KINETIC FORMULATION FOR SYSTEMS OF TWO
CONSERVATION LAWS AND ELASTODYNAMICS

BENOIT PERTHAME! AND ATHANASIOS E. TZAVARAS?

ABSTRACT. For scalar conservation laws, the kinetic formulation is a way to generate all the entropies
by a simple kernel. We show how this concept replaces and simplifies greatly the concept of Young
measures avoiding the difficulties encountered when working in LP. The general construction of
the two kinetic functions that generate the entropies of 2 X 2 strictly hyperbolic systems is also
developed here. We show that it amounts to build a ‘universal’ entropy i.e. that can be truncated by
a ‘kinetic value’ along Riemann invariants. For elastodynamics, this construction can be completed
and specialized using the additional Galilean invariance. This allows a full characterization of convex
entropies. It yields a kinetic formulation consisting of two semi-kinetic equations which, as usual, are
equivalent to the infinite family of all the entropy inequalities.
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2 PERTHAME AND TZAVARAS

1. INTRODUCTION

The so-called kinetic formulation of nonlinear hyperbolic systems of conservation laws is a
method which reduces them to a linear equation, with an additional kinetic variable, on a non-
linear quantity related to the conserved unknowns. It represents all the entropy inequalities in a
single equation depending on an additional variable. It was introduced on two examples by P.L.
Lions, B. Perthame and E. Tadmor : scalar conservation laws (see [LPT;]) and isentropic gas
dynamics with a v law (see [LPTs]). It turns out to be a powerful tool to derive mathematical
properties -and also numerical schemes, although this aspect will not be treated here. A new
class of L2 (L}) estimates has been proved in these works. Compensated compactness arguments
for existence of solutions (see [LPS]), appear simpler than in the original setting of R. DiPerna
[Dp1], [Dp2] and extend it to the class of pressure laws left open for instance in Ding, Chen and
Luo [DCL]. For the scalar case, it turns out to be a powerful method to prove regularizing effects
in Sobolev spaces by averaging lemma arguments. The method was subsequently used by several
authors, who gave further examples of kinetic formulations : for an n X n system of chromatogra-
phy (see James, Peng and Perthame [JPP]), general pressure laws in isentropic gas dynamics (see
Chen and LeFloch [CL]). Initial boundary value problems have been treated in Nouri, Omrane
and Vila [NOV], and applications to time continuity are presented in Vasseur [Va].

The purpose of the present article is twofold. Firstly, we explain how the concept of kinetic
function replaces and simplifies greatly the concept of Young measures, by avoiding some of the
topological difficulties encountered when working with Young measures in LP. We also give a
simple extension of the results of Tartar [Ta] and Schonbek [S] on compactness of approximate

solutions for scalar conservation laws, to the case that the approximations are relatively weakly

1

compact in L.

The idea behind is very simple. While Young measures are objects in the space
of LP functions with values in Radon measures, the kinetic function simply belongs to L™, and
both allow to represent nonlinear functions by integrals, see (1.4) below for the more complex case
of a system. Secondly, we give a systematic construction of the kinetic functions that generate
the entropies of 2 x 2 strictly hyperbolic systems. We show that they are built based on some
kind of ‘universal’ entropy with the special property that it can be truncated by a ‘kinetic value’

along one of the Riemann invariants.

Then we specialize our construction to the case of the system of elastodynamics

up — v, =0,

(1.1)

vy —o(u), =0,

under the hypotheses that the stress-strain function o(u) be twice continuously differentiable,

o'(u) > 0, and uo”(u) > 0 for u # 0. We turn attention to characterizing the convex entropies,



KINETIC FORMULATION FOR SYSTEMS 3

solutions of the linear wave equation

(1.2) Nuw = 2(Wnyy,  with a(u) = (o’ (u))".

Our analysis is completed using two additional ingredients: The Galilean invariance of (1.1) and
a characterization of convex solutions for (1.2) observed in Dafermos [Da;] and further developed
here. This allows a full characterization of convex entropies which yields a kinetic formulation.
It consists of two semi-kinetic equations which, as usual, are equivalent to the infinite family of
all the entropy inequalities. More precisely, there are two kinetic functions (which replace the
Maxwellian distribution in the classical Boltzmann theory), O, (u, v, &) and ©,(u, v, ), such that
entropy solutions to (1.1) satisfy for some positive, bounded measures m, m on R, x R x R,

the equations

0180 (1, v,€) + Oy [ ( — alw)ro + a(u)(1 = o)) Oo(u,1,6)| = dem(z,1,€)

0,81 v, ) + 0y [ (= a(w)Fo + a(w)(1 = 7))o (u, v,€)| = Derm(z,1,€) ,

in the sense of distributions in D;:,t,g- Here a(u) is the sound speed, and k,(u,v,§), Ro(u,v,§) are

(1.3)

given functions satisfying 0 < k,, kK, < 1. They have the effect that the speeds of propagation in
(1.3) cover the full range [—a(u), a(u)] between the characteristic speeds of the elastodynamics
system. Also, a remarkable property of the system is that O, (u, v, &) and O, (u,v, ) are bounded
and discontinuous along Riemann invariants, with bounded support also related to the speeds of

propagation. Convex entropies of the system (1.1) are just obtained by the formula

(1.4) n(u,v) = / O, v, €) D p(£)dé + / O (11, v, €)cp(£)dE

with p, p convex. We hope that this construction, not only is useful to give direct and simple
proofs of many properties of the system, as we do it below, but will give a first step towards the
discovery of regularizing effects.

The article is organized as follows. In Section 2, we recall the scalar case and outline the
fundamental property of the kinetic function to replace Young measures and illustrate it by
proving a strong compactness result. In Section 3, we give a general construction of discontinous
kinetic entropies for 2 x 2 hyperbolic systems and prove that they indeed generate all the entropies
of the system. Sections 4 and 5 are devoted to the special case of elastodynamics. We characterize
the convex entropies completely thus proving (1.4). In the last section we introduce the kinetic

formulation (1.3) and some consequences.

2. THE SCALAR CONSERVATION LAw

The first section concerns the scalar conservation law in one space dimension

(2.1) ug+ f(u), = 0.
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Our objective is to introduce some notations which will be of current use throughout the paper,
to outline the kinetic formulation for scalar conservation laws of Lions, Perthame and Tadmor
[LPT;] and to present a new variant of the proof of the cancellations of oscillations for approximate
solutions of (2.1), of Tartar [Ta] and Schonbek [S]. In particular, we outline that the kinetic
function contains a microscopic information which avoids using the Young measures (in the L?

setting of Ball [Ba]) and simplifies the analysis of weak limits.

2.a A class of indicator functions.
In preparation, we introduce a class of indicator functions familiar from the kinetic formulation

of scalar conservation laws. Let 1,,(§) = 1(u, &) be defined by

]10<§<u if u > 0,
(2.2) 1,(¢) = 1(u,&) :=¢ 0 if u=0,
—]1u<€<0 if u <0.
The function 1, (&) satisfies in D’
Fu 1y (§) = 0(u = £),
(2.3)
O 1y (€) = —0(u — &) +6(¢) -

It also serves to define an extended class of indicator functions 1 (¢) by

]1k<§<u ifk<u
(2.4) 15 =1un(6—k)=<¢ 0 if k=u
—]1u<);.‘<k; if u < k

The interest in the latter lies in that they encompass in one framework (2.2) together with the

limiting cases k = %00, when 1% (¢) take the form

(2.5) 1,78 = Tecw,  DF(8) = —Tuce.

It is easy to show the following properties: If the signum function is defined by

-1 ifx<O,
signxz=1¢ 0 ifx=0,
1 ifx >0,
then
(2.6) 15(€) = sign (u — k) Iigeur))-

For any k finite, it is
01 (6) = 6(u—¢),

0Ty (6) = —6(u— &) + (6 — k).
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Finally, we have the formula

{ [in'(€de  fork<u

(2.7a) h(u) — h(k) = _ f: R'(&)d¢ foru < k

- /R 14 (€) 1 (€) de,

for h(u) a smooth function and k finite. Also, the related formulas for the limiting cases k = +00

hold when A’ is integrable in a neighborhood of —co. Then

(27) bu) = (=) = [ eaubi(€)de = [ 176 '(e) ds.
while, if &' is integrable in a neighborhood of +oco, then

(2.7¢) h(u) — h(c0) = —/R]l§>u h'(€) d€ = /Rﬂf(ﬁ) h'(€) d€.

The first use of (2.7) arises in representation formulas for entropy-entropy flux pairs of (2.1).

Let A(u) = f'(u) and recall that any pair of smooth functions (n(u), ¢(u)) satisfying

(2.8) ¢'(u) = A(w)n' (u)

is called an entropy-entropy flux pair. From (2.7) we see that such entropy pairs are given by

representation formulas of the form

n(u) = /R 1(€) $(€)de,

(2.9)
g(u) = /R 1,(6) M(€) S(E)de,

where ¢ =7’ can be thought of as a test function.

2.b Propagation and cancellation of oscillations for scalar conservation laws.
Our purpose is to analyze the behavior of a family of approximate solutions {u.} of (2.1), that
are locally weakly compact in L!. We recall that a family {u®} C L'(K), K of finite measure, is

weakly compact if {u°} is uniformly integrable, i.e.
/ |u®|de — 0 as ¢ — oo, uniformly in
us|>e

Equivalently,

)

if, for some ¥ : Rt — RT nondecreasing and satisfying ——= — oo as 7 — 00,
T

T(|uf|) is bounded in L'(K).
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We refer to Dunford-Schwartz [DS, pp. 289-295] and Dellacherie-Meyer [DM, pp. 21-28] for
properties of the weak topology in Lllo and the Dunford-Pettis characterisation of weak Llloc

compactness.

After extraction of subsequences, there is a function u € L], . such that
(2.10) u® —u, w— L,
and a function g(¢,x,€&) € L which satisfies
(2.11) L(u®,€) =g, L= —wx,

and, from the very definition of weak convergence, we deduce

{ OSg(taxaé) fOfﬁZO,

<1
(2.12) B
_1Sg(t7x7§)go7 fOTfSO

A first step in our analysis is a simple remark which allows to use ¢ in order to replace the
Young measures. It is more convenient because we deal with a L ., m(Lé) function, this avoids

the difficulties encountered in [Ba] for dealing with weak topologies on measures.

Lemma 2.1. With the assumptions (2.10 , 2.11), the above function g belongs to L (L%),

loc; t,x

and satisfies a.e. (t, x),

(2.13) [ lott..)] de = wtimlu (.)€ L.
R
(2.14) [ tt.a.6) de = utt.2),
R
(2.15) /S' g(t,z, &) d¢ = w-lim S (v (t,z)), VS € L*®, S(0)=0,
Moreover,
(2.16) w-lim S(u®(t,z)) = S(u), VS' € L*®, §(0) =0, if and only if g =1(u,§).

Proof. First notice that from (2.11) and Fatou’s lemma, for K a compact subset of R x RT,

| fuats [ [ mintae,e)
< lim inf /K /R sign € 1(u*, €) = lim inf /K ||
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and thus g € Lj,., .(L¢).
Then, we only prove the identity (2.14), the other identities being simple variants. We intro-
duce two real numbers, R > 0 (large) and S < 0 (small), we have

R +o00 S
(2.17) w= A des [ A e [ A de
S R —00
But, from the definition of 1(u¢, ), we deduce, after further extraction,

400
/ 1, €) dE = (u — R)y — o®(t,z), w—Ib,

R

and from the Dunford-Pettis characterisation of weak compactness in L', we deduce that, as

R — o,
(2.18) vR(t,x) =0, w-— L.

