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Summary. We prove L' stability for the one-dimensional Broadwell model for
a discrete velocity gas. For initial data in L'(R) N LL(R) with small mass, we
show that bounded mild solutions are L'-stable. For this, we employ a nonlinear
functional H(t) that is equivalent to the L' distance between two mild solutions
and non-increasing in time ¢.

1 Introduction

The celebrated Boltzmann equation describes the evolution of the density
function f(x,v,t) for a dilute gas:

atf(a:,v,t)+v~6$f(a:,v,t) :Q(faf)($7v7t)' (1)

The transport operator 0 f(z,v,t) + v - 05 f(z,v,t) describes the free motion
of non-interacting particles while the integral operator Q(f, f) accounts for
binary collisions between particles. The discretization of the velocity space
in the Boltzmann equation (1) allows to replace the integro-differential equa-
tion by a system of semilinear hyperbolic equations. The paradigm for one-
dimensional discrete Boltzmann equations is the one-dimensional Broadwell
model:

Wfr—fr =13 — fifs,
oo =573 = ), )
Oufs+0ufs =[5 — fifs.

Here, f1,fs and f3 are densities of particles moving with velocities —1,0
and 1 respectively. This system was proposed by Broadwell [5] as one of the
simplest models for the description of a dilute gas, with molecules moving
with finite speeds. Let Q;(f, f) denote the collision terms appearing in the
equation for the f;,

Q1(f. f) = =2Q:2(f, /) = Qs(f, /) = f3 — fufs.

The definition of solution in the mild sense can be stated as follows.
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Definition 1. The function f = (f1, f2, f3) € C([0,T]; (L*(R))3*N(L>*(R))?)
is a mild solution for (2) with initial data f° € (L*(R))® N (L*°(R))? if and
only if, for t € [0,T], a.e x € R and i = 1,2,3, f(z,t) satisfies the integral
equation

fi(w7t) = f?(.%' - vit)) +/0 Ql(faf)(x - vi(t - S)7S)ds7

where v; = —1, vy = 0, and v3 = 1. Global existence of mild solutions for
(2) is proved by Nishida and Mimura [12] for small L!-initial data, and by
Tartar [15, 16], Bony [3] for one-dimensional discrete Boltzmann equations
with large L! data. Large time behavior of mild solutions was studied in Beale
[1, 2]. We refer for further references to the survey article by Platkowski and
Tllner [13].

For discrete velocity Boltzmann equations the kinetic function f is ex-
pected to be positive, and the mass is invariant in time. The L! topology is
thus a natural framework for the analysis. Our stability analysis will monitor
the L! norm, it is based on appropriate nonlinear functionals and is motivated
by the Liu-Yang’s functional [11] utilized in stability for hyperbolic systems
of conservation laws. In the sequel, we denote the weighted L' distance by
|| || For a mild solution f = (f;)2_;, ||f|| is defined by

[[fCON =GO ry + 4l f200 2y + 13001 (r)-

One obtains by a direct calculation
d - _ _
6 = FCOll < eull £, 8) = f Bl

where p = sup ||fi(,t)||1(r) + sup ||fi(-,t)||1(r) and € is a positive con-
£>0,i >0,

stant. As lon_g; as the solutions are uniformly bounded in z and ¢ (which is
the case for general classes of one-dimensional discrete velocity Boltzmann
models [1, 2, 3]), we have local in time L! stability:

1FCt) = FCOI < e™1F2C) = POl (3)

The objective of this article is to obtain uniform L! stability for (2) by intro-
ducing a nonlinear functional which effectively accounts for dispersive effects
of the evolution. The nonlinear functional H(t) = H[f(-,t), f(,t)] is defined
as a linear combination of two subfunctionals £(t) and Qg4(¢). The functional
L(t) measures the L' distance between two mild solutions. Complementing
this, the functional Qg4(t) measures the nonlinear coupling between parti-
cles with different velocities. In Section 3, we show that the functional H(t)

satisfies the following two key properties:

Lol t) = FGI S H@E) < Coll (5 8) = FC 1)l Lacmy,
2. H(t) is non-increasing in time ¢, i.e., H(t) < H(0), t>0,
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where f and f are mild solutions of (2) emanating from data fo and fo
respectively, and Cj is a positive constant independent of time. From these
properties L! stability follows:

IFCt) = FC I < Cor(t) < Cor(0) < GRIIFPC) = FPO)I-

The time-decay estimate of the functional H(t) is based on the following
conditions:

— Strict hyperbolicity of the system (2).
— Smallness of initial data in L!.
— Conservation of mass Zle Qi(f, f)(z,t) =0, for given (z,t) € R x R™.

