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1 Introduction

For scalar multi-dimensional conservation laws

d
(1.1) O+ > 0y Fj(u)=0, zeRl teR.
j=1
there are available two equivalent notions for weak solutions: the Kruzhkov entropy

solution [11], stating that u satisfies the entropy inequalities
(1.2) Om(u) +divg(u) <0 in D',

for any entropy pair n — ¢ with 1 convex, and the kinetic formulation of Lions-
Perthame-Tadmor [12]. Both concepts lead to uniqueness, stability theorems and
error estimates for approximate entropy solutions [11, 15].

Starting with Tartar [21], entropy pairs are used to determine compactness for
approximate solutions to (1.1). The compactness of a given family {u°} of approx-
imate solutions bounded in some LP-norm (p > 1) appears to be determined by

compactness of the entropy dissipation measure in the sense

(1.3) On(u®) + divg(u®) is precompact in Hl;cl,w,t'

This has been proved in one-space dimension in both the L* and LP stability settings

by Tartar [21] and Schonbek [19] (see [18] for a simplified proof using singular
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entropies and [22] for an analysis of the compensated compactness bracket in multi-
d). Tartar’s framework is quite versatile and applies even to approximations that
do not yield entropy solutions. The goal of this article is to show how the kinetic
formulation compactness framework of Lions-Perthame-Tadmor [12] can be easily
adapted to analyze the structure (1.3) in multi-d.

For multi-dimensional conservation laws, convergence of approximate solutions
is usually deduced by using a framework of DiPerna [4] and Szepessy [20]. The ar-
gument hinges on showing that a Young-measure solution (with certain regularity
in time) that satisfies (1.2) for all convex n and is a Dirac mass at ¢ = 0 is in
fact a regular weak solution. It yields compactness for bounded families of approxi-
mate entropy solutions, i.e. approximate solutions {u®} that satisfy the dissipation

structure
(1.4) O (u®) + divg(u®) < P°(u)

with P¢(u®) — 0 in D" as € — 0. The framework (1.4) is naturally associated with
monotone approximations that produce entropy solutions. By contrast, the frame-
work (1.3) is quite general and even encompasses approximations that may produce
non-entropic solutions, i.e. solutions that do not decrease all convex entropies, like
the non-classical shocks in [6].

An alternative compactness framework is proposed in Lions-Perthame-Tadmor
[12] by means of the kinetic formulation and averaging lemmas (e.g. [16, 17]). The
framework in [12] is still developed for approximations that satisfy (1.4). Neverthe-
less, as we will see, it can be easily adapted to apply to the structure (1.3). This
is achieved by first transforming the entropy dissipation structure of the problem
at hand to an approximate transport equation. The process uses duality and we
call it kinetic decomposition. It results to an approximate transport equation where
the right hand side consists of ”lower order terms”; then the averaging lemma of
Perthame-Souganidis [17] yields compactness of moments in LP spaces.

We pursue this approach in two examples: First, the relaxation approximation
of scalar conservation laws

Oru + Z?Zl Oz;v; = 0

(1.5)
3tvz‘+A§8wiu = —%(vi—Fi(u)) i=1,---,d,

proposed in Jin-Xin [8]. Here (uf,v?) : R? x Rt — R x R? is the solution of (1.5)



and the constants A; satisfy the subcharacteristic condition
(1.6) Ai—|F/(w)|>0 i=1,---,d, uelk

We refer to [9, 14, 1] for convergence results of other (diagonalizable) L!-contractive
relaxation systems. In 1-d the system (1.5) is diagonalizable and L!-contractive [13],
in multi-d it is no longer diagonalizable [14, Remark 2.4]. We work in an L2-stability
framework, and use certain strong dissipation estimates from [23] valid under (1.6).
The entropy production is turned into a kinetic form using duality (see section 2)

and results to an approximate transport equation,

d

(1.7) Oix° +al€) - VX" = 0u; (75 + 0cg5) + 01 (T + 0cg5) + Ogke
j=1

for the function x* = 1(u®(z,t),£), where

]10<§<u if u > O
(1.8) L(u, &) =<0 ifu=0
—Ilu<§<0 ifu<O

is the usual Maxwellian associated with the kinetic formulation of scalar conservation
laws, g5, g¢ — 0 in L%(R? x Rt x R) and k¢ is uniformly bounded in measures.
Convergence is then obtained via the averaging lemma in [17]. In the limit ¢ — 0,

x& — L(u, &) =: x which satisfies
(1.9) Ox+a(f) Vx=0k in Dy,

with k& a bounded measure. It is not clear whether the limit measure k is positive
in multi-d (see Remark 4 for a discussion). In the one-d case, an alternative kinetic
decomposition may be effected using extensions of entropies, which leads in the
e — 0 limit to the kinetic formulation with k a positive measure (see section 2.2).
In the multi-d case, entropies are in general non-extensible and this process fails.