In the same way, we find a function vg which also satisfies (2.18), and passing to the limit in

(2.17), we find
R

u(t,z) = vB(t,z) + vs(t,z) + / g(t,z, &) dE.

s
Passing to the limit in R and S and using that g € Lloct:c(Lé) we recover (2.14). The last

statement of the Lemma is a direct consequence of (2.15). O

Remark 2.2.
1. Note the relation of g with the Young (probabilty) measure u associated with u®

2. Let S be a convex function, @ € R and consider the minimization problem

0<f<1 £>0
—1<f<0 £€<0

and /Rf:a

Brenier [Br] showed that this minimization problem achieves its minimum at f = 1(¢, ), and

inf/ S'(€)f(€)d¢  over f € L(R) such that {
R

that if S is strictly convex the minimizer is unique.

As an implication, for S stricly convex with S’ € L*°, S(0) = 0, we have

(2.19) w-lim S (u /S' g(t,x,&) dé > / S (O (u(t,x),€) = S(u)
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with equality if and only if g(¢,z,&) = 1(u(t,z),£). Notice that, when formulated in terms of

Young measures, (2.19) amounts to Jensen’s inequality.

In the sequel, we use the function g, (¢, x,&) defined (along a subsequence, if necessary) by
(2.20) ]1€<’U,5 — g+, LOO — w‘k,

Note that 0 < g4 < 1 and that, since ¢, is strictly decreasing in &, the function g is decreasing
in £ as well. By (2.2), the functions g and g4 are connected by

(221) 9= g+]1§>0 - (1 - g+)]lf<0 a.e. t,z,§.
We are now ready to state our main result.

Theorem 2.3. Assume that the fluz f is C? and let {u®} satisfy (2.10, 2.20), and

(2.22) om(u®) + 0,q(u) lies in a compact of H; !

loc

for any (n,q) withn, € CL(R). If I={£ €R:0< gy(z,t,&) < 1}, then for a.e. (z,t) :
(i) either I an interval in which case the speed A(§) must remain constant on I;

(ii) or I is empty or a single point in which case g = 1(u,§).

Proof. Following the argument of Tartar for compensated compactnes, we consider the classes

of entropy-entropy flux pairs of the type (2.7b), (2.7c):

() = /R Tecu d(€)de, na(u) = /R <ot (0)do,
a1 (u) = / e NO)GOdE,  aa(u) = / Lo \(8)(6)d6,

where ¢, 9 € C}(R) and we recall that A = f’. Both pairs are constant near infinity. We denote
with brackets the various weak limits, in (¢,z) or in (¢,z,&), and apply the usual compensated

compactness identity:
<M@e —neq1 >=<1n1 >< g2 > — <12 ><q1 > .
Using the representation formulas
) = [ <lecue > 00 m() > [ <ueco > v(0)8

and so on, we obtain

] 06 =3[ < tecurLueco > = < Tecue > < Tue > J0(6)0(0) ditt = 0
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from where we conclude
(2.23) (\6) — )\(5))[ < lecyeTyecy > — < Tecye > < yeq >] —0 ae. &0
Recalling that g4 (t,2,£) =< lgcye >, we have for 6 < £

[MB) = A(©)] 9+(&) (1 — g+(0)) = 0.

The function g, is decreasing and, due to the fact that g € L% and (2.21), we have g4 (—oc0) =1
and g4 (o0) = 0. The set I is either empty, or a single point, or an interval. If I is an interval
and 6 < £ any interior points then A\(f) = A(£) and thus A stays constant on I. If T is empty or
a single point, then g4 (§) = l¢<, for some a € R, and we conclude from (2.21), (2.2) and (2.14)
that ¢ = v and g = 1(u, §). O

3. SINGULAR ENTROPIES FOR SYSTEMS OF TWO CONSERVATION LAWS
We consider a system of two conservation laws

ug + a(u,v)y =0
(3.1)

v + b(uav)x =0
The flux functions are smooth and such that the system is strictly hyperbolic with characteristic
speeds A1 (u,v) < Aa(u,v). The right eigenvectors rq(u,v), ro(u, v) and left eigenvectors [y (u, v),
l5(u,v) are linearly independent and normalized so that r;(u,v) - I;(u,v) = 6;;.

Let U = (u,v) be the conserved variable and F(U) = (a(u,v), b(u,v)) denote the flux-function.

A scalar-valued function n(U) is called an entropy with corresponding entropy flux ¢(U) if every

smooth solution of the conservation law (3.1) satisfies the additional conservation law

(3.2) on(U) + 0,q(U) =0.
Entropy pairs n(U) — q(U) are connected through the differential relations
(3.3) Vq(U) = VyU) - VF(U),

where V denotes the gradient with respect to (u,v). For systems of two conservation laws, (3.3)
is a determined system. In this section we construct certain singular entropy pairs that turn out
to generate the general solution of (3.3). The process naturally gives rise to two parametrized

families of singular entropies which are closely related to a kinetic formulation.
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3.a Riemann invariants and entropies.
Let w = w(u,v) and z = z(u,v) be the 1- and 2-Riemann invariants respectively, defined by

Vw =1y and Vz =[5, or equivalently
Vw-ra =0, Vw-ri=1,
Vz-ro=1, Vz-ri=0.

For systems of two conservation laws, the Riemann invariants are well defined, at least locally, and
induce a transformation 7' : (u,v) — (w, z) which is one-to-one and invertible in a neighborhood
of each point (ug,vp). For certain special systems, like the equations of elastodynamics, 7' can
be a globally well defined and invertible map.

Any given field ¢/ may be expressed in terms of the state vector (u,v) or in terms of the

Riemann invariants (w, z), according to the formula

1/1(% U) = lzj(w(uv U)’ Z(ua U)) ’
o _ i

aw—(Tl'V)w, QZ(TQV)QZJ

Henceforth, with a slight abuse of notation, we will retain the same symbol ¥ for both expressions
of the field. These formulas are useful for expressing various properties in terms of the variables

(w, z): For instance, genuine nonlinearity for the first characteristic field is expressed as

(3.4a) r1-VA1 >0 oras M >0.
ow

Genuine nonlinearity of the second characteristic field is expressed as

oA
(3.4b) To-VAe >0 oras —z >0.
0z
Finally, in a coordinate system of Riemann invariants, the equation for the entropies (3.3) takes
the form
Gw = M7 5
(3.5)
qz = A2m; -

By differentiating (3.3), one can show that for a strictly hyperbolic system
- Vinry =1y Vinr; =0.
Accordingly, strict convexity of the entropy n(u,v) amounts to

7"1'V27]7“1 >0, TQ-V2777“2 >0.
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These relations can also be expressed in coordinates of Riemann invariants (c.f. Dafermos [Dag))
by the formulas

(36) r1-Vinry = 02n+ (r1- Viwr)0wn + (r1- Vi2ri)dm,
. ro-V2nry = 6?7] + (7“2 V3w rg)awn + (7“2 -V2z rg)azn.
Entropy pairs (7, q) are constructed by solving the second order hyperbolic equation

- AQw )\lz
(3.7) e v wi il e w2

Given a solution 7 of (3.7) then (3.5) becomes exact and ¢ is obtained by integration.

It is instructive to review a slight variation of the above construction. Let us introduce the

functions
w /\Qw z X1;
(3.82) fw,z)=el "W g(w,z) =TT
solutions of the equations
A2w /\1z
.8b w = ’ z = — -
(3.8b) fo=3—"3x"1 g VW

Note that f and g are defined within a multiplicative factor (reflecting in the lower limits of
integration in (3.8a)), and their role will be clarified later when constructing singular entropies.
Then (3.7) takes the form

9z Juw
3.9 Nwz = —Nw + Nz
(3.9) p 7

It is possible to construct entropy-entropy flux by the following process: With ¢ = n,, and
1 = 1, we first solve the system
g [
Pz = = ®+ TM
(3.10) I

_ 9z,
¢w—g<)0+f

Given a solution (¢, %) of (3.10), the associated entropy pair (7, q) is obtained by integrating the
systems 7, = ¢, 7, = ¥ and ¢, = A1, ¢. = A2¢). Equations (3.10) guarantee that both these

systems are exact and the quadrature problems admit solutions.

3.b Singular entropies.

In this section we construct distributional solutions to the entropy equations (3.5). These solu-
tions are expressed using the indicator functions in Section 2.a, and will provide a representation
formula for solutions of the Goursat problem. The analysis is presented in terms of the functions
1,(€) and 1,(¢). Similar statements hold if the functions 1% (¢) and 17(¢) are used instead, for
any value of the parameter k including the interesting limit cases k = £oo. In the limit cases,
17 (&) = lecw, 1,7°(8) = —Ly<e, 13°(¢) = L¢<, and 17°°(¢) = —1,<¢, and the process yields
half-plane supported entropy-entropy flux pairs.
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Proposition 3.1. (i) Let H = H(w, z;€), Q = Q(w, z;€) be C! functions. Then,

w = AHy )
(3.11) { g _ A;Hz | and Q= MH at w=¢,
15 equivalent to
(312) n= H(wa z; é.) ]]’LU(‘g) ) q= Q(wa z; é.) ]l’LU(&) satisﬁes (35) Hl DI7

(i.e. (n,q) is a singular entropy pair).
(ii) Let H = H(w, 2;¢), Q = Q(w, 2;¢) be Ct functions. Then,

3.13 w= My, d Q=NH at z=

(319 {sz&Hz, wnd Q= ullalz=c

15 equivalent to

(3.14) = Hw, 50 L0), §=Qu,z0)1(C)  satisfies (3.5) in D',

Proof. The proof follows from direct computation. The statement (3.12) can be written,

quw — )\lnw = (Qw - )‘le)]lw + (Q - A1]3-)5(11} - f) = O’
q> — /\277z = (Qz - Ale)]lw =0,

and thus the singular pair (7, ¢) solves (3.5) if and only if (3.11) holds. This shows (i); the proof

of (ii) is similar. O

As explained above, the pairs (H, Q) in part (i) or (H, Q) in part (ii) of Proposition 3.1 satisfy

the same linear hyperbolic system

(315) { Qw =M H,y

Qz = )\2Hz ’
and H or H are sought as solutions of the second order equation

(3.16) .- %g, + v,

g f
We now show that the condition in (3.11) and (3.13) can be stated in terms of a Goursat problem.
In this setting, H and H are required to satisfy different boundary conditions. Proposition 3.2

summarizes the minimal conditions for their construction.
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Proposition 3.2. (i) The problem (3.11) is equivalent to solve

fo g
(3.17) Huz = H wt

H(w = gaz;é-) - T(é-) (57 )7
for some multiplicative factor 7(£), with the entropy flur Q = Q(w, ;&) defined by

QUw, 2:6) = M(€, 2)H(E, %) /Alxz (@, 2:6) dz

oM

(3.18)
= a(w, 2)H (w, 2;€) — /ﬁ O (0,2) H(w, 2:6) do

Therefore, such a pair (H,Q) generates a singular entropy-entropy fluz pair of the type (3.12).
(i1) The problem (3.13) is equivalent to solve

sz — gZH + wa
(3.19) g f

H(w,z = ¢;0) =7(C) f(w, (),
for some multiplicative factor 7(¢), with Q = Q(w, z;¢) defined by

Qw, 2:) = Aa(w, O)H (w, ;¢) + / No(w,y) 7. (w, y; ) dy

¢
_ Z 9\ _
= Ao (w, 2)H(w,2; () — %(w,y)H(w,y;C)dy,
¢ y4

(3.20)

Therefore, such a pair (H,Q) generates a singular entropy-entropy fluz pair of the type (3.14).

