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Abstract. Shear bands are narrow zones of intense shear observed during plastic deformations of
metals at high strain rates. Because they often precede rupture, their study attracted attention as a
mechanism of material failure. Here, we aim to reveal the onset of localization into shear bands using
a simple model developed from viscoplasticity. We exploit the properties of scale invariance of the
model to construct a family of self-similar focusing solutions that capture the nonlinear mechanism
of shear band formation. The key step is to de-singularize a reduced system of singular ordinary
differential equations and reduce the problem into the construction of a heteroclinic orbit for an
autonomous system of three first-order equations. The associated dynamical system has fast and
slow time scales, forming a singularly perturbed problem. Geometric singular perturbation theory is
applied to this problem to achieve an invariant surface. The flow on the invariant surface is analyzed
via the Poincaré-Bendixson theorem to construct a heteroclinic orbit.
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1. Introduction. We consider the system of partial differential equations

γt = vx,

vt =
(

γ−mvnx
)

x
,

(1)

where (x, t) ∈ R×R
+, which describes shear motions of a viscoplastic material and in

terms of classification belongs to the class of hyperbolic-parabolic systems. Here, γ is
the plastic strain, v is the velocity in the shearing direction, and m,n > 0 are material
parameters. The system (1) is a model from viscoplasticity that serves as a simplified
model to understand the problem of shear band formation in metals deformed at
high strain rates (see Section 2). The yield relation σ = γ−mγn

t characterizes the
viscoplastic nature of materials: γ−m accounts for plastic (net) strain softening and γn

t

for strain-rate hardening. The latter term models dissipation by momentum diffusion
manifested by mathematical viscosity in the form present in non-Newtonian fluids.

For n = 0, the system (1) is elliptic in the t-direction and exhibits Hadamard in-
stability - the catastrophic growth of oscillations for the linearized initial value problem
- induced by the (net) strain-softening response. But when n > 0, the viscosity com-
petes against this ill-posedness. The combination of the destabilizing effect of strain
softening and the stabilizing effect of strain-rate hardening is conjectured to lead to
localization of the strain in narrow zones called shear bands [26, 3]. Their formation is
helpful for explaining mechanisms of material failure; we refer to [26, 2, 17, 3, 24, 1, 22]
and to Section 2 for further details on this problem.

To set the localization problem in the language of mathematical analysis, observe
that (1) admits a class of solutions, that are valid for any values of the parameters m
and n and describe uniform shearing

vs(x) = x, γs(t) = t+ γ0, σs(t) = (t+ γ0)
−m.(2)
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The issue then becomes to examine whether small perturbations of the uniform shear-
ing solutions develop nonuniformities that go astray or whether nonuniformities get
suppressed resulting into stable response. In the regime n > m, both linearized and
nonlinear analyses [20, 7, 17, 21, 22] indicate that the uniform shearing solutions are
stable. On the complementary region m > n, an analysis of the linearized system of
relative perturbations [7, 15, 22] indicates instability of the uniform shearing solutions.

In this work, we aim to reveal the subtle mechanism of shear band formation
in the nonlinear regime and to construct a class of self-similar solutions that exhibit
localization in the regime m > n. We exploit the invariance properties of the system
(1) and seek self-similar solutions of the form

(3)
γ̄(t, x) = (t+ 1)aΓ̄((t+ 1)λx),

v̄(t, x) = (t+ 1)bV̄ ((t+ 1)λx) ,

where ξ = (t + 1)λx is the similarity variable and λ > 0 is a parameter. The reader
should note that the usual form of self-similar solutions for parabolic problems are
generated for values of the parameter λ < 0 and capture the spreading effect associated
with parabolic behavior. By contrast, we insist here on λ > 0 and study the existence
of solutions focusing around the line x = 0 as time proceeds. This idea for constructing
localizing solutions is proposed in [12] for a non-Newtonian fluid with temperature-
dependent viscosity and in [13] for (1) with m = 1.