The second example is the diffusion-dispersion approximation

d d
(1.10) Opu+ Y Oy, Fj(u) = eAu+6Y  Oujuju;,
=1 =1
of scalar conservation laws, with Fj globally Lipschitz. Convergence of (1.10) has
been established for § = O(£?) in the 1-d case by Schonbek [19], and for § = o(¢?) in
the multi-d case by Kondo-LeFloch [10] (see also [3]). The analysis of [10] uses the



framework of [4, 20] and is based on the dissipative structure (1.4), valid only on
the range § = o(¢?). We consider here a family of smooth solutions {u®} to (1.10) in
the range § = O(£2) and show in section 3 that x* = 1(u®, ) satisfies the transport

equation

d
(1.11) X" +a€) - VX" = 0, (75 + 0cg5) + Ock® in D,
j=1
with g%, g5, k as before. The convergence u. — u almost everywhere then follows
from the averaging lemma.
Ase = 0, x¥* = x = I(u,&) a.e. and x satisfies the transport equation (1.9).
It turns out that if § = o(¢?) the bounded measure k is positive and u an entropy
solution. By contrast, on the range § ~ €2 the measure k might in general be nonpos-
itive. We note that for 1-d scalar conservation laws, when the flux is not genuinely
nonlinear in the sense of Lax, diffusive-dispersive approximations can produce in the
range 6 ~ 2 nonclassical shocks that dissipate the energy but do not dissipate all
the convex entropies (see Hayes-Lefloch [6] and [5] for a survey of this subject). The
form (1.9) with & non-positive retains in the limit information on the approximation
process, and may prove useful in analyzing limit processes that yield non-classical

shocks.

2 Relaxation Approximation

Consider the relaxation approximation of the scalar conservation law
d
du+ Y Onv; =0
(2.1) j=1
Ow; + A20,u = —%(UZ—E(U)) i=1,---,d.

where u,v; : R x R — R, and the flux F = (Fi(u),...,Fy(u)) is a smooth
function. Let a; = F; and assume that the constants A; satisfy the subcharacteristic

condition
(2.2) A; > |ai(u)] 1=1,---,d, ueR.

In particular, this assumption implies F; are globally Lipschitz.



Existence of solutions for (2.1) follows from general considerations. The system

(2.1) can be put into a symmetric hyperbolic form

d
BodU + > B;o,U = Q(U)
j=1
where By is positive definite symmetric and Bj, j = 1,...,d, are symmetric. The
local existence and uniqueness is well known for linear or semi-linear symmetric
hyperbolic systems. Since in our case Q(U) is globally Lipschitz continuous, it is easy
to obtain global existence (for example by a direct contraction mapping argument).
In the sequel we need solutions having derivatives in L?; this is achieved by assuming

the same smoothness for the initial data.

2.1 Convergence in the multi-d case

The objective is to show that solutions (u®, v®

of the relaxation system (2.1) con-
verge as ¢ — 0 toward a weak solution (u,v), v = F(u), of the scalar conservation

law
(2.3) Oyu + divF(u) =0,

In preparation, recall that n-¢ with ¢ = (gj(u));=1,..q is an entropy-entropy
flux pair if ¢; = a;n’. Such pairs describe the nonlinear structure of (2.3) and are

represented in terms of the kernel 1(u,&) by the formulas

n(u) = n(0) = /’5 U, €)1 (€)dE
(2.4)
4i (1) — g;(0) = /g U, €)ay (€)1 (€)de

where
]10<§<u if u >0
(2.5) 1,(6) = 1(u,€) = 4 0 ifu=0
—]1u<£<0 if u <0
The system (2.1) can be written in the form of regularization by a wave operator

d

d
O+ Y 0 Fy(u) = 3 Oe, (F(u) = vy)
(2.6) 7=t 7=t

d
=e()_ A20y;0;u — Oyu) .
j=1

5



We start with a dissipation estimate for solutions of (2.1). Such estimates hold for

general classes of systems regularized by wave operators (see [23]).

Proposition 1 If (2.2) holds, then solutions (u,v) of (2.1) satisfy the dissipation
identity

d
1 1
/Rd E(u + edyu)? + 562(8tu)2 + &2 Z A?(c’)mju)Qd:zr
j=1

/ / 3|8ttu—ZA2 wjxju|2+&:z (8 u)?dxds
1 1 a
< [ S(u(0) + edpu(0))? + S£2(0u(0))? + €2 Y A3(9;u(0)) da.
R4 2 2 j=1 !
Proof. Let u = u®(x,t) be the solution of (2.1). Multiplying (2.6) by u, we obtain
1 d
Bt(§u2 +euwy) + Y 0r;Q5(u)
(2.8) L

+e(> A3(0n,u)” — Jul?)
j=1

where Q}(u) = uFj(u). Second, we multiply (2.6) by ut, and obtain

A uuxj

”M“‘“

d
1 1
8t(§5ut2 + 56 ZA?(&,;JU)Q)
(2.9) 7=
+ ug(ug + divF(u)) =€ Z O, (A?utuxj).