Proof. Because of the equivalence between the equations (3.15) and (3.16), for the point (i), it
is enough to prove the equivalence of the conditions at w = £. Then, together with (3.15), the
condition Q = \{H implies that

Q.= (MH),=XH., atw=¢.

Using (3.8), the resulting differential equation yields
505
9z ' g
that is H is constructed by solving (3.17). The associated @ is obtained by integrating the exact
system (3.15). By (3.11) and (3.17),

=0 atw=¢,

Qw,z8) = 1(§) M(§,2) 9(€,2)  atw=¢

and thus @ is computed via (3.18). The choice of the integration constant, also gives the equiv-
alence. The second form in 8) simply follows from an integration by parts.

(3.1
The same reasoning on (H, Q) leads to the result (ii). O
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Remark 3.3.
1. There are two available “degrees of freedom” in defining (H,Q) and (H,Q): one degree of
freedom corresponds to the selection of the factors 7(£) or 7({), and another corresponds to

specifying a second boundary condition.

2. Even the choice 7(£) = 0 (or 7(¢) = 0) provides an entropy H (respectively H) that generates
a nontrivial singular entropy pair. The resulting pair (7, ¢) is continuous but has jump disconti-
nuities in the first derivatives along the line w = £ (or z = {). This type of pairs is used in Serre

[Se1] to carry out the compensated compactness theory for systems of two conservation laws.

3. The system (3.10) admits singular solutions that involve delta masses. Consider the singular
entropy pair (7,q) = (H1,,Q1,) of the type (3.12). Then

{nw=<p, {qw=A1<p7
Nz = ¢ ) qz = )‘2¢ 3
yields a distributional solution (¢,%) of (3.10):

¢ =®(w,2;§)Lu(§) + 7(§)g(§,2)0(w - §) ,
(3.21)

g with U =171(£€)g.(£,2) at w=E¢.

(3.23)

Il
=

¥ =T(w,zO)L(C) + 7(¢)f(w,0)d(z = C) ,

where ® = H,, and ¥ = H, satisfy the Goursat problem

P, = Juw 4 9=
% f g . E _ =
(3.24) _ e _ with @ = 7(() fw(w,() at z= (.
Uy =0+ %’(1) ,
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3.c The Goursat problem.

We now relate our construction to the classical Goursat problem

(3-25) Nwz = %nw + f7w772 )

(3.26) { n(w,0) = F(w) atz=0,
n(0,z) =G(z) atw=0,

where F' and G are called the Goursat data. This problem is used to construct entropy pairs
for systems of two conservation laws (see, e.g., [La, Sej, Das]). The existence theory is well
understood in the strictly hyperbolic case. If A; and Ay are C' and the data F, G are C!
and compatible, F(0) = G(0), there exists a unique solution n such that 7, 1, ., and 7, are
continuous. If \;, Ay and F, G are C? then 7 is twice continously differentiable. Our goal is to
prove a representation formula for solutions of the Goursat problem in terms of the fundamental
kernels of Section 3.b. We proceed under the normalization F'(0) = G(0) = 0.

Let (H1, Q1) and (Hs, Q2) be smooth entropy pairs defined as follows: The entropy H; =
Hi(w, z;€) is the solution of (3.17) subject to Goursat data
{ Hi= 488 —exp{ - [§ 225Gy dy}  atw=¢,

Hi=1 at z =0,

(3.27)

Q1 = Q1(w, z;€) is the associated entropy flux given by (3.18),

;€)= Zg(ﬁ,z) ’ .TZ%.TZ' x
(3.28) Qi 36) = M6 GG + [ Ml Gk 59 ds.

and satisfies

(3.29) { Q =N(62)5Es atw=¢,

Q1 = \1(&,0) at z=0.
By Proposition 3.1, the pair (H1, Q1) generates the singular entropy pair (H11, (&), Q11 (£)).
The entropy Ho = Ha(w, 2; () is the solution of the Goursat problem (3.19) with data
Ho =1 atw =20,
{ Ho = % = exp{fow /\ii“j\Q(a:,C)dm} at 2 =,

Qs = Qs(w, z; () is the associated entropy flux, defined by

(3.30)

A f(w, () : OHs -
(331) Qs(w.0) = Xa(w O Y + [ dotw) G2 vy
and satisfies
Q2:)\2(07<) athO,
(3.32) { Qy = )\g(w,C)% at 2 =1C(.

The pair (H2, Q2) generates the singular entropy pair (H21,(¢), Q21,(¢)).

We prove the representation theorem:
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Theorem 3.4. Let (H1, Q1) and (Ha, Q2) be defined in (3.27 - 3.32), and let the Goursat data
be normalized so that F(0) = G(0) = 0. Then, the entropy entropy-fluz pairs, solutions of the
Goursat problem (3.25 - 3.26), are given by the representation formulas

(3.33) n(w, z) = Ha(w, 2;6) L, (€) F'(€)dE + Ha(w, 2 ¢)1.(¢) G'(¢)dC

gER CER

(3.34) q(w,z) = Q1 (w, 2:§) L (§) F'(§)dE + Qa(w, ;) 1(¢) G'(Q)dC -

EER CER

Proof. Let (Hi, Q) satisfy (3.27 - 3.29). Counsider the functions
7)1(7117 Z) = . Rﬂl(wa Z;g)ﬂw(f) FI(&)dg ’
€

q(w,2) = Q1 (w, z; €)1y (€) F'(€)dE

£ER

Since (H11,,911,) is a distributional solution of (3.5), it follows that (71,¢1) is an entropy-

entropy flux pair. Moreover, (11, q1) satisfies

Jim i (w,2) =0, lim gi(w,2) =0,

m(w,z=0)= Hi(w,0;8) 1L, (€) F'(€)dE = 1,(§) F'(§)d€ = F(w),
£eR £ER

q1(w,z=0) = Q1 (w,0; €)1, (€) F'(€)dé = A1 (& 0) 1y, (&) F'(§)dE -
£ER E€ER

Let (Hz, Q2) be defined by (3.30 - 3.32). Then (72, ¢2), given by

n2(w, 2) = Ha(w, 2 0)1.(¢) G'(¢)d¢

CER

@2(w,z) = Qa(w, 2;¢)1:(¢) G'(¢)dC,

CER

is an entropy-entropy flux pair that satisfies

zZ—r

o (,9) =0, =09 = [ _ 100 = G,
li aa(w.9) =0, aaw=0.2) = [ X001 E QL.
qS

The representation formula thus follows. O
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3.d Half-plane and quarter-plane singular entropies.

In the above construction, the variables w and z do not play symmetric roles. It is natural
to rather look for a comlete family of entropies where the symmetry is preserved. This family
coincide with the choice of a single generating function H which can be used in both constructions
(3.17), (3.19), i.e. that can be truncated in both w and z variables. As we will also see, a particular
case of this construction yields the ‘quarter plane’ formulas obtained for isentropic gas dynamics
in [LPTs].

Let (&,¢) be any fixed point in the plane, and define H = H(w, z;&, () as the solution of (3.16)

subject to Goursat data
{ H=%68=exp{~ [0 5 (Ev)dy} atw=¢,
H= J;((zg,,g)) :eXp{fgw%(%C)daf} at z =,

The entropy H is normalized by H(£,(;€,() = 1. Let Q = Q(w, z;&,() be the corresponding
entropy flux, that satisfies the normalization condition Q(&, (;€, () = 0, given by the formula

(3.35)

Qw, 256,C) = M (6, 2)H(E, 2£,C) — M(E,C) + /E M (2, 2) Ho(z, 23€,C) da
(3.36) .
= o, OH (w,G6,0) — Ma(E,C) + /4 No(w, ) H, (w, y:€,0) dy .

Referring to Propositions 3.1 and 3.2, the entropy H generates singular entropy pairs of both
types (3.12) and (3.14). The associated generators of the fluxes are (see (3.18), (3.20))

Ql = Al(&a() + Q(w,Z;§,C) and QQ = AQ(&aC) + Q(U}, Z,&, C)

respectively, and differ by a constant. The pairs (H, A1 (&,() + Q) and (H, A2(£,¢) + @) generate

the half-plane singular pairs

(337) Nr = H ]1€<w qr = (/\1(57 C) + Q) ]1§<w 3
(3.38) m=Hlyce @ =) +Q)Luce,
and

(3-39) ny =H ]lC<z qQu = ()\2('57() + Q) ]lC<z ’
(3'40) Na = H ]lz<C qd = ()‘2(§7C) + Q) ]lz<C .

The pair (1, q,) (resp. (m,q)) is supported on the right (resp. left) half plane {w > &} (resp.
{w < &}), the pair (1y,q,) (resp.(n4,qq4)) is supported on the upper (resp. lower) half plane

{z > (} (resp. {z < (}).
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Furthermore, by combining the above pairs, we produce the quarter-plane entropy pairs

PERTHAME AND TZAVARAS

( H atw>¢ z2>C,
0 atw<§,Z>Ca
=N+ u_I{:<
nr=mn-+1n —H atw<§é 2<C,
L 0 atw > €& 2<(,
3.41
( ) (MO +Q atw>§&, 2>,
0 atw <€ 2>,
= + _)\ b + =
qr = 4qr Ty ( 2(§ C) Q) —>\2(§7C)_Q atw <&, z2<(,
[ M= X)(60) atw>§ 2<(,
and
(0 atw>¢& 2>,
B ) -H atw<g z>(,
Ny =N — Nu = 0 at w<§, 2<(,
. | H atw > &, 2<(,

((Al_)‘Q)(gaC) a‘tw>§7z>Ca

_)\2(€7C)_Q atw<§7z>C7
0 at w <&, 2 <,

\A1(§7C)+Q a‘tw>§7z<C7'

Qv = q@r — Qu = §

Note that n; vanishes on the second and fourth quarters, while g; vanishes on the second quarter
and is constant on the fourth. Respectively, n;y vanishes on the first and third quarters, while
qrv vanishes on the third quarter and is constant on the first. For isentropic gas dynamics,
choosing £ = ¢, we have (A — A2)(£,¢) = 0. Also, the nonnegativity constraint on p, means that
w < z, and therefore the construction (3.42) gives the opposite of the kinetic function introduced

in [LPTs)].

4. THE EQUATIONS OF ELASTODYNAMICS

Henceforth, we restrict attention to the equations describing isothermal, one-dimensional mo-
tions for elastic materials
up — v =0,
(4.1)
vy —o(u), =0.
The function o(u) is assumed twice continuously differentiable with ¢’(u) > 0. Then (4.1) is

strictly hyperbolic with characteristic speeds

A(u) =—a(u), Xo(u)=a(u), where a(u) = /o' (u).



KINETIC FORMULATION FOR SYSTEMS 19

The corresponding right and left eigenvectors, normalized with I; - r; = §;; are given by

1 1
(Law) 2= ges(-La(w),

Iy = (a(u),1) la =(—a(u),1).

I )

Entropy-entropy flux pairs for (4.1) are determined by solving the linear hyperbolic system

Ny +qw="0
4.2
(4.2) a®(u)ny +qu = 0.

The solvability condition for (4.2) is the linear wave equation

(4.3) Nuw — 0% (1) Ny = 0.

4.a Riemann invariants and entropies.

