszl |ak|. Second, to understand the effect of the quadratic terms. Third, differential
systems like (4.33) are best amenable to analysis under pointwise conditions. On the other hand
the existing information connecting a; with the data is of integral type. Therefore, a scheme is
needed that connects pointwise to integral information.

Let g be an antiderivative of gj = & — A\ (Uc(§)). By (4.34), g;, > 0 for &€ > Ay , g5, < 0 for
€ < \kx—, and thus g looks like a potential-well function (see Fig. 2). Let px. be a point where

g attains its global minimum. If we set

3
(4.36) %@z%wmo:/’wﬂaw@Ms

Pke

then Ap— < pre = Ak (Ue(pke)) < Meots 95(€) = gr(pre) = 0, and gi (&) = O([¢[?) as €] — oo.
Consider the linearization of the system (4.18), consisting of the decoupled system of equations

(4.37) e+ (E— M) pr =0
The solutions of (4.37) are constant multiples of

exp{ — é pi s — A (Uc(s)) ds} = 9k 1 .
(4.38) ok = — : B W P
[oeexp{ = L[5 s—M(Uec(s))ds}de  [Zooe <o d¢ Lk

The functions {(y.} are strictly positive and uniformly bounded in L!, independently of e. Due

to (4.34) and Lemma 4.5, @k, satisfy, in the case dy = Ag+ — Ag— > 0, the estimates

o(1)

( BEC R A R Y
(4.39) 0 <pre(§) < q O(1)

(

)

_k

€

?’“ ¢ eR,
?k 2 (6- )\IH—) 5 > )‘k+a

)

1)

and can be evaluated as in Lemma 4.5 (ii), in case dy = 0.
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The functions ¢y, serve as a yardstick to estimate the amplitudes ay, as follows. First, one

constructs solutions of (4.33) that admit the representation
(4.40a) ar =Tk pr + 0k (-37),

where 7 = (71, To, ..., Tn) is a vector-parameter in RV and 0y (&; 7) is of second order in 7 in the

sense that, for some constant C' independent of ¢, it satisfies the estimate

N
(4.400) 0k (-3 I < CIP Y 0

=1
The decomposition (4.40) can be thought as an asymptotic expansion of the amplitudes ay in a
parameter 7 representing the strength of elementary waves. Since “most” of the e-dependence is
carried by the ’s, the expansion is uniform in ¢ in the L'-norm.

The key step in validating the expansion (4.40), concerns the pointwise behavior of the integrals

13
Fk,mn = 6_%% / e%gk Pm Pn a¢,

Ck

which express the contributions on the k-th family effected by interactions between elementary
waves of the m-th and n-th families. As ¢ — 0, the terms F} ,,, behave as follows [T3, Lemmas
4.3, 4.4]: Fy mi and F g F gr have non-zero limiting contributions supported on the k-th wave
speed. Fi p,n, — 0 as e — 0 when m # n, m # k and n # k, which suggests that diffusion induced
interactions of two distinct families have no contribution as € — 0 on a third family. (Recall that
we are dealing with Riemann data solutions.) By contrast, the terms Fj, m, m # k, accounting
for the effect of two interacting waves of the m-th family on the k-th family, have a non-zero
contribution in the € — 0 limit which is supported on the m-th wave speed.

The second problem is to connect the parameters 7 with the data U_, U, in order to fulfill
(4.31). To this end, for U_ fixed, one considers a map S, that takes 7 in a neighborhood of
0 € RY to the vector

N 400
(4.41) S =U_+3Y / [ 0k () + Oe (G )] i (UL (C)) €.
k=17

It is shown that S is locally invertible in a neighborhood of 7 = 0 and that the inverse map S
is uniformly bounded, independently of €, for £ small.

Finally, the formulation (4.30-4.31) suggests a construction scheme for proving existence of
solutions U, of (P.) in weighted spaces, so that the constructed solutions satisfy the asymptotic

expansion (4.40). We refer to [T3] for details and state the final result:
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Theorem 4.9. Assume (4.1) is strictly hyperbolic and let U_ be fized. There exists a (sufficiently
small) v such that, for € > 0 and for any U, satisfying Uy — U_| < r, the problem (P.) admits
a solution U, with the following properties:

(i) The family {U.}cso satisfies (C,) with some p independent of €.