The parameters a and b are selected by

(4) aλ,m,n =
2− n

1 +m− n
+

2λ

1 +m− n
, bλ,m,n =

1−m

1 +m− n
+

1−m+ n

1 +m− n
λ

and the profiles (Γ̄, V̄ ) are constructed by solving an initial value problem for a singular
system of ordinary differential equations

aλ,m,nΓ̄ + λξΓ̄ξ = V̄ξ,

bλ,m,nV̄ + λξV̄ξ =
(

Γ̄−mV̄ n
ξ

)

ξ
,

(5)

Γ̄(0) = Γ̄0 > 0 , V̄ξ(0) = Ū(0) = Ū0 > 0 ,(6)

where Ū(ξ) = V̄ξ(ξ) and Γ̄0 and Ū0 are given positive parameters. As seen from (5)1
at ξ = 0,

aλ,m,nΓ0 = U0

and thus two out of the parameters λ, Γ̄0 and Ū0 fix the third.
There is no sufficiently general theory that guarantees the existence of solutions

for such singular initial value problems and the construction is usually based on a
case-by-case analysis. Remarkably, the invariance properties of the system (5) allows
the de-singularization of the system (5) (see (21) and (23)). Furthermore, a nonlinear
change of variables (see (24)) leads to reformulating the problem into an autonomous
system of three first-order equations

ṗ = p
( 1

λ

(

r −
2− n

1 +m− n

)

−

1−m+ n

1 +m− n
+1− q − λpr

)

,

q̇ = q
(

+1− q − λpr
)

+ b
λ,m,n

pr,(7)

nṙ = r
(

m− n

λ

(

r −
2− n

1 +m− n

)

+
1−m+ n

1 +m− n
−1 + q + λpr

)

.
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Moreover, the question of existence of a solution
(

V̄ , Γ̄) to (5), (6) is reformulated to
that of the construction of a suitable heteroclinic orbit to (7). The difficulty with the
construction of such heteroclinics originates from the dimensionality of the system (7).
In [13], we considered a system related to the case m = 1 and numerically constructed
the heteroclinic orbit.

The main result of this work is that by exploiting geometric singular perturbation
theory, one may construct the heteroclinic orbit. As n is a small parameter, the system
(7) admits both fast and slow time scales. Problems with multiple time scales are
habitually found in multiple contexts, and one gets a clear picture of the problem by
analyzing the geometric picture in the phase space via geometric singular perturbation
theory [4, 5, 11, 23, 14]. Among many successful applications of the theory, there are
several examples [8, 6, 25, 19, 9] of application to the resolution of viscous wave fans
in hyperbolic conservation laws. We present a novel application of the method to
analyze the nonlinear competition of Hadamard instability with viscosity effected by
strain-rate hardening in dynamic plasticity.

The paper is organized as follows: In Section 2, we briefly explain the background
and describe the mechanical problem studied in this paper. In Section 3, a class of
focusing self-similar solutions are introduced and the associated system of singular
ordinary differential equations is derived. The problem is then reduced into the con-
struction of a heteroclinic orbit of an associated autonomous system. In Section 4, the
phase space analysis is carried out for this autonomous system. We identify its equi-
libria, study their dynamical nature and use mechanical considerations to select the
targeted heteroclinic orbit. In Section 5, we construct a normally hyparbolic invariant
manifold using geometric singular perturbation theory (reviewed in the appendix) and
study the dynamical system restricted on that manifold to establich the existence of
the heteroclinic orbit. The emerging two-parameter family of localizing solutions to
the system (1) is outlined in section 6 (see (46)), where various properties, such as
the range of parameters and growth behavior of the solution are scrutinized.