For the equations of elasticity the 1- and 2-Riemann invariants w and z are
U
(4.4) w=v+ Au), z=v—A(u), where A(u) = / a(s)ds.
0
The Riemann invariants define a mapping

T: (u,0) € R — (w,2) € {A(~00) < 22

< A(e0)},

that is one-to-one and onto. If foi_oo a(s)ds = +oco then T : R> — R2. The inverse map is given

by the formula

(4.5) v =

We note for future reference that Vw = I, Vz = [l and that

1 1 1 1
Opw=1r1'V=-—=0,+ =0 0, =ry V=——0-—=<0,+ =0,.
w =" 2a(u) U+2 ve 2T 2a(u) U+2 v
The various quantities defined in Section 3 are expressed in the specific context of the elasticity

equations. Set

w—z)

bw—z) :=ao A7 5

and note that
A1 = —a(u) = =b(w —2) < Ay =a(u) = blw — z) .
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It is convenient, fixing the integration constants, to write the solutions of (3.8b) in the form

b’(S)

S

F(w, 2) = exp] / (e )ds) = expl- /w RACFRY

~—

g(w, z) :== eXP{—/Z )\l)\iz)Q (w,y)dy} = exp{— /Ow ’ 3;(85)) ds) .
Hence
(46) f:gzeM(w—z), g_z:_f_w:m(w_z)
9 f
where
W) = a0 A (3), ) = 5 =10 a” (),
J\I(T):/()Tfrn(s)ds:%ln%7 e—M(T):(%)E-

The equations determining the entropy-entropy flux pairs 7—¢, when expressed in the Riemann

invariant domain, take the form

qQuw = _b(w - z)nw ’
(4.7)
qz = b(w - Z)ﬂz s

and (3.9) becomes

(4.8) Nwz = m(w — 2)Nw — m(w — 2)n, .

A second formulation of the problem incurs by introducing ¢ = 1, and zﬁ = 1,; it yields the

equivalent system

A

(4.9) Gz =ty = m(w — 2) (P — 7&) .

4.b A specific construction of entropies for elastodynamics.

In the sequel, we use a formulation of the entropy-construction problem that is specific to the
equations of elastodynamics. Given an entropy-entropy flux pair n = n(u,v), ¢ = q(u,v), define
¢ =alun—q,
¥ =alu)n+q.

Then (7, q) is an entropy-entropy flux pair if and only if

(4.10)

Ou — a(u)py = ;;((Z)) (e +),
(4.11) ()
Vu + a(u)y, = (o +),
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The latter may be expressed in the Riemann invariant domain, via the change of variables
QO(U, U) = (I)(U + A(u)a v A(u)) ’ ¢(Ua U) = \I’(U + A(u)a v A(U)) :
Then (®(w, z), ¥(w, z)) satisfies the system
0, =-m(w—2z2)(®+7),
(4.12)
0¥ = m(w—2)(2+7),

Conversely, given (@, ¥) solution of (4.12), we define an entropy-entropy flux pair with the for-

mulas
1

n (<I>+‘I!)(1)+A(u),v—A(u)),

:2a

—~

u)

(4.13) |
q= —§(¢) —0)(v+ A(u),v — A(u)).

A variant of this formulation was introduced in Dafermos [Da;] and another variant was used in
Shearer [Sh].

The relevance of the formalism can be seen from the following lemma, due to Dafermos [Day].
Lemma 4.1. Let n—q be an entropy pair for the equations of elasticity, and p, 1 be as in (4.10).
(i) n is strictly convex at the point (u,v) if and only if Yyy > 0, Yyy > 0 at (u,v).

(ii) The pairs (@,1), (pu,Uy) and (Pyy, V) satisfy (4.11). Equivalently, n, — g, and Ny — Qo
are entropy-entropy fluz pairs.

Proof. Let ¢, 1 be given by (4.10). Then
Pov = a(u)nvv — Quv = CL(U)%U + Nou

(4.14)
wvv = a(u)nvv + Qov = a(”)"]vv — Moy »

and
Pow ¢vv = CLQ(U)nﬁv - Ugu = NuuTvv — ngu
Yoy + wvv = QG(U)UW

Hence, part (i) follows. Part (ii) is due to the Galilean invariance of the equation (4.3) and the
system (4.11) (or (4.12)) i.e. invariance under translations v — v + « (equivalently w — w + 3,
z— z+ f). O

In the sequel, we use on occasion a hypothesis on the stress-strain response:
(¢) uo(u) >0, u#0,

stating that o(u) is concave for v < 0 and convex for u > 0. Under hypothesis (c), the systems
(4.11) and (4.12) enjoy certain maximum principles for the Cauchy and the Goursat problems.

Consider the Cauchy problem with initial data at u = 0, the inflection point of o(u).
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Lemma 4.2. Let (p,%) be a solution of (4.11), and suppose that (c) is satisfied.

p=0,v>0 atu=0, or
If ©0>0,v=0 atu=0, or then ¢, ¥ > 0 for (u,v) € R* with u # 0.
p, Y >0 atu=20

Proof. Let C be any “trapezoidal” domain that is bounded on the left side by a two-characteristic
curve, on the right by a one-characteristic curve, on the bottom by the axis v = 0 and on the top
by the line u = @ > 0. We prove that ¢ +1 > 0 on C, the closure of C. If this is not the case, let
u, be the first time that ¢ + v vanishes on C; then u, > 0. Let (u,,v,) be the point on C where
¢ + ¢ first vanishes. Consider the backward characteristics emanating from (u,,v,) till they cut
the axis u = 0. The coefficient a’/2a in (4.11) is positive for u > 0. Integrating the equations
along characteristics we see that ¢(u,,v,) > 0 and ¥(u,,v,) > 0, which yields a contradiction.
We conclude that ¢ 4+ > 0 on C and, from (4.11), that ¢, ¢ > 0 on C.

Let C' be now a domain bounded again by characteristics, the axis u = 0 on the top, and the
line u = u < 0 on the bottom. The coefficient a’/2a is negative on u < 0, and a similar argument

shows ¢, ¥ > 0 on C'. O

Next, consider the Goursat problem

zE = _m(w_z)(é—'_‘l")a
(4.15) ¥ = m(w—2)(2+7),
z2=10)=d,(w),

Under hypothesis (c), solutions of the Goursat problem satisfy a maximum principle.
Lemma 4.3. Let (®,7) be a classical solution of (4.15), and suppose that (¢) is satisfied.

( ®>0 atw>0,2z=0
either

tw=0,2<0
I aw== 2= then &, >0 on {w >0,z < 0}.

{ atw>0,2z=0
or

\ >0 atw=0,2z<0
atw <0, z=
atw=0,2z>0

atw<0,z=0
atw=20,2z>0

either

Lo
IR

If < then ®,¥ <0 on {w <0,z > 0}.

OOOO

eee»e«
I
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Proof. Observe that m > 0 on the fourth quadrant, m < 0 on the second quadrant, and m = 0

at the origin. We prove it for Goursat data satisfying
®,>0 forz=0,w>0, U,=0 forz<0,w=0.

First, we derive the result under the additional hypothesis ®,(0) > 0. In this case (4.15)
implies that

®>0, ¥>0 forz=0,w>0,
>0, =0 forz<0,w=0,

and ® + ¥ > 0 at (0,0). Let C be any domain of the form C = [0,w] X [z,0], with @ > 0 and
z < 0. Using an argument as in Lemma 4.2, we deduce ® + ¥ > 0 on C. The system (4.12) then
yields &, ¥ > 0 on the fourth quadrant.

If &, is such that ®,(0) = 0, then the Goursat data are approximated by data as in the
previous paragraph, and the resulting solution satisfies ®, ¥ > 0 on the fourth quadrant. These
inequalities are in turn improved, by using (4.12), to obtain the final ®, ¥ > 0 on the fourth

quadrant. The proof of the other statements is similar. O

An analogous maximum principle holds for the Goursat problem for (4.11). The coordinate

axes in the w — z domain tranform to the (forward and backward) light rays

Rit ={(u,—A(u)) u>0},  Roy
{

{(u, A(w)) u> 0},
(u,—A(u)) u <0}, Ro- =A{

(u, A(u)) u < 0},

in the v — v domain. As a direct implication of Lemma 4.3:

Corollary 4.4. Let (p(u,v),¥(u,v)) be a solution of (4.11), and suppose that (c) is satisfied.

. Yp=0 onRiq
either 50 R
@ on fat
I th , >0 Cy = — A(u), A .
7 {wﬂ s theneu >0 onCy= | (- AW Aw)
or u>0
Y= on Roy
= Ri-
either { v <0 on Rl
¥ on Ko— .
If { D <0 onRy then ¢, <0 onC_ = U (A(uw), —A(w)).
or u<0
=0 onRao_
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Remark 4.5.
1. The quantities ¢ = 8,7, ¥ = 9,7 entering in (4.9) should not be confused with the quantities
¢, ¥ defined in (4.10). Their relationship is

8590 = a(u)nvv + Nouw = 2a(u)aw77v = 2a(u)av95a
812,1# = a(u)Nyy — Nou = 2a(u)0y1n, = 2a(u)8v1ﬁ.

In the derivation we used the fact that 9, and 0, commute with 3J,.

2. Lemmas 4.1 and 4.2 imply that, under hypothesis (c¢), an entropy 7 is strictly convex if and
only if it emerges from initial data satisfying ¢,, > 0 and 1,, > 0 at © = 0. It is this observation
that leads to the selection of the initial value problems determining the generators of the convex

entropies.

4.c The kinetic functions I.

In this section we construct the singular entropy pairs © — J and © — 7, which serve as an
intermediate step in order to define the kinetic functions. The entropy © is sought as the solution
of the initial value problem

Ouu = a*(u)Ouy ,
(4.16) { O(u =0,v) =159,
Ou(u = 0,v) = a(0)é(v) ,

J is the associated entropy flux:
(4.17) Ju=—a*(u)O,, Jy=—0u;

© is the solution of the initial value problem

(:)uu = QQ(U)(:)MJ ’

(4.18) { O(u=0,v) = 1,59,

Ou(u=0,v) = —a(0)6(v) ,
and J is the associated flux: © — J are connected through (4.17).
Proposition 4.6. (i) The singular pair © — J is given by the formulas
©=HIl, aw>0+(1—H)L_aw>o,
T =Q L aw)>0+ (—a(0) = Q) Ly_a@w)>o0

where H = H(u,v) is the smooth solution of the Goursat problem

(4.19)

Huu = GQ(U)HM) s
(4.20) H(u, —A(u)) = (gj))) P oonw=v+Au) =0,

H(u,A(u)) =1 onz=v—A(u)=0,
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and Q = Q(u,v) is the corresponding flux and attains the Goursat data

(4.21) { Q(u, —A(w)) = —(a(0)a(u))* onw =v+A(u) =0,
= —a(0) onz=v—Au)=0,

(ii) The singular entropy © — J is given by

O =(1—-H)lysawyso+H Ly a@w)yso

(4.22) _ _ :
J = (CL(O) - Q) ]1v+A(u)>0 +Q ]lv—A(u)>0 )

where H = H(u,v), Q = Q(u,v) is a smooth entropy-entropy fluz pair defined by

(4.23) H(u,v) = H(u,—v), Q(u,v) =—Q(u,—v),

and attaining the Goursat data

{H(U,A(u))—l onw=v+A(u) =0,
: _ (s@)? v~ Alw) =
(4.24) I_{(u,A(u)) = (a(u)) onz=v—A(u)=0,
{ Q(u,—A(u)) = a(0) onw=v+ A(u) =0,
Q(u, A(u)) = (a(0)a(u))® onz=v—A(u) =0,

Proof. In preparation, we recall Proposition 3.2 adapted to the equations of elasticity.

(1) If H;(w,z) is a smooth solution of (4.8) that for some 7, satisfies

(4.25) Hi(w =0,2) = e~ M2

and Q; is defined by

(4.26) Q1 (w,z) = —mib(—z)e” M=) /Ow b(z — 2)(OwH1)(z, 2)dx |

then H11,50 and Q11,,5¢ are a singular entropy pair.