(ii) The solutions U, satisfy the representation formula

N
(4.42) Ul = Z [Tk,e(Pks + O (- Te)] re(Ue),
k=1

where Qe is given by (4.38), ax:(+;7) of the form (4.40a) satisfy (4.40b), and 7. solves S(7.) = Uy.
(iii) The family {U!}csq is uniformly bounded in L*(R) and {Ue}eso is of uniformly bounded

(and small) total variation.

We conclude by indicating the proof of the variation bounds from the representation formula
(4.42). Let {U:}e>0 be a family of solutions to (Pe), of uniformly bounded oscillation (C,) and
satisfying (4.42). By the construction process,

ULE) =) are(& )i (Ue(6))
k

ake(+;7-) satisfies the asymptotic expansion (4.40)

Se(1:) = Uy and there exists C such that |7.| < C|Uy — U_|

Using (4.40),

ke (65 72)| < Irkclore + CInel® Y- 5e < ClUL = U0k + 3 05

J J

and thus
N
(4.43) O <K S pje.
j=1

where the constant K is of order O(|U; — U—|) and independent of €. As {¢;.} are uniformly
bounded in L!(R), we deduce {U!} is uniformly bounded in L!(R).

4.e The relation with the problem of viscosity limits.
It is interesting to see how the the problem of self-similar viscosity limits relates to viscosity

approximations for Riemann data solutions. For the system of viscous conservation laws

(4.44) U + 0, F(U) = 02U
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subject to Riemann data, the invariance under dilations (z,t) — (az, at), @ > 0, no longer holds.
Due to uniqueness results for parabolic systems, the solution U* of (4.44)-(4.3) can be expressed

as

(4.45) Us(a,t) = V(3,—7)
where V' (€, s) is independent of € and satisfies

(4.46) Vs — Vee = % (—E&Ve+F(V)e)

for —oc0 < ¢ < 0, —o0 < s < 0. We see that the zero-viscosity limits problem for Riemann data
is a two parameter problem and that studying the limit of U® as € | 0 amounts to studying the
limit of V(€,s) as s 1 0—. The problem (P.) arises when replacing the parabolic operator in
(4.46) by an elliptic operator and solving on the collapsed domain & € R.

Bibliographic remarks. Elliptic regularizations of the Riemann problem operator appear in [Ka,
Tu, D;]. Tupciev [Tu] uses (P;) as a starting point to motivate that admissible shocks should
have an associated viscous shock profile. Dafermos [D;] proposed this regularization as a devise to
select the admissible solutions of the Riemann problem. The procedure is carried out in [Dy, Do,
DDp, ST;] for strictly hyperbolic 2 x 2 systems, and in [T3] for weak waves of N x N systems.
These studies concern the case B(U) = Id. As the equations of continuum thermomechanics
involve singular diffusion matrices, there are investigations of the systems of isothermal elasticity
[T2] and isentropic gas dynamics [Ki] with singular diffusion matrices. A comparison of self-similar
viscosity limits with viscosity approximations is carried out in [S] for Burgers’s equation. Self-
similar viscosity limits serve as a tool for investigating wave admissibility in situations involving
loss of strict hyperbolicity, or when ”exotic” phenomena are at play. There are a number of such
investigations concerning: large shocks or even delta shock waves [KK;, KK2, TZZ, E], mixed
hyperbolic-elliptic systems [S1, F1, Fs], Riemann type solutions for fully nonlinear systems [SS],
and fluid dynamic limits for the Broadwell model [ST2, T;]. We point out that self-similar limits
provide a notion of solution and an existence theory for the Riemann problem in the class of

non-conservative, strictly-hyperbolic systems [LTo, LT3].

5. RELAXATION APPROXIMATIONS OF HYPERBOLIC CONSERVATION LAWS

The presence of relaxation mechanisms is widespread in both the continuum mechanics as well
as the kinetic theory contexts. Relaxation provides a subtle ”dissipative” mechanism against the
destabilizing effect of nonlinear response, as well as a damping effect on oscillations (at least when
assisted by nonlinear response). The objective of this section is to bring up these properties, by
examining the zero-relaxation limit in two examples, concerning respectively a single conservation

law in several space dimensions and a system of two conservation laws in one space dimension.
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5.a The structure of relaxation approximations.
We begin with an outline of the general structure of relaxation approximations. For € > 0, a

system of semilinear hyperbolic equations,

d
1
(5.1) 8tU+;Ai8miU: —R(U),

governs the dynamics of a function U = U(z,t), z € R?, ¢ > 0. The state variable U takes values
in RY and will be called the mesoscopic variable. The matrices A; are assumed constant N x N
matrices such that (5.1) is hyperbolic. (All examples considered in this section are semilinear
systems. Relaxation of quasilinear systems is also of interest for applications, but we will not
pursue it here).