J
j=1

Combining (2.8) and (2.9), we deduce

d d
815(%(” + gut)Q + %EQ(Ut)Q + 52 ZAJQ(&C]u)Q) + Z 8mJQ](u)

j=1

(2.10) + elug + divF (u \2—|—&:Z )?) (0 u)?

d
= ZB;E] eA Uy +2:242 JUU; )
j=1

The subcharacteristic condition (2.2) yields the identity (2.7). O
In the sequel, we use the notation u® €, X to denote sequences that are uniformly

bounded in the norm of the Banach space X.



Corollary 2 If (2.2) holds and the initial data satisfy the uniform bound

d

(2.11) ufll r2ray + €l Orugll 2 gray + € Y 110m;ufll L2ey = O(1)
7=1

then the solutions of (2.1) satisfy the uniform estimates

(2.12) uf(x,t) € L%°(RT;L2(RY))
d

(2.13) e (Onuf(z,1)* € L'(R'xRY)
7=1

(2.14) e(Opuf (z,1))? €, LY(R? x RT)

Proof. Equation (2.7) directly gives the bounds for u and s%uzj. The bound of

e2u follows from (2.7) and

d
2
elug)? = 5( divF (u Z Orja;tb — Bttu)) €, L'(R? x RY)
O

Remark 1 For the 1-d variant of (2.1) there are available L estimates (see [13]).
These estimates are derived from diagonalized forms of the 1-d version of (2.1), and
remain true for other multi-d relaxation systems of diagonal form (see [9], [14]). The
multi-d version of (2.1) is not diagonalizable and L™ estimates are not available.

Hence, we work on the natural L? stability-framework suggested by (2.7).

Remark 2 Let 1(u,£) be the entropy kernel. Since u® € L®°(R*; L?(R?)) we have
for K compact subset of R x Rt

2
/K (/g\n(u ,§)|d§) dwdt = /K|u 2dzdt < C
and thus 1(u®,¢) € L7 (R x RT; L' (R)).

In the sequel we use the limiting case of the averaging lemma proved in Perthame-

Souganidis [17], see also [16] :

Theorem 3 Let {f,},{gin} be two sequences of solutions to the transport equation

d
(2.15) Orfn+ a(€) - Vofn = 010fgon+ D 02,08 gim

=1



where k € N. Assume that a(§) € C®(R) satisfies the non-degeneracy condition:
for R>0

(2.16) w(B)=  sup /{|§|<R} (|a + %P + 1)71df -0, as B — 0.

a€R,wesd-1

If {fn} is bounded in LI(R? x Rt x R), for some 1 < ¢ < oo, and {gin} is
precompact in LI(R? x RT x R), then the average

/ V() fu(t,z, €)dE  is precompact in LY(R? x RY),
R
for any ¥ € CX(R).

Remark 3
1. The non-degeneracy condition (2.16) is equivalent to for all R > 0

(2.17) meas{¢ € Br |a+a(f) -w=0}=0, VacR, weS,

where Br = {|{| < R}. The condition (2.17) can be interpreted geometrically, and
means that the curve £ — a(€) - w + « is not locally contained in any hyperplane.
2. An assumption on the behavior of a(&) is necessary; there would no improvement
of regularity in the case a(§) = a = const.

3. By using cut-off functions, it is easy to show a variant of theorem 3 stating that
under the same hypotheses if {f,} is bounded in L] (R? x Rt x R) and {g;»} are
precompact in L] (R? x Rt x R) then the averages are precompact in L}, (R? x R*)
for any ¢ € C°(R).

Now we state the main theorem of this section.

Theorem 4 Assume that F; are globally Lipschitz functions that satisfy the genuine-
nonlinearity condition (2.16)(or (2.17)).

Let A; be selected so that (2.2) holds, and let u® be a family of solutions to (2.1)
generated by data subject to the uniform bounds (2.11).

f (RY x R¥),

converges to u in L

Then, along a subsequence if necessary, u loc

1 <p<2, and u is a weak solution of (2.3).

Proof. Let (u®,v®) be a family of solutions to (2.1). The proof proceeds in three

steps.