(2) If Ho(w, z) is a smooth entropy that for some 7 satisfies

(4.27) Ha(w, z = 0) = rpe~M®)

and Qs is defined by

(4.29) Qa(i.2) = rab(w)e™ )4 [ b — )@, Ha) )

then Hol,5¢ and Q21,5 form a singular entropy pair.

25
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The above pairs can be expressed in the u — v domain to provide distributional solutions for

(4.2) of the form Hi 1,4 aw)>0, @11yt a(u)>0, and Hally_ a(uy>0, Q21— a(u)>0, where
H;(u,v) = H;(v+ A(u),v — A(u)), Qi(u,v) = Q;(v+ A(u),v — A(u)), i=1,2.

Consider a solution of (4.2) in the form of the linear combination

(4.29) O =Hil, a@w)y>o + Holy_awyso, J = Q1llyyayso + Qally—agu)>o-

A computation shows that

]lv>0

u=0,v

O(u = 0,v) = (H, + Hy)

(4.30) Ou(u=0,v) = (8, (H1 + Ha)) 1,50 + H1(0,v)a(0)é(v) — H2(0,v)a(0)d(v)

u=0,v

Iy + (11 — 72)a(0)6(v)

u=0,v

with T = Hl(O, 0), T — HQ(O, 0)
Step 1. Construction of © — J

First, we turn to the solution of the initial value problem (4.16). If we select 4 =1, 7 = 0
and the entropies Hq, Hy so that (4.25), (4.27) and

(431) (H1+H2)<O,U) =1, 8U(H1+H2)(O,U):O,

are satisfied, then © in (4.29) solves (4.16). Note that H; + Ho satisfies the initial value problem
(4.3) with data (4.31). Hence, by uniqueness,

H{+Hy,=1, for all u,v.

We turn to the construction of Hy, Hy. Let H(w, z) be the solution of the Goursat problem
Hyr = m(w — 2)Hy — m(w — 2)H,
(4.32) { H(0,2) = e~ M=2)

H(w,0)=1,
and let @ be the associated flux determined by
Quw = —bw— 2)Hy ,
Q.= blw—2)H;,
Integrating (4.33), and using (4.32), (3.8) and(4.6), it follows that Q is given by the formulas

(4.33) { Q(0,0) = A, (0,0) = —b(0).

Qw, z) = —b(—z)e™ M2 /w bz — 2)Hy(z, 2)dz
(4.34) 0

= —b(0) + /0 b(w —y)H . (w,y)dy .
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The selections 71 = 1, o = 0 and H; = H, He = 1 — H meet all required conditions. By
virtue of (4.26), (4.28) and (4.34), the associated fluxes are @; = Q and Qy = —b(0) — Q. The
emerging singular pair © — J is of the form (4.19), where

(4.35) H(u,v) = H(v+ A(u),v = A(u)),  Q(u,v) = Qv+ A(u),v — A(u)),

Hi=H,Hy=1-—H,Q; =Q and Q2 = —a(0) — Q. The pair H — @ is a smooth entropy pair
that admits the Goursat data

H(u,—A(u)) = H(0, —2A(u)) = e~ M2AMW) — (%)% )
H(u,A(u)) = H(2A(u),0) =1,

Q(u, —A(u)) = Q(0, —2A(u)) = —b(2A(u))e~MEAM) (a(O)a(u))% ;
Q(u, A(u)) = Q(24(w),0) = =b(0) = —a(0)

Step 2. Construction of © — J
Next we take up the initial value problem (4.18). From (4.29), (4.30), we see that © is a
solution of (4.18), provided that 7, = 0, 7o = 1 and H;, H, are smooth entropies satisfying
(4.25), (4.27) and
(Hy + Hy)(0,v) =1, 8,(Hy+ H3)(0,v) =0.

The latter implies
H +Hy=1, for all u,v.

Let H(w, z) be the solution of the Goursat problem

(4.36) { H(0,2) =1,
H

Then the selection 71 =0, 75 = 1, H; = 1 — H, Ho = H meets all required conditions, and
0= El]lv+A(u)>0 + ‘HQHU—A(U)>0 )

where H; =1 — H, Hy = H and H(u,v) = H(v + A(u),v — A(u)), solves (4.18).
Let Q be the flux associated to H and determined by

_ Q(0,0) = X\2(0,0) = b(0) .

{ Qw = —blw—2)H,y , _
Q.= blw—2)H.,

(4.37)
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Integrating the exact equation (4.37) and using (4.36), (3.8) and (4.6), we see that Q is given by

the formula

S(w, 2) = b(0) — / " b — 2) P (2, 2)da
(4.38) 0 "

= bw)eM@) / b(w — y)Ha (w, y)dy

A comparison of (4.38) with (4.26) and (4.28) indicates that Q; = b(0) — Q, Qs = Q and, thus,
the flux J associated to © is

T = Q114 a@w)>0 + Q21y_aqwy>0

where Q1 = a(0) — Q, Q2 = Q and Q(u,v) = Qv+ A(u),v — A(u)).
We conclude by noting that the Goursat problem (4.36) transforms to (4.32) via the change
of variables w — —z, 2 = —w, H — H. Therefore,

|
x

H(w, z) (—z,—w),
H(u,v) = H(v+ A(u),v — A(u)) = H(~v + A(u), —v — A(u)) = H(u,—v).

Moreover, (4.37) transforms to (4.33) via the change of variables w — —z, 2 — —w, H — H,
Q — —Q. Accordingly,

Qw,z) = —Q(-2,-w),
Q(u,v) = Qv + A(u),v — A(u)) = —Q(—v + A(u), —v — A(u)) = —Q(u, —v).
This proves (4.23), and (4.24) follows from (4.20), (4.21) and (4.23). O
The space u — v is decomposed into four disjoint regions by the light rays R; = R+ U R1—

and Ro = Rat+ U R2— emanating from the origin. These are
Cy ={u>0,ve(—Au),A(u))}
left := {u >0, v € (oo, —A(u))} U{u <0, v € (—o0, A(u))}
C_:={u<0, ve (Au),—Au))}
right ;== {u >0, v € (A(u),00)} U{u <0, v € (—A(u),0)}

(4.39)

where C;, C_ are the positive and negative light cones, respectively.

The construction in Proposition 4.6 is valid for general stress-strain laws. If the stress-strain
law satisfies (c) then some remarkable properties connect the entropies Hy = H, Hy =1 — H,
H, =1-H, Hy, = H with the associated entropy fluxes Q1 = Q, Q2 = —a(0)—Q, Q1 = a(0) - Q,
Q2 = Q.
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Lemma 4.7. Under hypothesis (c),

0<H<1, 0<H<1, onCyLUC_,

(4.40) ) ]
Q| < a(w)H, |Q|<a(w)H, onCyUC_.

The ratios Q;/H; are expressed as conver combinations of the wave speeds,

Q1= [— a(u)aq + a(u)(1 — al)]Hl , Qo= [— a(u)as + a(u)(1 — ag)]Hz,

(4.41) .
Q1 =[-awar +a(w)(1—a)|H1, Q2= [-alwas+a(u)(l-—az)H,,

where oy = a1 (u,v) and as = as(u,v) satisfy the properties

ap =1 on R4
4.42 0 1 CruUC-
( ) <o < on Lty ’ { _ a(u)+a(0) on Ry ’

a1 = 2a(u)
va(u) —+/a(0) on R:
2+/a(u) ’

(4.43a) 0<as<1l onCiUC_, ay =
and, if o € C® with o'"(0) # 0,

(4.43b) as=0 onRy;
ay = ay(u,v) and s = as(u,v) are determined by

(4.44) ay(u,v) =1 — as(u, —v), as(u,v) =1 —ay(u, —v).

Proof. For the entropy pair H; — ()1, we introduce the decomposition
pr=a(wH; —Q1=a(wH -Q, Y1=a(w)H1+Q1=a(u)H+Q.

Then (¢1,%1) satisfy (4.11) and attain the Goursat data

<
= =
S v:
| |
R
S S
= =
[l [l
o N
<
—
g
=
I~
N
N
[l
=Y
I~
N
|
Q
—
=2

Corollary 4.4 implies
¢1, Y1 >0 onCy and C_,

and, from (4.10), we have

1
= m(% + 1),

Q=Q = %(wl — 1) = —a(u)

Y1 Y1
H{+ a(u)———H; .
©1+ U1 ! ()<P1+¢1 !

29
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We conclude that H > 0 on C; UC_ and that Q1/H; is expressed as a convex combination of
the wave speeds. The factor a1 = ¢1/(¢1 + 1) satisfies 0 < a3 < 1 on C4 UC_ and takes the
boundary values (4.42).

Next, for the entropy pair Hy — (2, we introduce the decomposition

p2 = a(u)Hz — Q2 = a(u) + a(0) - (a(u)H - Q),
by = a(u)Ha + Q2 = a(u) — a(0) - (a(u)H + Q).

Then (p2,9) satisfy (4.11) subject to Goursat data

palu, —A(w) = (Va(w) - Va(0))”, pa(u, A(w) =0,
1/}2(”’ _A(u)) = a’(u) - G’(O) ’ %(%A(U)) =0.
In view of (¢), a(u) — a(0) > 0 for u # 0. Corollary 4.4 implies
@2, 2 >0 on Cy and C_,
and, from the formulas
1
1-H=H,= T(U)(SOQ-F%),
~a(0) = @ = @z = (1 — 92) = —a(u)—22—Hy + a(u)—2—H,
2 Y2 + Yo Y2 + Yo ’

we deduce that 1 — H > 0 on Cy UC_ and that Q2/Hs is written as a convex combination of the
wave speeds.

The factor ag = @a/(p2 + 12) satisfies 0 < ag < 1 on C4 UC— and takes the value

ag(u,—A(u)) = - a(;\)/;(—u ~)a(0) onRj.

To calculate as(u, A(u)) we compute the limit lim Qs(w, 2)
z2—=0 Ho(w, 2

can be seen from (4.32), (4.34): Ha(w,0) =0, Qa(w,0) = 0. From (4.8) and (4.32), the function
0, Ha(w,0) satisfies the equation

. This is an indeterminate limit as

(4.45) 0w (0:H2(w,0)) + m(w) (9, Ha(w,0)) =0,

and thus
9, Mo (w,0) = [0,H2(0,0)] e~ M)
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By (4.32), (4.7) and (c),
0:H2(0,0) = 0,e™M=2)| _ =0, 0.Ha(w,0)=0, 8,Qz(w,0)=0.

Differentiating (4.8) we see that 0,,Ha(w,0) satisfies again (4.45) and

A, Mo (w,0) = [8,H2(0,0)] e M)
By (4.32) again,

02:M2(0,0) = 0,.e=M=3)|__ #£0,
by the assumption ¢/”/(0) # 0. Then

lim 22W,2) _ . 0:Qe(w,2) L 022 Q2(w, 2)
20 Ho(w,z) 20 O, Hao(w,z) 20 0, Ha(w, 2)

= b(w) ,

and (4.43b) follows. If ¢/’(0) = 0, then a similar argument may be used to show that if o € C"
and ¢ (0) # 0 then (4.43b) still holds. By contrast, in the case of linear elasticity the ratio
QQ2/Hs is indeterminate, see Remark 5.8.