2. Background and a Description of the Problem. We investigate the
formation of shear bands during the high-strain-rate shear deformation of metals.
At high strain rate, shear can accumulate in narrow zones, often leading to rupture.
Several works have focused on this behavior to explain material failure [26, 2, 17,
3, 24]. In experimental investigations of deformations of steels at high strain-rates,
observations of shear bands are typically associated with strain softening response –
past a critical strain – of the measured stress-strain curve [2]. It was proposed by
Zener and Hollomon [26], and further developed by Clifton et al [2, 3], that the effect
of the deformation speed is twofold: An increase in the deformation speed changes the
deformation conditions from isothermal to nearly adiabatic, and the combined effect
of thermal softening and strain hardening of metals may produce a net softening
response. On the other hand, strain-rate hardening has an effect per se, inducing
momentum diffusion and playing a stabilizing role.

Modeling this mechanism requires to consider the effect of the energy equation.
Nevertheless, a simper model has been proposed in order to assess the effect of (net)
strain softening response in shear motions of a viscoplastic model to provide quanti-
tative analysis in the problem of localization [10, 20, 22]. The system

(8)
vt = σ(γ, γt)x,

γt = vx.

models shear motions of a viscoplastic material exhibiting strain softening and strain-
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rate hardening
∂σ

∂γ
< 0 ,

∂σ

∂γt
> 0 ,

respectively. (8) consists of momentum conservation and kinematic compatibility,
where v is the velocity in the shearing direction, γ is the plastic shear strain, and σ is
the shear stress. The model describes a specimen situated on the xy-plane that shears
in the y-direction. The simplifying assumption here is that the (plastic) strain γ and
the strain rate γt solely characterize the stress yield relation σ = σ(γ, γt). The purpose
of our study is to analyze a type of instability emerging out of the competition between
strain softening and strain-rate hardening. Our study is not limited to capturing the
shear bands but also seeks to explain this viscoplastic instability mechanism and
the emergence of organized structures out of this competition. Early mathematical
treatments of the initial value problem can be found in [20, 21].

A simple choice for σ(γ, γt) is given by

(9) σ = σ(γ, γt) = ϕ(γ)γn
t

(see [15, 21]) where ϕ′(γ) < 0 and n > 0 is the rate sensitivity parameter which is
typically very small [17]. When n = 0, then σ = ϕ(γ) and the condition of strain-
softening ϕ′(γ) < 0 implies that the system (8) is elliptic in the t-direction. Then
the initial value problem exhibits Hadamard instability, that is the linearized problem
exhibits catastrophic growth in the high frequency oscillatory modes. But when n > 0,
the effect of viscosity competes against this instability.

The model (8)-(9) admits the uniform shearing solutions,

vs(x) = x,

us(t) = ∂xvs(x, t) = 1,

γs(t) = t+ γ0, γ0 a constant

σs(t) = ϕ(t+ γ0) ,

(10)

valid even for the value n = 0. The question arises which of the two effects, the
instability induced by strain softening or the stabilizing effect of strain-rate sensitivity,
wins the competition, and whether a given initial nonuniformity can lead to unstable
modes that grow faster than the uniform shear (10). This question has been considered
for a power law model,

(11) σ = ϕ(γ)γn
t = γ−mγn

t , m, n > 0 ,

in [10, 15, 21]. The associated system of partial differential equations becomes

(12)
vt =

(

γ−mvnx
)

x

γt = vx,

where n > 0 and 0 < m < 1. The stability of the uniform shearing solutions for
this system, under velocity boundary conditions, is considered in [20, 21] via methods
of nonlinear analysis, and in [2, 7, 15, 22] via linearized analysis techniques. In the
region n > m, the uniform shear is both linearly and nonlinearly stable. By contrast,
linearized instability appears in the region n < m. Throughout the rest of this work,
we are interested in the instability regime; hence, we focus on the parameter range
n < m ≤ 1, n > 0 small, and study the behavior in the nonlinear regime.
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3. Focusing Self-similar Solutions. In this section, we study a family of fo-
cusing self-similar solutions for (12) in the parameter regime 0 < n < m ≤ 1. Similar
techniques were introduced in [12], where the authors studied a thermally softening
model, and in the companion paper [13] providing a numerical construction valid in
the special case m = 1.