Step 1. Let n — q be an entropy-entropy flux pair. Multiplying (2.6) by 7'(u®) and

rearranging the terms we compute the entropy dissipation

Om(u®) + divg(u ZA 00,1 (UF)) — €0 (uF)

(2.18) —en( ZAQ Ow;u)?) + en (uF) (Opu)?.

Fix a test function p(z,t) € CP(R? x Rt) and regard n/(¢) € C°(R) as a test

function in velocity space. By (2.4), we may write

Jowe [1@50)1' ()] w2, 1) + [Z% us, €)n (5)]<pmj(:c,t)d§da:dt
(2.19) = / 5]1(u6a£)77/(§)[ZAg‘ijwj(xat)_Sott(xat))] d¢dzdt
z,t,& J=1

- /m t (siAg(aij —E(Btu5)2) ' (uf (2, 1)) o(z, t) dzdt,

which is viewed as describing the action on tensor products ¢ @ 7.

We proceed to interpret (2.19) as an equation in D, ¢ Let

Xs(x’t7 é‘) = ]1(u87 é-)
d
G (1) = e(ZA?(@wjus)Q - (atzf)?) .
7j=1

G* €y L' (R? x RT) from corollary 2. We wish to define d(u® — £)G® as a distribution

in Dlz,t,g by its action on tensor products

(2.20)

(2.21) <O — )G, o @ >= / G (o (o O (0", ) dad.

This follows from the Schwartz kernel theorem (e.g. [7, Sec 5.2]) as follows: Define

the linear map
K:CPR) - D'(RY xRY) by Ko =G(x,t)p(us(x,1))

If ; — 0 in CP(R) then Ki¢; — 0 in D ;. The kernel theorem implies that
d(u® — &)G* is well defined as a distribution in D;J’g and acts on tensor products

via (2.21). Moreover,

(222) <08 — )G, oo S= — / G (@, ), Oy (u (2, 1))t
z,t

9



Thus (2.19) is written as
<O +alf) - VX, ' (el t) >

d
(2.23) = <00, (24200,x%) — Au(007) L 1 ()l t) >

=1

+ < 0(6(u” = €)G°, 0 (§)p(x,t) >

Since the subspace generated by the direct sum test functions ¢ @ i’ is dense in
CP(R? x Rt x R), the bracket (2.23) is extended to test functions (x,t,€) €
CR(R? x R x R). So, we have

X" +a() - VX° =D 0, (eA700;,X°) — 01 (e0pxX") + Oeb(u® — £)G®

M-

1

J

(2.24) 4
=: Z On; 5 + OpmG + Ok® in D¢
j=1
where
(2.25) T = &:A?@a;jxs, 5 = —edx®, kF=0(u®—§&)G".

Step 2. The next objective is to estimate the terms k° and 5. For the term £, let
0(z,t,&) € OX(RY x Rt x R) and note that

| <k5,0>| = | <6(u®—EG*, 0> |
= | G* (z,t)0(z, t,u (z,t))dzdt]
x,t

sup [0(z, ¢, )| - |G° || 1 (raxiet)

:E:t:

IA

By corollary 2,
| <k5,0 > < Cfllco

and k° lies in a bounded set of the space of bounded measures M(R? x Rt x R)
(the dual of Cy(R? x Rt x R), the continuous functions that vanish at infinity). The
Sobolev embedding theorem implies M is embedded in W 1P, 1 < p < 42 apd

d+1
thus k° is precompact in W, PRI x RT x R), for 1 <p < gﬁ

10



Consider now the terms 75 (z,t,¢), j =0,1,...,d. By (2.21), we have

< O, (u (2,1),6),0' (§)p(x,t) > = — < Wu'(w,1),€),7'()0u, (1) >
= —/taxjcp(a:,t)n(ug(x,t))da:dt

= /tgo(:c,t)n'(us(:c,t))@xjus(x,t)d:cdt
= < O(u(z,t) — &) Oy u (1), p(z, )’ (§) >

and thus
(2.26) €0, (%, &) = ed(u” — £)0p;u” in D,

(This step requires that 0,;u € L}, ..) For § € C(R? x RT x R),

loc*
< &0y 1(u5,6),0 > = <eb(u® —&)0y;u(x,t),0 >
= /58wju5(x,t)0(:c,t,ue)dxdt
z,t

)

< Vel / (@nyu)dadt) / 02 (., (o, £))ddt) &

> x,t
But since
u®(z,t)
/ 02(x, t,u ) dodt = / / 200¢dédadt
z,t z,t J —00
w 2 70\ 1 “ 2 74\1 2
(2.27) <2 (| a0l @orioiisa <ol o,
z,t J —00 —00 ’

it follows that
| < Eaa:j ]l(ug,g),é’ > ‘ S \/EOHQHLi,t(H&l) .