Finally, we come to the pairs H; — Q1 and Ho — Q3. The symmetry relations (4.23) imply that

Q1(u,v) = a(0) + Q(u, —v) = —Q2(u, —v)
= a(u)as(u, —v)Ha(u, —v) — a(u)(1 — az(u, —v))Ha(u, —v)
= —a(u)(1 — az(u, —v)) Hi(u,v) + a(u)az(u, —v)Hi(u, v)

and thus Q1/H; can be written as a convex combination with factors determined by (4.44). The

same is true for QQ/EQ. O

Lemma 4.7 implies that under hypothesis (¢) the flux J is expressed as
J = (—a(wk+a(u)(l-k))6O.

This is seen from (4.19), (4.41) and from writing the constant state —a(0) as

) a(u) 4+ a(0
—a(0) = —a(u)B + a(u)(1 — 3), with = % € (0,1].
The function k = k(u,v) takes values in [0, 1],

0 on Rqi_

(u)+a(0) 1

. ga(g) on Ro4 s on C_

K= a1 on C+ and k= v/a(u)—+/a(0) on R
1 on Ri4+ 2\/a(u) 1-
0 on left a(u)+a(0) on right

2a(u)
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Kk 1s continuous across Ro but discontinuous across R;. The factors a; and ag are connected

through
a(u) + a(0)
o H + a( ) =18 2a(a)
a formula obtained by expressing the flux Q2 = —a(0) — @1 in two different ways, by means of

(4.41), and comparing the outcomes.
The pairs © — J and © — J serve to introduce the following singular entropy pairs, called
kinetic functions :
e’l" 7
r=0,

Il
@

jv el:_]-_'_@v ‘712(1(0)—{-‘7,

(4.46) i}

J, 6=-14+6, J=-a0)+J.

[l

[©]
Il

The pair ©, — 7, is defined in (4.19), ©; — J; reads

O, = _H(uav)nv+A(u)<0 - (1 - H(uvv))]lv—A(u)<0 ’

(4.47)
J = _Q(uav)]lv+A(u)<0 - ( - G’(O) - Q(uav)>]1v—A(u)<0 )

O, — J, is defined in (4.22), while ©; — J; reads

él = —(1 — ﬂ(u, U))]IU+A(U)<0 - E(U,U)]lv_A(u)<0 ’

(4.48) ) _
\75 = —((,l(O) - Q(uav))]lv+A(u)<0 - Q(uav)]lv—A(u)<0 s

All are defined in terms of a single smooth entropy pair H — @, determined by the Goursat
problem (4.20) and (4.21), ¢f. (4.23). Each singular pair is a distributional solution of (4.2)
emanating from initial data

0,(0,v) = 1,59, ©;(0,v) =—-1,<9, 0.0,(0,v) = 3,0;(0,v) = a(0)d, ,

0,(0,v) = 1y59, ©;(0,v) = —T,q, 0u0,(0,v) = 93,0;(0,v) = —a(0)d, .

By Lemma 4.7 and hypothesis (c¢), the associated fluxes satisfy

Tr = ( —a(u)ky + a(u)(1 — Iﬁ:r))@r,
Ir = (= a(w&, + a(u)(1 - &;))O,,

S|
I

(— a(w)r + a(u)(1 - K1))Oy,

(4.49) _
(- a(w)r + a(u)(1 - &))Oy,

o~

where Kk, = £ (u,v), K = Ki(u,v), Ky = Rr(u,v), & = Ki(u,v) take values in [0, 1], satisfy
Rr(u,v) =1 —ki(u,—v), Ki(u,v) =1—Kp(u,—v),

and are determined from «y, @, &; and @s in (4.42 - 4.44).



The specific values of the kinetic functions are

H
0
450) O, =
(4.50) -
1
—(1-H)
~1
(451) e =y
0
1-H
_ 0
452) 0,={ _
(4.52) 7
1
-H
453) ©, = !
(4. ‘T —a-8)

J =

OII(Z+
on left
on C_

on right
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on Cy
on left

Ky =
on C_

on right

L

on C+.
on left

R} =
on C_

on right

on Cy
on left B

K] = <
on C_

on right

()
Ve(u)—/a(0)
21/ a(u)

a(u)+a(0)
2a(u)

(6]
va(u)—/a(0)
2+/a(u)

a(u)+a(0)
2a(u)

aq

a(u)—a(0)
2a(u)

va(u)++/a(0)

2v/a(u)
Qg

\ 1
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on C4
on.7€1+
on left

on C_

on Ri_

on right

Orl(1+

on Ri+

on left

on C_
on Ri_
on right

on Roy

on Cq
on left
on Ro_
on C_

on right

0n.722+
on (1+
on left

OD.722_

on C_

on right

The pairs O, — J,, ©; — J; and the factors k.., k; are discontinuous across R; and continuous

across Ro. By contrast, the pairs ©, — 7, ©; — J; and the factors &,, &; are continuous across

R1 and discontinuous across Rs.
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5. KINETIC FORMULATION FOR ELASTODYNAMICS
Consider the system of elastodynamics

U — vy, =0,
(5.1)
vy —o(u), =0,

under the hypotheses o’(u) > 0 and
(c) wo(u) >0 u#0.

Entropy - entropy flux pairs n(u,v) — ¢(u,v) for this system are constructed by solving (4.2), or
equivalently the linear wave equation (4.3).

To ensure uniqueness of weak solutions, entropy inequalities need to be imposed. According
to one premiss (motivated from zero-viscosity limits with identity diffusion matrices) all convex

entropies must be dissipated, that is, weak solutions (u,v) in L* are required to satisfy
(5.2) O (u,v) + 0rq(u,v) <0 in D', for any convex entropy 7.

Our objective is to represent the convex entropies, under hypothesis (c), and to provide an
equivalent definition for entropy weak solutions; this definition is called kinetic formulation. It
represents by a set of two kinetic equations the full family of entropies, and also characterizes

entirely those that are convex.

5.a The kinetic functions II.
We first introduce the kinetic functions ©, — 7, and ©, — 7,, defined by

@o(u7U7€) = H(U,U - 5) ]lU-I-A(u)(g) + (1 - H(U,’U - 5)) ]lv—A(u)(g)
_{(—)r(u’v_g) §>03
lewv—-¢ £<0,

(5.3)
jo(u’ v, 5) = Q(u’ Gl 6) ]1v+A(u)(§) + ( - a(O) - Q(ua Cl 6)) ]lv—A(u)(g)
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The indicator functions are given by

]10<§<w if w >0 3
(5.5) 1,(8) = Yw,&) :=<¢ 0 ifw=0,

—]1w<;;.‘<0 ifw<0 5
and satisfy the properties

1,6 = % [sign (w — &) + sign f] a.e.,

Ouly(§) =6(w—¢), 0Ocly(§) = —0(w—¢)+6(E)-

The entropy pairs H —Q and H —Q are smooth, they are determined by solving Goursat problems

with boundary conditions

a(0)) 2 H(u,—A(u)) =1
(56) H(U, —A(u)) = (a((g))) and ~ “(0) 1
H(u, A(u)) =1 H(u, A(u)) = (a(u))

respectively (cf. Proposition 4.6), and satisfy the symmetry properties

(57) E(ua 1}) = H(ua _U) ’ Q(U, U) = —Q(U, _U) .
We refer to (4.46) - (4.53) for explicit formulas and further properties regarding ©, — 7, and
(:)o - jo-

We recall the notations

Ri(€) =Ri+()UR1-(§), Ra2(§) =Rat(§) UR2_(§),

where R14(§) and Rop(§) are the forward 1- and 2-characteristics emanating from &, Rqi_(§)
and Ro_ (&) are the corresponding backward characteristics; also, C4(§) and C_(§) stand for the

forward and backward light cones at €.

Proposition 5.1. The kinetic functions enjoy the properties:

(i) ©, — J, and ©, — J, are singular entropy pairs satisfying the initial-value problems

eo,uu = a2(u)®o,vv s (:)o,uu = GQ(U)(:)o,vv ;
(5.8) { 0,(0,v,&) = 1,(¢) { 0,(0,v,&) = 1,(¢)
Bu@o((),v,ﬁ) = a(0)5(v - 5) ) 8uéo(0,’l),§) = —a(0)5(1} - 6) :

(ii) ©o, Jo have a jump discontinuity at Ri(£) and are continuous across Ro(€); ©,, J, are
continuous across R1(§) and have a jump discontinuity across Ro(€); they satisfy the symmetry

properties

@O(U‘ava&) = _@O(Ua - ’_é) ’

(5.9) _
jo(u’ v, 5) = jo(ua -, _6) )
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(iii) ©,, Jo, O, and J, take, for & € R, constant values outside the sets Cy (&) and C_(£), and
they are, for (u,v) fized, of compact support in &:
supp eo(u’va ) = supp jO(U,U, ) = supp (:)o(u,v, ) = supp jo(uava )

(5.10)
= [min(v — [A(u)],0), max(v + |A(u)|,0)] .

(iv) Under hypothesis (c),
1< 0,(u,v,&) <0 foré <0, 0<0,(u,v,6) <1 for& >0,
0

(5.11) _ _
—1<0,(u,v,8) <0 for £ <0, < Oo(u,v,§) <1 for & > 0.

The fluxes J, and Jo are expressed as convexr combinations of the wave speeds times the corre-
sponding entropies
Jo = ( —a(u)ko + a(u)(1 — /ﬁo))@O ,

(5.12) ) _
Jo = (— a(w)ko + a(u)(1 — ko)) O,,

where

| k(v =€) £>0 ~ | Rr(uw,v=§) £>0
”"<“’”’5)‘{m<u,v—§> £<0 ”"(“’“’5)‘{m<u,v—s> £<0

are defined in (4.50)-(4.53) and take values in [0,1]. Also, Jo, Jo are bounded by

(5.13) |Tol < a(u)|©o],  |Tol < a(u)|O,].

Proof. Part (i) is proved in Proposition 4.6. We verify directly the initial conditions:

840,(0,v,&) = H(0,v — §)a(0)6(v — &) — (1 — H(0,v —€))a(0)d(v — &)
= a(0)d(v—£),

by (4.20). Similarly, by (4.24),
©0(0,v,8) = 1,(€),  0uO,(0,v,8) = —a(0)d(v - €) .

Part (ii) follows from (5.7) and the property 1_,(—¢§) = —1,(&) :

O (u, —v, =€) = (1 — H(u, v + &) 1oy au) (—€) + H(u, —v + )1y a(uy (=€)
=—(1—H(u,v = &) Ly—aq)(€) — H(u,v = &) Dy aqw)(€) = —O0(u,v,¢)
To(u, v, =€) = (a(0) — Qu, —v + &) Lyt aqu) (=€) + Qu, v + &)1y au) (—€)
(= a(0) = Qu,v =€) Ly—aqw)(€) + Qu, v = &) Ly a(wy () = To(u,v,€) -



KINETIC FORMULATION FOR SYSTEMS 37

It reflects the fact that the first initial-value problem in (5.8) transforms to the second under the
transformation of variables u — u, v = —v, £ - —§ and © — —0O.

Parts (iii) and (iv) follow from (4.50)-(4.53) in conjuction with Lemma 4.7 and (4.49). O
It is seen from (4.46) that the derivatives 9,0,, 0, 7o, 8,0, and 8,7, are all functions of v —¢&.
This motivates to study the distributions
X=0,0, Y=0,7,
(5.14) _ _ _ _
X=0,0, Y=0,7,

where © — 7 and © — J are as in (4.16)-(4.18). Let also F, G, F, G be defined by
F=a(wX-Y, G=auw)X+)Y,

(5.15) _ _ L
F=awX =Y, G=alu)X+)Y.
Then X — Y and X — ) satisfy the following properties.