It is assumed that (5.1) is equipped with m conservation laws, i.e. there are linearly indepen-

dent vectors q; € RY, j =1,...,m, such that the variables u; = q; - U satisfy the conservation
laws
d
(5.2) (g5 U)+ Y _ 0, (q;- AU) =0,
The variables u; are called macroscopic variables, and u = (uq, ..., u,,) stands for the vector of

all the macroscopic variables.
For the system of ordinary differential equations

(5.3) U, = éR(U)

it is assumed : (i) It is equipped with m conservation laws for the variables u; = ¢; - U, that is
¢;-R(U)=0,5 =1,...,m. (ii) There is an m-dimensional manifold of equilibria M parametrized
by the m macroscopic variables u;, the set of equilibria M is described in the form U = &£(u).
(iii) The flow of the system of ordinary differential equations (5.3) is attracted to M. This is a
minimum set of hypotheses. Additional hypotheses are imposed in the examples.

Finally, we assume that the system (5.1) is equipped with an entropy function ¥(U), i.e. there
is a multiplier ¥y such that Uy - R(U) < 0 and

d
(5.4) O U(U) + ) 0:,%:(U) = é Uy - R(U) <0.
i=1

This structure is common in several systems of relaxation type, whose origin is in the kinetic
theory of gases [CLL], and is induced by the second law of thermodynamics for models with

internal variables originating in the continuum physics context.
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Under these hypotheses, it is conceivable that u, = q- U, — u as € — 0, where u is a solution

of the system of m conservation laws

d
(5.5) w + Z Bz, (q- AiE(w)) =0

In the sequel, we discuss two examples concerning convergence of relaxation systems to a scalar
conservation law in several space dimensions (m = 1 with d = n) and to the system of isothermal

elastodynamics in one space dimension (m = 2 with d = 1).

5.b The scalar multi-d conservation law via relaxation.

It is a classical result that the Cauchy problem for the scalar conservation law,

n
O+ Y 0, Fi(u) =0, z€R 1> 0,
i=1

u(z,0) = uo(x),

(5.6)

with ug € L' (R*) N L% (R") admits a unique global weak solution u(z, t) satisfying the Kruzhkov

entropy conditions [Kr],

n
(5.7)  Oilu—kl+ ) 0y, [(Fi(u) — Fi(k))sign (u—k)] <0, inD', forallkeR.
i=1
Entropy weak solutions of (5.6) are constructed as viscosity limits for parabolic regularizations,
[V], [Kr], or as the small mean-free-path limit for kinetic equations, [PT]. Here, we review the
construction of entropy solutions for (5.6) via relaxation approximations, [KTs].
This problem is decomposed in two steps. First, we consider the semilinear hyperbolic system

of relaxation type,

dew+ Uy - Vo = = 3 (2 — hy(w))
(5.8) €im

1 .
0iz; + U; - Vz; = —g(z, —hi(w)), 1=1,2,...,n.
The system governs the dynamics of the state vector (w, Z), Z = (21, ..., 2n), Uo, U1,...,U, are
given convective velocities, and h;(w) are strictly increasing smooth functions with A;(0) = 0. It
may be interpreted as a discrete velocity system with an unconventional collision operator, or as

a model in chemical kinetics. Solutions of (5.8) satisfy the conservation law

(5.9) Oe(w+ Y z) +div(Uow+ Y Usz) =0.
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As ¢ — 0, the local equilibria z; = h;(w) are enforced and the limiting dynamics is described by

the conservation law

(5.10) Or(w+ ) hi(w)) + div(Uow + Y Ushi(w)) = 0.

This convergence is justified provided that h;(w) are strictly increasing.