We conclude
0y W(u,&) = 0 in L7 ,(H, ")

ed(uf,€) = 0 in L2 (H. ")
the latter coming from a similar argument.
Step 3. In summary, the function x¢ = 1(u®, {) satisfies the (approximate) transport

equation
(2.28)

d
X"+ a(€) VX" = 0 (G5 + 0cg5) + 04 (35 + Oeg) + Ock®  in D,
j=1

11



where g%, g§ — 0 in L?(R? x Rt xR) while k° is bounded in measures (not necessarily
positive) and precompact in Wl;cl PR xRt xR), for 1 < p < d+2 By the averaging

lemma (Theorem 3),

/]l(us,f)zﬁ(f)df is precompact in L | 1<p< ——
3

for (&) € CX(R).
Let R be a large positive number and consider ¢ € C2°(R) such that ¢ =1 on
(=R,R) and 0 < ¢ < 1. Then

w — [ a ] =| [ 10,00 - v

S/:I( ,f)|d§+/_oo\( 0lde = (uf —R)" + (u* + R)”

Moreover,

/(qf —R)" + (u* + R) " dxdt < / |uf| dzdt
|u¢|>R

< _/ /|u5|2dwd ¢

Since u €, L>°(L?), it follows that (along subsequences) u® — w in L? p <2,

bd |

We conclude that {u®} is Cauchy in L}

loc,x,t”

and almost everywhere and that u € L°(L?). Integrating (2.28) with respect to ¢
yields

o [ xdg -+ div [ atencds = jésAiaij [ e ot [xcae:

and with limit € — 0, u satisfies the scalar conservation law.

Next, we pass to the limit € — 0 in (2.28). Note that

X = 1(uf,€) = x = 1(u,&)  ae. and in LD

loc,x,t

k= G6(uf —&) =k weak-% in My ;¢

(L}), 1<p<2
(2.29) ¢

and y satisfies

(2.30) dix +a(€) - Vx=0k in Dy,

12



Remark 4
1. The limit k is a bounded measure but we do not know whether k is a positive

measure. Ultimately, the sign of k depends on the sign of
d
GF = s(ZAJZ-(&L.juE)Z — [divF(uf) — £(A% - Auf — u;)]Q)
7=1
One may formally argue that u; ~ divF(u®) as € — 0 and postulate that
d
GF ~ S(ZAﬁ(axjue)Q - (divF(us))Q) >0,
j=1

by some version of the subcharacteristic condition. This argument may well be
misleading, since all the available information comes from (2.10), and it could in
principle happen that the terms e(divF (u® ))2 and &3 (AQ-AuE —u,ft)Q are comparable
near shocks. This situation should also be compared with the behavior of diffusion-

dispersion approximations when § = O(g2).

2. One may derive a (fairly weak) version of entropy inequality for the energy of the

problem. Using corollary 2,

d
e2(ug)? + &2 ZA?(axju)Q —0 inDy,
i=1

: /
euuy = 0,  euug; — 0, eQutumj —0 InDy,

Also, there exist measures H and Qj so that

1 _ = .
§u€2 —~H, Q;u°)—Q weak-x in measures

Passing to the limit £ — 0 in (2.10) we obtain
(2.31) O H+divQ <0 in D,

2.2 A Kinetic Decomposition based on Extension of Entropies

The 1-d version of (2.1) yields when ¢ — 0 entropy solutions [13]. In this section, we
outline an alternative method for obtaining a kinetic decomposition, that is based
on the idea of extending entropies (see [2]) and produces when ¢ — 0 the kinetic
formulation with k a bounded, positive measure. This process complements the one
described in section 2.1. It has the advantage that it produces k > 0, but, since it is

based on entropy extensions, its applicability is limited to the one dimensional case.

13



Counsider the relaxation system

Oyu + Opv =90
(2.32)
O+ a*dpu = —L(v— f(u))

where u,v : R, x Rf — R, and f(u) is a smooth function with f(0) = 0 and

satisfies the subcharacteristic condition
(2.33) a>|f(u)] u € R.
This relaxation system converges to the scalar equation

(2.34) Ou+ Oy f(u) =0

v

The system (2.32) may be diagonalized, by setting f{ = 3(u — {), 5=

%(ug + %) We then find
{ Ofi —adefi = —L1(ff — Mi(uf))
—2(f5 — Ma(u))

(2.35)
Oufs +adnf3

where M (u®) = £ (u® — f(zs)), Mo(uf) = L(w + @) Clearly we recover the
original unknowns by the inverse transform u® = f{ + f5 and v* = a(f5 — f5). If we

set pi(fi) = [§* M 71(g)dg, then p;(-) is convex and we have the estimate

2
o Z pi(fi) + Ou(—ap1(f1) + apr(f1)) — u(Opu + 0pv)
(2.36) =

F2 M) - )i - M) =0

For ff(x,0) € L*(R),i = 1,2, by the subcharacteristic condition (2.33), we obtain
the bound