Proposition 5.2. The measures X — ) and X — ) are singular entropy pairs that enjoy the

properties:

(i) X and X solve the problems

Xy = a2(u)va ’ A?uu = a2(u)"?vv )
(5.16) { X(u=0,v)=6(v), { A?(U =0,v) = 6(v) ,
Xu(u = O,U) = G‘(O)(SI(U) ) /’E‘u U = O,U) = —a(0)5'(v) )
Y and Y are the respective fluzes, and are given by the formulas
a(0) 3
X = (2=5)26(v + Aw) + Hy (Lo a>0 = Lo a@wo) -
(5.17) a(u)

1
2

Y = —(a(0)a(w))? (v + A(u)) + Qy (]lv+A(u)>0 - ]lU—A(u)>0> ;

and

v (@)%5@ — A(w)) - H, (“v+A<u>>o - ]lv—A<U>>°> ’
(5.18) e

Y = (a(0)a(®) 50 = A@) = Qu (g a0 — Loma@wso) -

~—

(ii) X, Y, and X, Y are of compact support in v

—A(u),A(u)] >0

(5.19)  supp X(u,-) = supp Y(u,-) = supp X(u,-) = supp Y(u,-) = { {A(u) —Aw)] uw<0’

and satisfy the symmetry properties

(5.20) X(u,v) = X(u, —v), Y(u,v) ==Y(u,—v).



38 PERTHAME AND TZAVARAS

(iii) F, G, F and G are given by

[V

F = 2(a(0)a()) *5(v + A(w))+a(w) Hy — Qu) (Lot aa>0 — To-a@wo)

(5.21)
G= (a(@H, + Qo) (Lt w0 = Limawso)

)
I

- (a(u)H’U - Qv)(]lv+A(u)>0 - ]lv—A(u)>0) ’

(5.22) _
6(v = A@) = (W Hy + Qo) (Ts atuy>o = Tooaqy>o) -

Nl

Qi
Il

2(a(0)a(u))

(iv) Under hypothesis (c),

H,>0, H, <0 onCq,

(5.23) _
H,<0, H,>0 onC_,
and
1
F>0, G>0, X= (F+G)>0 inD,
(5.24) 2a(u)
) ) ) ) T
F>0, G>0, X= (F+G)>0 inD.
2a(u)

Proof. Recalling that © — 7 and © — J satisfy the problems (4.16) - (4.18) and the invariance of
(4.2) under the change of variables v — v + a, we see that X —) and X — ) are singular entropy
pairs. The properties (i) and (iii) follow from a direct computation, (5.19) is a consequence of
(5.17)-(5.18), while (5.20) follows from the property that the first initial value problem in (5.16)
transforms into the second under the change of variable v — —uv.

In order to prove (iv), we consider, for the smooth entropy pair H — @, the decomposition
o= aH -Q, ¥=awH+Q.

Then (g,1) is a solution of (4.11) which, by (4.20 - 4.21), admits the Goursat data

N[

(5.25) 2(a(0)a(w))? , w(u, A(w)) = a(u) + a(0)
P(u, —A(u)) =0, b(u, Aw)) = a(u) — a(0) .

Differentiating the Goursat conditions, we see that

Yu(u, —A(w)) = a(u)y (u, —=A(u)) =0,
puu, A(u) + a(u)py (u, A(w)) = a'(u),
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while from (4.11) and (5.25) we obtain

ou(u, A(w)) — a(u)py(u; A(u)) = a'(u) ,
0

W, — A(w)) + au)y (u, —A(u)) = o (u) (% -

a(u)

In turn, the solution of the algebraic equations gives

(5.26) (= A0) = 35 (4 e, Aw) =0,

The function (¢,,,) satisfies the Goursat problem (4.11),(5.26). Corollary 4.4 and hypothesis
(c) then imply
Yy, Yy >0 onCy, Py, Py <0 onC_.
Since

Py = CL(U)HU —Qu, Yy= CL(U)HU +Q,

and (1,4 4¢u)>0 — Ty—Aa(u)>0) equals +1 on C; and —1 on C_, we conclude that H, > 0 on C4,
H, <0onC_, and

F>0, 6>0, X= (F+G)>0 inD.

2a(u)
The symmetry property H(u,v) = H(u,—v) and Q(u,v) = —Q(u, —v) yields

_ - _ - <0 on C4
H,-Q,, H, v .
a(u) Qu, a(u)H,+Q { >0 onC.

In turn, (5.18) and (5.22) imply

1
2a(u)

F>0, G6>0, X= (F+G)>0 inD,

which completes the proof of part (iv). O

The singular entropy pair X — ) encodes information on derivatives of the kinetic function
©, — J,- This is seen via direct computation from (5.3), (5.4) and (4.46):

0O, (u,v,§) = X(u,v = &), 0eOo(u,v,§) = —X(u,v = &) +0(¢),

O To(u,v,€) = Y(u,v =), OeJo(u,v,§) = =V(u,v—E§) —a(0)5(§).
A similar relation holds between X —) and 6, — J,:

050, (u,v,8) = X(u,v = &), 9Oo(u,v,8) = —X(u,v — &) +6(¢),

O To(u,v,8) = Y(u,v =€), 0Jo(u,v,6) = =I(u,v = &)+ a(0)d(§).

(5.27)

(5.28)



40 PERTHAME AND TZAVARAS

5.b Representation of convex entropies.
The pairs ©, — J, and ©, — J, serve as generators of all entropy-entropy flux pairs, and at the
same time, under hypothesis (c), as generators of the convex entropies. We have the following

representation theorem.

Proposition 5.3. Consider entropy - entropy fluz pairs n—q for the elasticity system, normalized
so that n(0,0) = ¢(0,0) = 0. (i) They are represented by

n(u,v) = / O, (11,0, €)Dep(£)dE + / 6, (u, v, £) 0 p(€)dE

(5.29)
() = / oty 0, €)0ep(€)de + / o0, €)0ep(€) ¢ .
where
1 1
p(”) = _77(077)) - —Q<07U) 9
(5.30) f 24(0)
]3(’0) = 577(071}) + 2@(0) Q(Oav) .

(11) They are also representated, using the notations in (5.16) - (5.18), by

o) = [ o - Op(ede + [ v - Op)de
(5.31) R R
alu) = [ V- p€)ds+ [ Fluv - Op(e)d.

R R
with p, p as in (5.30).
(iii) Under Hypothesis (c), such an entropy n is convez if and only if p(§) and p(§) are convex.

The integrals in (5.31) are understood as pairings < -,- > between the measures X, X, ),
Y and test functions. The same convention is used whenever necessary in what follows. By
contrast, the integrals in (5.29) are interpreted in the usual sense. This is one advantage of the
use of ©, — J, and 0, — J,.

Proof. Let n — ¢q be a given entropy pair, with 1(0,0) = ¢(0,0) = 0, and set
A(’U) = 77(077)) ) B(U) = nu(Ovv) = v (O,U) .
Since ©, and O, satisfy (5.8), any function 7 of the form

n(u,v) = / O (11, 0,€)Dep(€)dE + / O, (11, v, €) e () dE
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is an entropy which takes the initial data
n(0,v) = /R]lv(ﬁ)aep(ﬁ)d&Jr/ 1,(£)9p(€)dé = (p(v) — p(0)) + (p(v) — p(0)) ,
1(0,0) = [ al0)5(0 = 2ep(€)d€ ~ [ a0 =~ 0cp(E)d = al0)p.0) ~ a0} (o).

If p(v) and p(v) are selected as

p0) = 540 + 5o | " B(s)ds

) = 5A0) = 5o | Bloyds.

(5.32)

then n(0,v) = A(v) and 7,(0,v) = B(v). For this selection it is p(0) = p(0) = 0. The associated
flux, normalized by ¢(0,0) = 0, is of the form

o) = [ Tl 9e(€)ds + [ T v, 0606
Using (5.27) and (5.28), the representation formulas can also be expressed as
q(u,v) =< To(u,v,-),0ep(-) > + < To(u,v,-), 9p(-) >
=< V(u,v =) +a(0)5(-),p(-) > + < Y(u,v =) = a(0)5(-), p(-) >
= [ v -op©ds+ [ Yo -onere.
where the last integrals over ¢ denote the action of ) and ) on test functions, and we used that

p(0) =p(0) = 0.
Next we turn to part (iii). Using (5.27)-(5.29), we compute

(5.33) Tow = / 0,0 (u, v — E)pee (€)dE + / 0,0 (u, v — )Pee(€)de |
R R
and
Nuu vy — 7712)u = (a(u)nvv - vi) (a(u)nvv + (va) )
(530 = (] Flwo = Opes(e) + Fluo = Opecl€)de)

(/Rg(u, v = &)pee(§) +G(u,v — é)ﬁgs(ﬁ)dﬁ) ,

where F, G, F, G are the distributions defined in (5.15) (cf. Proposition 5.2). Since

1

F>0, ¢G>0, 0,0= 0
1

(F+G)>0 inD,

(F+G)>0 inD,
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we deduce that, if p and p are convex, the resulting 7 is also convex. To see the converse note
that

F(0,v) = G(0,v) = 2a(0)6(v), G(0,v) = F(0,v) =0.

Evaluating (5.33) - (5.34) at u = 0 we see that convexity of 7 implies

Doy + Pow =0, pyyDuy =0,

that is p and p are both convex. O

An application of the Proposition 5.1 or of the representation formulas provides moment iden-

tities.

Corollary 5.4. The kinetic functions satisfy the moment identities

1 _
’U,:/R2a(0 (80_@0)(U7U7£)d£7

(5.35) i )
v [ gy o= T m ) e
1 _
v= [ 30+ Bo)(uv.) de
(5.36) R ) )
7w = 0(0) = = [ 5(70+ Tw v, de
and
1’U2 U‘:102 uO'T—O' T = é S u,v
I e + [ @ —o)ar= [ £(0,+ 6w k.

v(o(u) —o(0)) = — /IR g (To + To)(u,v,€) dE

Proof. Taking A({) =0, B(§) =1 in (5.29) and (5.32) we recover (5.35). The second identity
is derived from the choice A(£) = &, B(£) = 0, and the last from the choice A(¢) = £2/2,
B(¢) = 0(0) and (5.35). O

A similar argument yields the corresponding identities on X, ).

Corollary 5.5. The kinetic functions satisfy the moment identities

= ¢ — X)) (u,v —
w= [ g - Do,

§
r 2a(0)

(5.38)

v=—

Y = V)(u,v - §)de,
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v= [ S+ Do),

(5.39)

o) = o(0) == [ SO+ Pwv-)de.
and

1, e

v+ W(u)= [ > (X + X)(u,v—¢&)d¢E,
(5.40) 2 /R 4

v(o(u) — o(0)) = —/R%(y—l-y)(u,v — &) d¢,

5.c The kinetic formulation.

In this section we establish the equivalence between two definitions for weak solutions of the
equations of elastodynamics. The first notion is the classical “entropy” solution requiring the
decrease of all convex entropies: (u,v) is a weak solution of (5.1) if it satisfies the decay property
of convex entropies (5.2).

The second definition, called kinetic formulation, states that (u,v) is a weak solution of (5.1)
if the kinetic functions O, (u, v, &) and O, (u, v, &) satisfy for some positive, bounded measures m,
m on R, x R x Re¢, the equations

010, (1,0, ) + 0| (= a(u)ro + a(u)(1 = £,)) Oy (u,v,8)] = dem(x,1,6)

(5.41) - -
01801, v,) + 0, [ (— alw)y + a(w)(1 = 7)) Bo(u, 1,6)] = dein(a,1,€) |

in the sense of distributions in D , ..