The question arises under what circumstances a given conservation law (5.6) can be realized
as a relaxation limit. In view of the convergence of (5.8) to (5.10), the question becomes whether
(5.6) can be mapped into the form (5.10). Suppose first that the velocities Uy, ... U, are in the
coordinate directions, U; = V;é;, i = 1,...,n, and that Uy is expressed as Uy = ), w;V;é;. Then
mapping (5.6) into (5.10) leads to the algebraic problem: Given a curve (u, Fy(u), ..., F, (u)), is

it possible to find w and strictly increasing functions h;(w) such that

(5.11) w S =u, ot hi(w) = %Fi(u).

2

Solving (5.11) explicitly, we see that this happens if and only if the following multidimensional

analog of the subcharacteristic condition,

1 dF; 1 dF; 1 F
(5.12) 1+Z—@’>0, Lafi @i +Z d

Vi du 1+sz Vdu

is satisfied. Clearly, (5.12) holds if w; > 0 and the speeds V; are selected sufficiently large. The
general problem, when Uy,...,U, are linearly independent, can be transformed into the above

special case, by performing a linear transformation of coordinates.

Theorem 5.1. Let w;, V; be such that (5.12) is satisfied, let Uy = Vié;, i = 1,...,n and Uy =
>, wiVie;. Suppose that the initial data woe, zoe lie in a bounded set of BV N L*(R") and are
tight in L*(R™). If ||uge — uo||zr = o(1), then there ezists a function

u € L*([0,T]; BV N L*(R")) N Lip([0, T]; L' (R™))
such that

(5.13) Ue =we + ¥ ze >u in LNR' xRT),
i=1
and u is a weak solution of (5.6) satisfying the Kruzhkov entropy conditions (5.7).

The main step is to show that, for any Uy, ...,U, and for h; strictly increasing, solutions of

(5.8) converge to an entropy solution of (5.10). We present an outline of this proof and refer to
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[KT,] for the details as well as for further properties of rates of convergence, and convergence to
measure-valued solutions under weaker hypotheses on the data.

First, if (w, 2;) and (w0, Z;) are two solutions of (5.8), then they satisfy

0 (jw =l + 31 = &) + div(Vglw — @] + 3 Uiles — )
(5.14) ) ! :
= 2 2 (sien (w =) = sigm (s = 20) (5 = 2) = (o) = ha(m))) <0

In particular, if (w, 2;) is the equilibrium solution (k, h;(k)) then (5.14) yields the inequalities
(5.15) 0 (|w — K|+ Z |zi — h,(ﬁ)|) + div<U0|w — K|+ ZUAzi - h,-(/i)|) <0 for kER,

which is a version of the Kruzhkov entropy inequalities for the relaxation system, and turn out
to provide the Kruzhkov entropy conditions for the conservation law (5.10) in the limit € — 0.

Using (5.14) and the conservation law (5.9) as key ingredients, we have the following theorem.

Theorem 5.2. Let h; be strictly increasing. If wg, zo € L' N L™ (R™) then there exists a unique
globally defined weak solution (w,Z) of (5.8), which satisfies:

(i) If (w, Z) and (b, Z) are two solutions then
/|w(m,t) —w(z,t)|+ Z |zi(z,t) — 2(z,t)| dz < /|w0 — | + Z |zio — Zio| dz .
i=1 i=1

(it) For any a < b the sets Rqp = [a,b] x [[;—; [hi(a), hi(b)] are positively invariant.

(iii) If wo, zio € BV (R™) then w(-,t), z;(-,t) € BV(R").

For h; strictly increasing, the relaxation system (5.8) is equipped with a globally defined

entropy function

(5.16) O (%wz +) %(%)) + div (Uo%w2 +y Ui‘I’i(zz‘)) + % > dilw,z) =0,
i=1 =1 =1
where

Ui(z) = /OZi hi_l(f) d¢,

is positive and strictly convex, while

$i(w, z) = (w — b (2:)) (hi(w) — 2)
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satisfies ¢; > 0 and ¢; = 0 if and only if (w, Z) € M. The ”dissipation” estimate (5.16) provides
control of the distance of solutions from the equilibrium curve M. Since ¢; > c(h;(w) — z)?, it

leads to

(5.17) /Ooo /n(hi(w) — 2)?dwdt < Ce.