/ |v° — f(uf)|?dedt < C/ Z|f, ()| dxdt

(2.37) c/ Z “L(f) = w)(fi = Mi(uw))dzdt = O(e)

VAN

Let H(u,v),Q(u,v) € C'(R x R) be an entropy pair for the relaxation system

14



that extends the entropy pair n — ¢ of (2.34) :

Qv = Hu
(2.38)
Qu = a2Hv

{ H(u, f(u)) = n(u)

Qu, f(u)) = q(u)
H — @ have the property that (smooth) solutions of (2.32) satisfy

(2.39)

(2.40) O H (u, ) + 0,Qu, v) + %Hv(u, D)o — f(u)) =0

and when ¢ — 0 they are expected to converge to the entropy dissipation of the
limit conservation law.
The solution of (2.38)-(2.39) is computed easily: The general solution of (2.38)

is

{ H(u,v) = F(au+v)+ G(au —v)
(2.41)

Q(u,v) = aF(au+v)—aGau —v)
for some functions F, G. Since n'(u)f'(u) = ¢'(u), we have

{ F'lau+ f(u)) = 551’ (u)

G'(au— f(u)) = 551 (u)
Define the functions w(u) = au + f(u), Z(u) = au — f(u). By the subcharacteristic

(2.42)

condition, @ and z are invertible with inverse functions u = @(w), u = @(z), that

are strictly increasing and globally Lipschitz and satisfy 4(0) = @(0) = 0. Hence,

{ Fl(w) = gq1(a(w))

G'(z) = 51'(a(2))
For the 1-d case we obtain the following approximate transport equation:

(2.43)

Theorem 5 Let (2.33) hold and the initial data satisfy the bounds

(2.44) gl ey + ol 2y < OQL).
We then have
at% (#ou+v,as + f())(a+ f'(s)) + Hau —v,as = f(s))(a ~ f(5)))
+a$% (#ou+v,as+ f(s)(a+ f'(s)) = Bau —v,05 = f(s))(a — ['(s)))
(2.45) = d, (i [au -+ v,as + £(s)) — Haw —v,as — £(s))] (v f(u)))

=: Oym*(u,v, s)

15



where m® s a bounded family of positive measures.

Proof. The proof uses representation formulas obtained via the extension of en-

tropies. Let ' € C°(R) be viewed as a test function. Then, from (2.4) and (2.43),
1 ,,. 1,
H(u,) = [ Mau+0,€) 500/ @ONE + [ Uau — 0,€)0 0/ (@)t

= / 1(au +v,as + f(s))%(a + f'(s))n'(s)ds

a

+/]l(au —v,as — f(s) %(a — ' (s))n' (s)ds

A similar formula is obtained from Q(u,v). Finally,

Hy(u,v) = %n'(&(au +v)) — %n' (@(au —v))

_ / o (e +0),€) — Ualau —v), )’ (€)de

which implies that, for ¢ € CX(R x RT),
1
[ ZHuw oo~ f@)pdsdt = - < o plat) 0 3/(0) >
z,t

where

me = o (Uafau +v), ) ~ Mo —v), ) (0 ~ f(u)

2ae

L (M + v, a + £(6)) — Wau — v, — F())) (v — f(u))

"~ 2ae
Following the argument in section 2.1, it is easy to derive (2.45).
We turn to properties of m®. Consider the case v > f(u) and note that since a,

4 are increasing, we have
(2.46) w(au —v) < a(au — f(u)) =u = d(au + f(u)) < a(au + v)

By contrast, when v < f(u) all inequalities are reversed. Since the function 1(-,¢)
is increasing, it follows easily that m® > 0.

For 0(x,t,¢) € Cy with |0] < 1, we have

<m0 | = /M T;(]l(ﬁ(au +0),€) — Waau —v),)) (v — £ (w)Pdadid
< [ o= sl /5 (8@ 0 + v),) — Ua(a - v), )|de ) drde

= /x’t iw — fu)||a(eu + v) — a(au — v)|dzdt
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The last term is bounded, because by (2.46), (2.37)
|i(au + v) — u(au —v)| < O(M)]v — f(u)]

/M|v ~ f(w)dzdt < O(e)

Corollary 2 implies m® is bounded in measures. O

We obtain compactness of approximate solutions by using the averaging lemma:
Corollary 6 Let f be globally Lipschitz and satisfy
(2.47) meas{€ €R | f'(§) =a} =0, VaeR.