Their precise relation depends on the smoothness class of the solution (u,v). This is expected,
since the integrability of (u,v) reflects on the growth rates of entropy pairs that are used in (5.2).
We state a theorem concerning L*° solutions and discuss in the remarks the extension to L?

solutions. The initial data are always taken in the sense of distributions.

Theorem 5.6. Let (u,v) € L®(Rf x R,) have finite energy and suppose that (c) holds.

(1) If ©,(u,v,€) and O,(u,v,&) satisfy (5.41) in D;,t,g’ for some positive bounded measures
m(z,t,€), m(x,t,€) on R, x R x Re, then (u,v) satisfy (5.2) for any C? entropy-entropy fluz
pair with n conver.

(2) If (u,v) satisfies the entropy inequalities (5.2) in D}, for any C? entropy-entropy fluz pairs
1 — q with n convez, then there exist unique positive, bounded measures m(x,t, &), m(xz,t,£) on
R, x RF x Re such that ©,(u,v,&) and O,(u,v,&) satisfy (5.41) in D;c,t,g-

(8) The measures m and m obey the bound

(5.42) /szfoRg m+m < /Rw[%vg(:v) W (uo(2))]dz -
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(4) Moreover, m(t,z,&) = m(t,xz,&) = 0 for || > | v+ |A(u)| |L~, and thus test functions in
(5.41) may grow at infinity in . Also, when u, v are C' in some open set Q of R, x R then
m=m=0 for (z,t) € Q, £ €R.

We begin with an estimate that connects the growth rate of test functions (in ¢) with the

growth rate (in u,v) of the entropy pairs n — q.

Lemma 5.7. Assume that (c) holds.
(i) If the growth of p(§) € C*(Re) is controlled by

(5.43) 0ep(&) < O) (1 +10:T(E)[), E€R
for some convex function V(&) with ¥(0) = ¥'(0) = 0, then

| [ ©upede| < OQ) (v + Aw)] + o= A@w)| + B + Aw) + (v = A(u))
(5.44) e

[ opede] < OWatw) o+ A + o = Aw] + ¥o + AGw) + ¥ - A(w)
¢

(i) If for some ¢ >0

(5.45) 0ep()] <O()(1+€]7), §€R

then

| [ @opede| < O)(jv+ AW + v = Aw] + o+ AW + o~ AQw)|™)
13

(5.46)
| [ Foveds| < O@atw) (o + A+ o = Aw)| + o+ A@I™ + o = Aw)[**)

Proof. Let ¥(£) be a convex function with ¥(0) = ¥’(0) = 0. For p(§) € C*(R¢) with growth
controlled by (5.43) we have, from (5.3) (or (5.4)), (4.40) and (2.7), the estimate

10, pel d < O(1) / (o) )] + [T ay (E)]) (1 + [0 (€)]) de

<OM)(lv+ A + v — A(u)| + T (v + A(w)) + T (v — A(u)))

Re

Moreover, from (5.13),

|To el d§ < alu) | O, pe| d§
Rg Re

and (5.44) follows. The proof of part (ii) is similar. O
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Proof of Theorem 5.6. We first consider (1). Let O,(u,v,&) — Jo(u,v,£), O,(u,v,£) —
Jo(u, v, €) satisfy (5.41) for some positive, bounded measures m(z, t,£), m(z,t, &) on Ry x Rf xRe.
For the first equation in (5.41) this means

—/ Oo Pr ot + To Pe pidé dx dt
R X[O T] R&

(5.47) - / /R Ouua(e). () €) P(€) i, 0 do

/ / Pee (&) (z,t) dm(z, t,€)
R, X[OT Rg

for o € C*(R, x[0,T)), P € C?(R¢). An analogous identity is provided by the second equation.
The result follows, formally, by testing these identities against convex test functions p and p and
using the positivity of the measures and the representation fomulas (5.29). As P does not cover
the class of convex test functions a validation is needed for the formal argument.

First, (5.47) is extended to hold for test functions P € C?(R¢) with Pee of compact support.
To this end, let g € C*°(R¢) with g(§) = 1 on [—1,1] and supp g C [—2,2]. Define the test
functions P"(¢) = P(£) g(¢/n) in C?(R¢). Then

0P (&) = PO o) + P g'(5) » acPle), forgeR
0cP"| < O()(1 + €]

Since (u,v) € Lg%, Lemma 5.7 and the dominated convergence theorem allow to pass to the limit

in the first three terms in (5.47). For the last term, the boundedness of m gives

/ / Pge pdm — Pee pdm
RwX[O,T] Rg RwX[O,T] Rg

Testing (5.47) against ¢ > 0 and P convex (with Pg of compact support), we obtain

_/R [OT]/R O, Pe g1 + Ty Pe pud€ du dt

(5.48) * ¢

-/ [ 04(u0(@). (@), ) Pe(©) (. O)de o < 0
3

To extend (5.48) for arbitrary convex test functions p, define

P(€) = po + pré + / / pec()9(2) dsdc

where g is as before, pg = p(0), p1 = p¢(0). Then O¢e P™ is of compact support,

6§P” — 8§p, for ¢ € R,
0:P"| < O(1)(1410:¥(¢)]),  where ¥(§) = p(€) — po — pié.
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Using part (i) of Lemma 5.7, (5.48) is extended for arbitrary convex test functions p. The result
follows from the entropy representation formulas.
Next, we consider (2). Let (u,v) € Lg% satisfy (5.2). First, we define the distributions m and

m so that
(5.49) 00+ 0pTo = 0cm, 00,4 8,Tp = Ogin, in D, .

This is done as follows: By (5.46),

/IR 10, 1de . /R 180ldé < O(1)(fv + Aw)| + v — A(w)])

(5.50) ¢ ¢

/|$u@/'mwmgoummxw+Amn+w—Amm
Re R¢

and thus for (u,v) € L5 we have

3 & 3 & _
/ @o, / @o, / jo; / \70 eLlloc(R$XRt+XR§)'

3 3 & £ _
mzat/ 60"‘83:/ joa mzat/ (—)o‘l‘ax/ jo’
—00 —00 — 00 — o0

then m, m satisfy (5.49). Note that (5.49) determines Jgm and g/ uniquely, and, in turn, m

If we set

and m are uniquely determined in the class of bounded, positive measures.

Then, using Proposition 5.3 and (5.49), we express (5.2) in the form

(m, ¢ @ pee) + (M, @ Peg)

:/' /(@m+@mWH%$m+$mwMMMt
(5.51) R, x[0,7] JR¢

+ /Rz ~/1R§ (90<U0($)7vo(«1’)7£)p§ + éo(uo(.ﬁv),’l}o(gj)’£)ﬁ€>gp(x,o) dédz > 0

for p € C®(R, x [0,T)) with ¢ > 0 and p,p € C*(R¢) and convex, where (-,-) denotes the
pairing between distributions and test functions. From here we conclude that m and m are
positive measures.

We now turn to the proof of (3). Testing (5.51) against p = p = 1£2 we see from (5.39) that
1

(m+m,p®1) :/ [51)2 + W (uw)]pr — v(o(u) — o(0))p, dudt

R [0,7]

+ /R [%U?)(lﬂ) + W(Uo(x))]so(x’ 0) dz

x
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To deduce (5.42) we choose a family of nonincreasing functions ¢, (¢,z) > 0 which converges
monotonically to 1 as n tends to infinity, and such that, for example, ¢, ,, vanishes in L? as in
[LPTy, Thm 1].

To prove (4), following the argument in the proof of (1), the growth rate of the test function
in ¢ is irrelevant. For instance, we may choose the test function p(¢) = (¢ — M)% with M =
| v+ |A(u)| |z~. From the support in & of the functions ©,, ©,, see Proposition 5.1 (iii), we
deduce that [ p”(£)m d€ = 0 and thus, we obtain m = 0 for £ > M. The other bounds on the
support of m, m follow in the same way. Finally, if (u,v) is a C! solution of (5.1) in some domain
Q, then it is reversible and satisfies (5.2) for any smooth entropy pair 7 — ¢. In turn, (5.51) holds
as equality for all test functions p and p. Since m and m are bounded measures we conclude that
m=m =0 for (z,t) € Q, £ €R O

Remark 5.8.

1. Theorem 5.6 extends the kinetic formulations for scalar conservation laws [LPT;] and for the
equations of isentropic gas dynamics [LPTs]. As in the latter case (5.41) depends on the moments
and does not provide a purely kinetic formalism. But contrary to gas dynamics, (5.41) form a
system of two equations. This phenomenon was also pointed out for the n x n chromatography
system which produces a family of n semi-kinetic equations (see [JPP] ).

2. Comparison with linear elasticity. It is instructive to compare the form (5.11) of the kinetic

functions for nonlinear stress-strain laws with that of linear elasticity: o(u) = a2u, with a, > 0

constant. For linear elasticity one computes (from Proposition 4.6) that H =1, Q = —a,, H =1

and Q = a,. The kinetic functions then become

90 = ]1v+aou('§)a Jo = _aoﬂv+aau(§) ) (:)o = ]lv—aou(g) ) Jo = ao]lv—agu(f) .

and thus the effects of each wave speed decouple. By contrast, for nonlinear laws, there is coupling
through the factors s, and &,, cf. (5.9) and (4.50)-(4.53).

3. Inwvariant regions. The classical property of invariant regions for the equations of elasticity
under (c¢) can be obtained directly from the entropy formulation (5.2), (see Dafermos [Da4],
Serre [Sez] for an independent proof). We outline their derivation from the kinetic formulation.

Equation (5.41);, when tested against the test function ¢(§ — &p) with ¢ convex, yields:
01 [ @060l )it + 0, [ T,00(€ ~ )i = — < m, Bee(€ — &) >< 0.
R R
Using (5.27) that implies

(5.52) /R < X(u(z,1),v(z,t) = £),p(€ — &) > dz < /IR < X (uo(z), vo(x) = £),p(§ — &o) > d
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where the brackets denote the action of X' (u,v — ) on ¢(- — &) (and should be understood as
defined through integration by parts in ).

Choose &y = sup,{vo + |A(uo)|} and ¢(€ — &,) = [(€ — &)4]?- Since X is a positive measure
with support as in (5.19), the right hand side in (5.52) equals zero and the resulting inequality

gives
(5.53) v(z,t) + |[A(u(z, t))] < sgp{vo + |A(uo)l}-

The choices &, = inf,{vy — |A(ug)|} and ¢(& — &) = [(€ — &)_]? provide the complementary

inequality
(5.54) v(z,t) — |A(u(z, )| > igf{vo — |A(uo)|} -

4. L? solutions. We finish with some remarks concerning the kinetic formulation for L solutions,
always under hypothesis (¢). The kinetic functions ©,—7,, ©,—J, are in L}, (R xR, xR ) under
quite weak hypotheses: (u,v) a measurable function with a(u) € L}, (RS x R,). Nevertheless,
(5.41) becomes meaningful when tested against convex test functions, and the growth rate of these
test functions (as |{| — oo) reflects on the growth of the resulting entropy pairs (see Lemma 5.7).

The proof of Theorem 5.6 will work for LP solutions with minor modifications. Instead of
formulating a precise statement, we allude to the points that require care for LP solutions. For
part (i), the extension from (5.47) to (5.48) requires to test with test functions of linear growth
and (by (5.46)) requires integrability of solutions. It is seen clearly from the proof that the growth
rate of allowable test functions is directly connected with the growth of entropy entropy-flux pair
in (u,v) and ultimately to the integrability of the solution. For part (ii), in order to define m

and m it is at least needed that v, A(u), a(u)v, a(u)A(u) € L}, (R, x RS), see (5.50).
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