Let now (w, z;) be a solution of (5.8) and (s, hi(k)), & € R, be an equilibrium. Then, (5.15)

gives
0y (|w — k] + 3 [hi(w) — hi(m)|) + div(UO|w — &+ Uilhi(w) - hi(n)|)
<0y gi+divy U

where g; can be estimated in terms of the distance of each solution from the Maxwellian values,

(5.18)

(5.19) 96 = [|Bs(w) = hi(w)] = |2 = s(W)]| < [haw) — ].
If we set

(5.20) uzw—l—Zhi(w), k:m—i—Zhi(/ﬁ)

we see that v > k if and only if w > k. Letting

(5.21) F(u)=Uww+ Y Ushi(w), F(k)=Uk+ Y Uhi(k),

be the fluxes of (5.10), it follows that the the right hand side of (5.17) is written

(5.22) Bulu — k| + div((F(u) — F(k))sign (u — k)) <0 git+divy_ Uigi.

The formula indicates that « in (5.20) is an approximate solution of (5.10).

To complete the proof, consider a family of solutions (w?, 2§) of the relaxation system. The L?
contraction property together with the conservation law (5.9) enables us to deduce precompact-
ness of w® + Y, zf in L'(R™ x [0,T]). There exists a subsequence w*" and z;" and a function u
such that

utt = wr + sz" —u, ae. (z,t).

(2
Since g;™ — 0 and the functions h, are strictly increasing, it follows that w®~ also converges a.e.
to some function w, with 4 = w + ", h;(w). Passing to the limit ¢ — 0 in (5.22) we deduce that

the limiting u is an entropy solution of (5.10).
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5.c A relaxation limit to the equations of isothermal elastodynamics.
In this section, we address the problem of constructing weak solutions of the equations of
isothermal elasticity with g, > 0,
Oyu — Ozv =10

(529 Oev — Bag(u) = 0,
as € — 0 limits of the relaxation system

Oiu — 0zv =0
(5.24) O — 0zo =0

00— Bu) = (0 — g(u) .

The model (5.24) is suggested as an approximating model for the equations of isothermal elasto-
dynamics in [FM].

We work under the standing hypotheses ¢(0) = 0 and 0 < g,, < E, in which case (5.24) admits
globally defined smooth solutions, if the initial data are smooth. The hypothesis g, < E can be
motivated in two ways. On the one hand, it guarantees that the internal variable theory described
by (5.24) is consistent with the Clausius-Duhem inequality (see Sec. 1). On the other hand, it
can be motivated by the analog of the Champan-Enskog expansion for the relaxation process.

In the Chapman-Enskog expansion one seeks to identify the effective response of the relaxation
process as it approaches the surface of local equilibria. It is postulated that the relaxing variable
o can be described in an asymptotic expansion that involves only the local macroscopic values

u®, v® and their derivatives, i.e.

(5.25) o = g(u®) + eSS, v, u, v )+ O(?)

sy Wy Ugyee-

To calculate the form of S, we use (5.24),
Ou® — 0zv° =0
(5.26) Opv® — 0pg(u®) = €Sy + O(€?)
O(g(u®) — Eu®) 4+ O(e) = =S + O(e) ,
whence we obtain
(5.27) S = [E — gu(u®)]vs + O(e),
and we conclude that the effective equations describing the process are
Oruf — 0,v° =0

5.28
(5.28) Opv® — 0;9(uf) = €04 ([E — gu(u®)|v) + O(e?).
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This is a stable parabolic system provided the condition g, < F is satisfied.
According to Section 2.e, when g, < E the system (5.24) describes a theory with internal
variables that is consistent with the second law of thermodynamics. Smooth solutions (u, v, o)

satisfy the energy dissipation identity

(5.29) 815( v+ U(u,0 — Eu)) — Oz (ov) + é(u — b)) (o — h(u)) o pe T 0
where
(5.30) U (u,q) = —/Oa RYH(¢)dC + au + /Ou Etde

h(u) = g(u) — Fu and h™! is the inverse function of h. The function ¥ provides an ”entropy”
function for the associated relaxation process, which is convex in (u, @) if —9,h~10, f > 1 for all
u and a.

Henceforth, we assume that the initial data (ug,vg,0q) are smooth (of compact support or

decaying fast at infinity) and the function g(u) € C3 satisfies
(h) 0<y<gu(u)<T<E.

for some positive constants y and I'. It is easy to check that (5.24) admits global smooth solutions,
and we proceed to study the ¢ — 0 relaxation process. Equation (5.29) provides stability in L?

for the relaxation process.