We begin by investigating the scale invariance properties of the system (12). For
a given (γ, v), we define (γρ, vρ) and the new independent variables y and s such that

(13)
γρ(t, x) = ρaγ(ρ−1t, ρλx), vρ(t, x) = ρbv(ρ−1t, ρλx),

s = ρ−1t, y = ρλx.

Due to the choice λ > 0, this transformation makes the profile narrower and higher
for ρ large. This is of course in accordance with our goal, constructing solutions that
localize the initial profile. A simple calculation shows that (12) is invariant under (13)
if the exponents a and b are selected as

(14) aλ,m,n =
2− n

1 +m− n
+

2

1 +m− n
λ, bλ,m,n =

1−m

1 +m− n
+

1−m+ n

1 +m− n
λ.

This motivates us to consider a family of self-similar solutions of the focusing type

(15)
γ̄(t, x) = (t+ 1)aΓ̄((t+ 1)λx),

v̄(t, x) = (t+ 1)bV̄ ((t+ 1)λx)

with ξ = (t+ 1)λx is the similarity variable. Substitution into (12) gives a system of
ordinary differential equations

aλ,m,nΓ̄ + λξΓ̄ξ = V̄ξ,

bλ,m,nV̄ + λξV̄ξ =
(

Γ̄−mV̄ n
ξ

)

ξ
.

(16)

where a, b are given by (14). We supplement the above equations with suitable initial
conditions

Γ̄(0) = Γ̄0 > 0 , V̄ξ(0) = Ū(0) = Ū0 > 0 ,(17)

where Γ̄0 and Ū0 are positive parameters. As the problem is singular it is not a-priori
clear how many conditions are needed; the choice (17) is justified by the analysis of
the singularity at ξ = 0 presented below. Given a smooth solution of (16), (17) for
parameters λ, m and n, it will generate the profile of a solution to (12) that localizes
at the focusing rate λ. Note that such a solution will be generated by an initial profile
(Γ̄(x), V̄ (x)) at t = 0 and Γ̄0, Ū0 can be thought as measuring the size of the initial
nonuniformity.

The system (16) is non-autonomous and singular at ξ = 0. Existence of smooth
solutions for such singular systems is not guaranteed by general theories and is effected
via a case-by-case analysis. In the present case, it is possible to de-singularize (16),
turning it into an autonomous system of three differential equations. In a second step
the problem is turned into the construction of a heteroclinic orbit for an equivalent
system. The existence of the heteroclinic orbit is achieved in section 5 by employing
geometric singular perturbation theory.

We reduce the problem on the right half plane ξ ≥ 0. Since the system is invariant
under the transformation ξ → −ξ, Γ̄ → Γ̄ and V̄ → −V̄ , if we construct a smooth
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solution in the right-half-plane, then the even extension of Γ̄ and the odd extension
of V̄ will give rise to a solution on the entire line. The conditions

(18)
d

dξ
Γ̄(0) = V̄ (0) = 0

are imposed to ensure Γ̄ and V̄ are smooth at ξ = 0.
The system (16) has its own scale invariance. For a given

(

Γ̄(ξ), V̄ (ξ)
)

, we define

(19) Γ̄A(ξ) = AαΓ̄(Aξ), V̄A(ξ) = AβΓ̄(Aξ).

The exponents α and β that make (16) invariant are

(20) α =
−2

1 +m− n
, β = −

1−m+ n

1 +m− n
.

Motivated by the previous observation, we introduce a change of variables

Γ̄(ξ) = ξαγ̃(log ξ), V̄ (ξ) = ξβ ṽ(log ξ),

Ū(ξ) = V̄ξ(ξ) = ξαũ(log ξ), Σ̄(ξ) = Γ̄−mŪn = ξ−α(m−n)σ̃(log ξ),
(21)

where η = log ξ, η ∈ (−∞,+∞) is the new independent variable. Substitution into
(16) gives the system for the residual variables (γ̃, ṽ, ũ, σ̃)

2− n

1 +m− n
γ̃ + λγ̃η = −

1−m+ n

1 +m− n
ṽ + ṽη,

1−m

1 +m− n
ṽ + λṽη =

2(m− n)

1 +m− n
σ̃ + σ̃η,

σ̃ = γ̃−m(βṽ + ṽη)
n.