Remark 1. As in [3, 4], we do not use the H-theorem in our L!-analysis.
Since our initial data are a small perturbation of a vacuum state and the
system 1is strictly hyperbolic, the particles will eventually decouple so that
time-asymptotically the solutions tend to non-interacting states.

For a class of discrete velocity Boltzmann equations with transversal in-
teraction terms (which do not include the Broadwell model), L' stability was
obtained by Tartar [16].

The main theorem is as follows.

Theorem 1. Let f and f € C(Ry; (L*(R))* N (LL(R))?) be two mild solu-
tions of (8) corresponding to initial data f© and f° € (L*(R))® N (L (R))?
such that || f°|| + || f°|| < 2. Then, we have

1FCot) = FC I < CINPE) = PO
where C' is a positive constant independent of time t.

This paper is organized as follows. In Section 2, we briefly review the
basics of discrete Boltzmann equations and global existence results for mild
solutions to the system (2). In Section 3, we explicitly construct the nonlin-
ear functional for the one-dimensional Broadwell model, we study its time-
evolution eventually proving L' stability for the one-dimensional Broadwell
model. For more general one-dimensional models, of the type pursued in [2],
L! stability analysis will be addressed in the forthcoming paper [6].

2 Preliminaries

In this section, we review the basics of one-dimensional discrete velocity
Boltzmann equations (see [2, 3, 7] and [10, Appendix]),

Oufi +videfi = Y (Al fufi — A fify), (4)

Jsksl
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where the collision coefficients Af

} are positive and satisfy the symmetry and
micro-reversibility conditions:

Al ==l A=Ay ®)
Such models are derived by considering a three-dimensional discrete velocity
model and then restricting to motions that are one dimensional (e.g. plane
waves). The three-dimensional model is equipped with microscopic conser-
vation of mass, momentum and energy between the pre-collisional and post-
collisional velocities. When restricting to one-dimensional motions, the pro-
jections of the pre-collisional velocities (in the propagation direction) v;,v;
and the projections of the post-collisional velocities vy, v; satisfy microscopic
conservation laws of mass and momentum,

v; +v; = v + vy, (6)

From the viewpoint that the one-dimensional discrete model (4) is a special
case of the three-dimensional discrete model, the one-dimensional discrete
model does not have to satisfy microscopic conservation of energy. By the
same reason, the system does not need to be strictly hyperbolic even though
the original three-dimensional system may well be strictly hyperbolic. By as-
suming the same initial data for particles moving with the same (projections
of) velocities and suitable congruence conditions on the transitional proba-
bilities Afj, Beale [2] transforms a subclass of the discrete velocity models
(4) to

Oufi +vidafi=>_ BI*fifs, (7)

ok

subject to certain structural assumptions on the interaction coefficients sz k.
In particular, this class encompasses the model (2). In Section 3, we will
discuss stability for (2) while the more general model (7) will be discussed in
[6].

Returning to (4), we briefly review the properties of the collision operator:
Qi(f, 1) =Y Al (fufi— fify)-
j7k7l
Let ¢ be any measurable function. Then,
0, (Z ¢(vi)fi> + 0, (Z w(vi)fi) = > o) AE(fufi — fify)-
7; 1’ i?j,k’l

As in the theory of the Boltzmann equation, the properties (5) imply that
the right hand side can be rearranged so that

RHS. = i D AB(S(v) + ¢v;) = S(vr) = b)) (fufr = fufy)- (8)

4,3,k



L' stability of 1D Broadwell model 5
Any choice of collisional invariants will then produce an associated macro-

scopic conservation law. For a model satisfying microscopic mass and momen-
tum conservation, we have macroscopic conservation of mass, momentum:

d — d <
a;éﬁ(l‘,t)dl’ =0, %;/R’Uifi(l',t)dx_
The entropy H(t) is defined by
1) =Y [ fiat)log(i(z.)do.
i=1

and satisfies an analog of the Boltzmann H-theorem,

d (Zfilogfi>+az (sz—filogfi> > Alflog filfufi — fit))