Lemma 5.3. Under hypothesis (h),

(5.31) /(u2+v2+0 d:c+—// o—g dxdt<c/(u§+v3+a§)dx
R

for some C' independent of € and t.

Proof. From (5.30) we have

oc—Eu 2
1
U(u,0 — Bu) —/ W LQ)de + = — (o — Bu)?
. 2E ~ 2E
53 AT
= de + ——
/0 R(Q)dC + S
where k(a) = —a — h~!(a). Hypothesis (k) implies
y dk Gu r

E(E—v) ~da  BE(E-g,) = B(E-T)
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and thus there is a constant C, depending only on «, I' and F, so that
1

(5.33) c ((0 — Eu)® + 0%) < ¥(u,0 — Eu) < C((0 — Eu)* + 0?)
Furthermore, since —%h_l(a) = E_lgu > 1, we have
(5.34) (u— b)) (e — h(u)) > %(04 — h(u))?

The result now follows from (5.29), upon using (5.33) and (5.34). O

We proceed with some estimations that capture the dissipative structure of the relaxation

process. In preparation, note that solutions of (5.24) satisfy
Ou — Ozv =0
(5.35)
0w — awg(u) = 8:13(0 - g(u)) = S(vax - Utt)
The problem under consideration is thus approximation of (5.23) via the wave equation.
Lemma 5.4. Suppose that the initial data satisfy
/US +ug + ogdr < 0O(1),
R

(a)
g2 / ud, + vy + oagdz < O(1) .
R

Under hypothesis (h), solutions (u,v,o) of (5.24) satisfy the € independent estimates
t

(5.36) 6/ / uZ +v2 + oldxdt < O(1).
0o Jr

Proof. We multiply (5.35); by g(u) and (5.35)2 by v. Adding and rearranging the terms we
obtain the energy identity

(5.37) Bt(%vz + W (u) + evvy) — 95 (vg(u)) + e(Bvi — v7) = e85 (Evvg),

where the stored energy function W(u) is given by

(5.38) W () = /0 " g(e)de.

The problem is that the term Ev2 — v? is not positive definite. To compensate for that, we

first multiply (5.35)2 by v; to obtain

1 1
Utz — GulUz UVt = 5|:(E'Utvz)w - at(EE’Ug + §’Ut2)i|
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and, in turn
(5.39) €20, (E’Uﬁ + vf) + (202 — 2gyugv;) = 2620, (Evvy) -
Using once again (5.35)2 and the identity azb; — arb, = 0¢(a;b) — 0:(ath), we have

guui = u, 0 (v + evy) — eBugug,

1
= [utax(v +evy) + 04 (um(v + €Ut)) — 0y (ut(v + 6vt))] - 58t(§EUi) ,
which in turn yields

1 1
(5.40) 623t(§E2ui - EEUg) — €0, (Eux(v + svt)) + e(Egyu? — Ev?) = —€0, (Eut(v + sut)) .

Adding (5.37), (5.39) and (5.40), we arrive at

Bt(%(v tevy — eBuy)? + %smg +B02) + W () — 0, (v (u))

+ E[vtz — 2gu Uy Uy + Eguui] = e2(Evivg),

(5.41)

Because of (h) the second term in (5.41) is positive definite
(5'4‘2) E[Utz — 294Uzt + Eguui] > Sgu(E - gu)ui > 0.
Therefore, we conclude

1 1
/R 5( + evy — eBug)? + §sz(vt2 + Ev2) + W (u)dz

t
(5.43) +s/ /gu(E—gu)uidmdt
0o Jr

1 1
< / §(vo + 00z — €Buge)? + 552(0—395 + Evi,) + W (ug)dz < O(1)
R

and, due to (k) and (a),
t
E/ / gu(E — gy )uidzdt < O(1)
0o JR

In turn, (5.39) and (5.37) imply
t
s/ /ogdxdtg 0o(1)
0o JR

¢
6/ /vidwdtﬁ 0(1)
o JR

We come next to the convergence Theorem.

and (5.36) follows. O
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Theorem 5.5. Let g(u) be a smooth function satisfying (h) such that gy, vanishes at ezactly

one point. If (u®,v%,0°) is a family of smooth solutions of (5.24) that are uniformly stable in

(H) |u®] + [o*] + |o*| < O,

and emanate from initial data satisfying the uniform bounds (a), then, along a subsequence if

necessary,

(5.44) = u, v°-owv, ae (z,t).