Let a be selected so that (2.33) holds, and let u® be a family of solutions to (2.32)
generated by data subject to the uniform bounds (2.44). Then u® converges to u in
LP

loc

(RxRT), 1< p<2, and u is an entropy solution of (2.34).
Proof. Let
I'= 5 [Mautv,as + £(s)) ~ Wau+ f(u), s + f(s))(a+ £/(5)

T = (1 — v,a5 — £(s)) ~ Mau— f(),as = f()](a ~ (5)

and note that
%[ﬂ(au + f(u),as + f(s))(a+ f'(s)) + Lau — f(u),as — f(s))(a = f'(s))] = L(u, s)

%[ﬂ(au+f(U), as+f(s))(a+f'(s)) = Wau— f(u),as = f(s))(a—f'(s))] = f'(s)M(u, 5)

The approximate transport equation (2.45) can be rewritten as
(2.48) O l(u, s) + f'(s) O 1(us, s) = —0,(I° + J°) — Oy (al® — aJ®) + Osm°

But, we have, for any compact subset K of R x RT,

//|I(:c,t,s)|2dsda:dt
KJs

— au u 2 uh
< C/K/glll(auﬂ,f) Uau +  (u), ) Pdddt
= C/K|f(u)—v|dxdt
< ARl ( [ 17 —ofdsar)” = 0

17



So, I,J — 0 in L} (R, x R ; L*(R,)), the latter coming from a similar argument.
»

By the averaging lemma, we conclude that v* — u in Lj_,,

p < 2. Next, we pass to

the limit ¢ — 0 in (2.48). Along a further subsequence m® — m weak-x in measures;

it follows
(2.49) O (u,s) + f'(s)0(u,s) =dsm  in Dy,
and u is the unique entropy solution of (2.34). m

3 Diffusion-Dispersion Approximation

In this section, we study the diffusive-dispersive approximation

d
(3.1) Opu + divF (u) = sZaWju + 528xjxj$ju, reRY >0,
i . =

j
u(z,0) = u§(z), = €RY,

—

where F'(u) = (Fi(u),...,Fy(u)) and a; = F}. We will show that if the initial data
ug converge weakly to some limit ug and § = O(e?), then solutions of (3.1) converge
towards a weak solution of the scalar conservation law (1.1). Our analysis is based
on a kinetic decomposition and the averaging lemma, and it can handle the case
§ = O(g?) (where convergence is expected but not to an entropy solution). We

begin with some estimates on smooth solutions u* of (3.1) from [19], [10].

Lemma 7 Suppose that F;, j = 1,--- ,d, are globally Lipschitz (\F]'\ < A;) and

assume the data satisfy the uniform bounds

d
(3:2) w6l 2(rey + 52 [[0; upll L2 rey < C.
j=1
Then we have
(3:3) w(z,t) € LO(RY;LA(RY)
d
(3.4) 26 ) (On;uf(w,1))® € LR xR
j=1
d
(3.5) > &} Ot (1,1)? € L'(R! x RY)
=1

18



Proof. Let u(x,t) = u®(x,t). To derive the L? estimate (3.3), we multiply the
equation (3.1) by u and get

d d
1
875(5"&'2) + Z B@VQ](U) = EZ (851:J (uuwj) - |ufb‘j|2)
(3.6) i=t dFl
1
+9 Z O (““xm - 5‘“%’ |2) )
j=1

where @ = uF}. Integrating over R x (0,t), we get

t d
(3.7) / lu(t)|2dz + 22 / / S oty [Pzt = / o 2z
Rd 0 JRre Rd

To estimate uy,q,,k =1, ,d, we differentiate the equation (3.1) with respect
to the variable x;, and then multiply by u,, . The right hand side is identical to the
preceding case with u replaced by u,,. The flux term is handled via the identity

(uikFJ')mj = Uy Uy, F] + (uxk)Qumj FY, and yields

d
1
Or(Glttay ) + D (Oa; (w2 () = iyt F(w))
j=1

(3.8)

d d
1
= EZ (awj (U Ugyar;) — |“~”Ckwi|2> + 528%' (Uay, Uapaa; — §|u$sz“2) ’
J=1 j=1

After integrating over R? x (0,t), we get

d_ rt
/Rd |uwk|2daz+252/0 /Rd |u$jwk|2dxdt
i=1
d
a4 32 [ 2 el ot
j=1

d t d t
1
2 112 2 2
d—l——(g F; )// dxdt + E // 2 |“dxdt.
/Rd |u0ack| € - p “ ]Hoo o Jra |uwk| €L EjZI o Jra |Ua:]ack| x

Using (3.7) and (3.2), we deduce that

d  rt
2 2 3 2
t)|“d o |“dxdt
[, s o) m+§/0 [, e
d t
< [ PluonPds+ (SIFIE) [ ] el Paar < 001).
Rd = 0 JRd

VAN

IA

Next, we state the main theorem of this section:
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Theorem 8 Suppose the data satisfy (3.2), and F; are globally Lipschitz functions
that satisfy the nondegeneracy condition (2.17)(or (2.16)).