,5,k,l

= % > A¥l(log f; +log f; — log fi —log fi)(fxfi — fif5)

igkl
_ 1 Z Af}log (fkfl> (fufi = fif;) <0, (9)
4i,j,k,l fif;

where we have used A¥ >0, (8) and (logz —logy)(z —y) > 0.
A paradigm, for discrete velocity models is the Broadwell model. This
corresponds to a specific interaction mechanism [5], and it reads

O +0uS = S Iy + I F) ~ B Fr
ouf7 — 0 = %( s f;f )~ BT
OufF + 0,0 = 5 hr +f3+f )~ I T
Oufy —0yfs = ST I+ I 1)~ I3 fi
OufF +0.05 = ST + - £ fi
Oufy — 0.0y = 5T + I ) — 1 fs

Here ff—L7 f;t and f3i are densities of particles moving with velocities +1 in
the direction of z,y, and z axis respectively. If we consider one-dimensional
motions of particles, independent of the y and z coordinates, and motivated
by symmetry considerations, set

ff=h fi=f F=HK=f(=Ff=Ff

the above system reduces to the one-dimensional Broadwell model (2). For
(2) we have the following global existence theorem (see [2, 3] and [12] and
[15] for earlier variants).
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Theorem 2. For f° in (L*(R))* N (LP(R))? there exist a unique globally
defined nonnegative solution of (2) in the sense of Definition 1.

3 L! stability

In this section, we construct an explicit nonlinear functional H(¢) which is
equivalent to the L! distance and non-increasing in time along solutions.

Let f and f be two solutions of the Broadwell model which for the time
are taken to be C1. We use the notation f(z), f(y) for the evaluation of f at
the points (z,t), (y,t) respectively; the ¢ dependence is mostly suppressed.
From (2), we derive the conservations for the partial masses,

01(2f2 + f3) (%) + Oz f3(x) = 0. (10)
Oi(f1 +2f2)(y) — 9y f1(y) = 0, (11)

In the sequel, we omit the t-dependence and use the simple notation

6i(x7t) = Sgn(fi(xvt) - fz(ib,t))

for the sign of the difference. We also define a potential of interaction func-
tional Q(t),

Q0 = [ Lo, 2h(@) + H@I ) + 2120y

whose definition is motivated in the following lemma. This lemma appears in
Tartar [17] where it is attributed to Varadhan.

Proposition 1. Along solutions [ of (2), we have

%it) = —2/R (fifs+ fifo+ fofs)(z,t) dz.

Proof. We multiply (10) by (f1 + 2f2)(y) and (11) by (2f2 + f3)(z). Adding
and multiplying the resulting identity by 1;<,, we arrive at the identity
o1 +20)®) @2 + f)(@) Loc
vy [ (fs@)(f +2£2)0), —@F + f5) (@) 1 (9) ) Locs |
+3(z =) (@) (f1 + 2£) ) + @) 2F2 + fo) (@) = 0

Note that the last term is positive and provides some decay by dispersion.
Integrating the above equation over R2?, we obtain

%t) =2 / [f1(2) fa(@) + f1(2) fo(x) + fa() f3(x)]dz.
R
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This completes the proof. O

Next, we define certain nonlinear functionals and study their time-
variations.

5
I

0= [ (1= fl+alf =Bl + 1~ Al) @
Qa(t) = /2 1x<y((2f2 +2f2+ f3 + f3) (@) (| fr = Al +2/fo - fgl)(y))da:dy

/ z<y 2lf2= fol +1fs = o) (@) (fr + fr +2f2 + 2f2)(y))dwdy,
)= L(t) + KQq(t),

where K is positive constant to be determined later. We also define the
instantaneous interaction productions as follows.

A = 4. FO + A7), (12)
air = [ (2350 - 20 156 - BOI) + he)dd)
3
t)E fm( )_ fn +fn )) (14)
[, 2 linta 1 3

Note that the above functionals are all positive and that for positive and
bounded solutions H(t) is equivalent to the L' norm. Furthermore, £(t) de-
notes the weighted L' distance (and the total mass at time t) while Q4(t)
represents the potential of interactions between particles.

Next, we study the time-evolution of these functionals.