If in addition ug — ug, vy —+ vy a.e T, and

(b) 52/Rug$ + w3, + oaydr = 0(1), ase—0,
then (u,v) is a weak solution of (5.23) and

(5.45) 8,:(%1}2 + W (u) — 0 (g(u)v) <0, inD.

The hypothesis of uniform L stability is artificial. The convergence in the natural framework
of L? stability will be pursued in [T4]. Tt is worth noting that while Hypothesis (a) is sufficient
to establish (5.44), Hypothesis (b) is necessary to justify the energy dissipation (5.45) relative to

the initial data (ug,vp)-

Proof. Let n(u,v), ¢(u,v) be an entropy pair for the equations of isothermal elasticity. Using
(5.35) we obtain

(5.46) Fpn(u®,v7) + 02q(u",v°) = Ms(0 — g(u))

o —g(u)

= Op(mw(0 — g(u))) — (mueéugg + nvvsévx) 1

=1+ 1

In view of (5.31), (5.36) and (H), the term I lies in a compact of H~!, the term I, is uniformly
bounded in L', and the sum I; + I, is uniformly bounded in W~1°. One concludes from a
lemma of Murat [Ms] that I; + I3 lies in a compact of H l_oi Then from a theorem of DiPerna

[Dp;] we obtain, along a subsequence, u® — u and v* — v a.e. (z,t).
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It remains to prove (5.45). Let ¢ be a positive test function with compact support in [0,7") x R.
From (5.41) we have

T 1 1
—/0 /Rgot [5(115 + evp — szu;)2 + 562(1)52 + Ev;2) + W(us)] — (V5 g(u®)) dzdt

T
te / / o [v5? — 2g,uSvi + Egyus’?| dudt
0 R
1

1
- /Rw(:v, 0)[5 (w5 + €0, — eBufe)” + 5e*(0f,” + Bug,”) + W (uf)] do

T
= —52/ /(pm(Eva;) dzdt .
o Jr

We use upe — 0, vg. — 0 a.e, Hypotheses (a) and (b) for the data, together with (5.36) and
(5.42), to conclude

(5.47)

(5.48) —/0 /Rgot [%112 + W(u)] — @rvg(u) drdt < / o(z,0) [%’U% + W(uo)] dz .

R

The convergence of (5.24) to (5.23) follows from a similar argument, passing to the limit in (5.35)
and using (5.31). O

Bibliographic remarks. Weak solutions of the scalar multidimensional conservation law can be
constructed as zero-viscosity limits of parabolic regularizations, Volpert [V], Kruzhkov [Kr], via
fluid-dynamic limits for BGK models Perthame-Tadmor [PT], or via relaxation approximations
Katsoulakis-Tzavaras [KT1, KT;], Natalini [No]. There are two equivalent notions of solution, the
Kruzhkov entropy solution [Kr|, and the kinetic formulation of Lions-Perthame-Tadmor [LPT;];
the solution operator defines a contraction semigroup in L.

The importance of the Chapman-Enskog expansion and the subcharacteristic condition was
recognized in early studies of relaxation phenomena, Liu [Liz]. The Hilbert expansion is very
useful for studying relaxation to smooth solutions and initial layers, Caflisch-Papanicolaou [CP],
Yong [Yo]. A general framework for investigating relaxation to processes containing shocks is pro-
posed in Chen-Levermore-Liu [CLL], and the mechanism is exploited in Jin-Xin [JX] to construct
a class of nonoscillatory numerical schemes. There are a number of studies establishing conver-
gence to scalar conservation laws in one-space dimension, [CLL|, [N;], [TW], and relaxation can
be used as an intermediate step to establish convergence of stochastic interacting particle systems
to scalar equations [KT3]. Concerning relaxation limits to systems, we refer to Perthame-Coquel
[CPe], Brenier-Corrias-Natalini [BCN], and Tzavaras [T4] (from where the material of Sections
2.d, 2.e and 5.c is taken).
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