(i) If § = O(g?), then solutions u® of (3.1) converge along a subsequence to a

function w in L} (RE x RY), 1 < p < 2; the limiting u is a weak solution of
(1.1).

(ii) If 6 = o(?), then u is the unique Kruzhkov entropy solution of (1.1).

Proof. Let 6 = O(£?) and denote by v = u%(x,t). We multiply (3.1) by 7' (u)

and obtain
on(u®) + divg(u®)

d d

= szamj(n( £)0p;ut) — Z@m]u
"
o2l

Jj=1

M&

(3.9) Ouj;ju’) — 0n" (u (Ou;u" ) (O u°).-

]:1
Let ¢(z,t) € CP(R? x RY) and let n € C(R) be viewed as a test function. By

introducing the indicator function 1(uf,§), we have

d

-/ (1,000, 0) + 3T F€)1 €)0s, 9,0 ) (€ et

N2 j=1

d
(3.10) = —/ Z (e@xjus—I—68zj$ju5)77'(u5)3mjg0(a:,t) dxdt

—/:U n”(us)(ezd:(amju +5Z On;u" ) (O ;0 ))¢($at)d$dt

it j=1
Let x* = 1(u*, §),
H*(z,t) = €0y,u° + 00,

s U
Gg(x,t):an(awju +(5Z Or;u") (O u°)
j=1

From arguments as in the case of relaxation approximations, it follows that

A’ + a(e) - Vx° = Za% (H° (2, 0)0(u% — €)) + 06 (G (&, 3(u" — €))
(3.11)
Z o5+ Ok in Diye
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We estimate first the terms 7%. Let 0(z,t,§) € CP(R? x Rt x R). Using the
estimates in lemma 7 and the hypothesis (2.27), we see that for § = O(£?)

u®)f(z, t,u (z,t))dzdt]

i U

| < H%6(u® —§),0(x,t,€) >|—|/ (€0z;u" + 60y
< ||€6$ju +58xj:cj E”Li,t Oz, ¢, uf (xat))HLi,t
< CeV2 (1120, 2 , + 16¥200,00 152, ) 162 o
< CEl/QHOHLi,t(Hg)'

This shows that 75 — 0 in Li,t(Hgl) as € — 0, or in other words
m; =g; +0¢g; withg;, g; = 0in Lf:,t,g

Next, consider the term k* = G§(u® — £). Observe that

d d
G =3 s, B < 6 s [lu )
j=1 j=1
5 & ), 0
Q_Z 5”]| Z| fUJwJ

If § = O(£?) the estimates in lemma 7 imply G° €, L'(R? x RT). Thus

(3.12)

| <kf,0>| = | < —&G, 0>
< sgl;lf?(fv,t,é)l NGl L maxr+y < CllOllco
m’?

and as before k° is bounded in measures M(R? x Rt x R) and precompact in

Wi, P(R? x RY x R), for 1 < p < 2.

From now on we proceed as in the case of the relaxation approximation. The
function x* = 1(uf, £) satisfies the transport equation

d
(3.13) ax" +a(€) - VX = 0y (6 + 0eg;) + 0k in Dig,
j=1
where g%, g5 — 0 in L?(R? x Rt x R). Using the averaging lemma (Theorem 3), we

deduce u® — u in LP | p < 2, and almost everywhere and that u € L>°(L?) satisfies

loc?

the scalar conservation law.

To pass to the limit in (3.13), note that

X°=1(uf,€) = x = 1(u,&)  ae. and in L

loc,x,t

k*=G(u —¢&) —k weak-x in My 4 ¢

(Lg

¢ 1<p<2

(3.14)
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and thus y satisfies
(3.15) dx +a(€) - Vx=08k in D

For § = O(e?) the bounded measure k may, in general, be nonpositive. By
contrast, for § = o(¢2) the function x = 1(u, &) satisfies the kinetic formulation of
Lions-Perthame-Tadmor

ox +a(&)-Vx =0m

with m a positive, bounded measure, and thus u is the unique entropy solution of
(1.1) (see [15]). To see that, let m denote the weak-* limit :

d
(e Z Uz, |2)5(u5 —¢) = m weak-x in measures.
j=1
By lemma 7 and (3.12), we have for § = o(c?)
d
‘Gs > |u;j|2‘ 0 in L},
j=1
and thus £k = m > 0. O
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