Lemma 1. Let f and_f be two solutions of (2) corresponding to initial data
£ and f° with || f°+ f°|| < 2. Then K can be selected so that the functionals
satisfy the Lyapunov type estimates:

%ﬁt) < —A(f, H@) + Aa(f, (1),
dQq4(t) 7 F

o S (2 + FIDAS, D),
dH(t)

7 S CIA(fa f)(t)a
where Cy 1s a positive constant independent of time t.

Proof. First, we derive the equations for the differences |f;(z,t) — fi(z,t)|,
1 <4< 3, in the form

f3+f3

3t|f1—f1|—3z|f1—f1|=(%|f2—f2|(f2+f2)—|f1 fl
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SLAPASS AL )
a2~ Pl = —§|f2 RS AT AR ATANY Ak
|f3 |f1 +f1
Oulfs = ol + 011z — al = 5—|f2 Bl ) - 21 B
s - RIAEL (15)
Step 1: We consider the functionals separately. From (15) we have
3t(|f1 — fil +4lfa = fol +|fs — f3|) O:(Ifs — fs| — |fr — ful)
+z= = 2)ifs - Bl + )
d2 03 f3+f3 01 h+h
(25——E—1)|f1 fil (25——5—1)|f3—f3| 5
(16)
By the definitions of £(t), As; and A4, we have
d B B _ B
T <A@+ [ 1= Al F) + Vo= Bl + f)do
—As(f, D) + Aa(f, (@) - (17)

Step 2: By a direct yet cumbersome calculation, we obtain from (10), (11)
and (15) the identity

de

=—2/Z|fm

1<

+

2

+ 21,

2

it oqwsm

—+

;U\:U\;U\:g\m\m\

1m<y

N

21,

(2o
<
a0
(o

+

5
2
1

6
03
0

—+

At
0

2

+ 1,4y

= |

2

Ful(@ (Z (fn +fn)<x>)

n#Em

=) (ot R = 2l + Foo) dody
L)1) e+ Wz = Bl o + Fa) o) dady
) (ot BY@f2 = Rl + 7)) dod
1) (a+ RISz = Fll@)](fa + Fa) o) dady

) -1
() —

>f3+f3(
1) Gt o)

WA — filw)(fs + fs)(z) dedy

(fs + F) W)L — Aulw)(f2 + fo) (2) dzdy
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%)~ 2 >) B 0o )11 - Rl + ) dady

@)= 2@) o+ W@ - Al(@) (o + F) o) dady
1) 2R w1 - Al + R dedy
@)= 1) (s + B@fs = Fll@)fa + o)) dedy
o (20 - 200) L2201 - Fl0) s + 5 @) dody
o1

-3 )) (i + )W) fs = Fol@)(f2 + fo) (@) dady
< ‘2/R S 1o — fl (@) (Z(fn +fn)(w))

n#Em
+ (I + Al + 212+ Pllw) [ (h+ B)@IA ~ Al@)ds
+ @l f2 + Fellerry + 13 + fsllLimy) /R(fl + f)(@)|fs — f3|(x)da
< (=2+If + fIDAa(S, H)(E).
Step 3: By the definition of H(t), we have
AH() _ dL() |, du()

dt dt dt _ _
As(£, H)(®) + 1+ KE(=2+[1f + FIDAalf, H(®).

Since ||f + f|| < 2, we can choose K sufficiently large so that

[y

<y

1+ K(-2+||f+ fll) <o0.

We then have
MY < oD,

where (' is a positive constant independent of time ¢. This completes the
proof. O

From Lemma 1, we have the following L' stability estimate.

Proof of Theorem 1 Let fék) and fék) be smooth approximations of the
given initial data fo and fo such that

f(k)—>f07 M fy inL'(R) ask— oo

Then we can construct smooth solutions f(*) (x,t) and f*)(x,t) correspond-
ing to the data fé and f; fik) respectively. It follows from (3) that
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f(]“)(a:,t) — f(x,t), f(k)(a:,t) — f(z,t) in L*(R) as k — oo.

Define the nonlinear functional H(t) for f and f as follows.

H(t) = ,H[f('at)af('at)] = kll{go%[f(k) ('7t)7 f(k) ('7t)]‘

Then by the two key-properties of #(t) for f%*) and f*), we have

176 = FOC Dl < OO = 57 Ollzay,

where C is a positive constant independent of time ¢ and k. Letting k — oo,
we have

1F(t) = FC 0y < Cllfo() = fo()ll L (ry-

This completes the proof. O
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