(22)

The third equation can be written as

(

σ̃γ̃m
)

1
n = −

1−m+ n

1 +m− n
ṽ + ṽη (= ũ).

when n > 0. After rearrangement, we arrive at an autonomous system of three
first-order equations

λγ̃η = −
2− n

1 +m− n
γ̃ + (σ̃γ̃m)

1
n ,

ṽη =
1−m+ n

1 +m− n
ṽ + (σ̃γ̃m)

1
n ,

σ̃η = −
2(m− n)

1 +m− n
σ̃ + bλ,m,nṽ + λ(σ̃γ̃m)

1
n .

(23)

Further inspection shows that the variables cannot simultaneously equilibrate.
For example, if γ̃ → γ̃∞ as η → ∞, then (σ̃γ̃m)

1
n → 2−n

1+m−n
γ̃∞ and this makes ṽ

diverge. This raises analytical difficulties addressed and we avoid them by introducing
a second non-linear transformation so that the variables simultaneously equilibrate.
One observation is that if f ∼ ξρ as ξ → ∞ (resp. as ξ → 0), then ∂η(log f) =
ξ∂ξf

f
→ ρ as ξ → ∞ (resp. as ξ → 0). Thus, if we identify two quantities f and

g that share the same asymptotic leading order as ξ → ∞ (resp. as ξ → 0), then
∂η(log f) − ∂η(log g) = ∂η(log

f
g
) → 0, in other words log f

g
equilibrates as ξ → ∞
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(resp. as ξ → 0). Using (16), heuristic calculations can be carried out to find which
three pairs of quantities are expected to share the same asymptotic leading order.
This suggests to introduce the variables

(24) p =
ξ2Γ̄

Σ̄
=

γ̃

σ̃
, q = bλ,m,n ξV̄

Σ̄
= bλ,m,n ṽ

σ̃
, r =

Ū

Γ̄
=

ũ

γ̃
=

(

σ̃γ̃m
)

1
n

γ
.

Substitution into (23) leads to the equivalent system

ṗ = p
( 1

λ

(

r −
2− n

1 +m− n

)

−

1−m+ n

1 +m− n
+1− q − λpr

)

,

q̇ = q
(

+1− q − λpr
)

+ b
λ,m,n

pr,(P )λ,m, n

nṙ = r
(

m− n

λ

(

r −
2− n

1 +m− n

)

+
1−m+ n

1 +m− n
−1 + q + λpr

)

,

where ˙(·) = d
dη
(·). The remainder of the work is organized as follows:

(a) In section 4, we show that the problem of existence of a smooth profile
(Γ̄(ξ), V̄ (ξ) satisfying (16) and (17) can be reformulated to the construction
of a suitable heteroclinic orbit for the system ((P )λ,m, n).

(b) In section 5, we use geometric theory of singular perturbations (see appendix
A) to construct the heteroclinic orbit.

Remark 1. It is instructive to examine the relation between the uniform shearing
solutions (2) (where for simlicity γ0 = 1) and the focusing self-similar solutions (15).
If we select λ = m−1

2 , then (14) implies a = 1, b = −λ. The function V̄s(ξ) = ξ,
Γ̄s(ξ) = 1 solves (16) and the associated function emerging from (15),

γ̄(t, x) = (t+ 1) = γs(t) , v̄(t, x) = (t+ 1)−λ
(

(t+ 1)λx
)

= vs(x)

is precisely the uniform shearing solution. It corresponds however to a choice of
parameter λ < 0 and it is not of the focusing type.

4. Analysis of the Dynamical System. In this section, we carry out the
following steps:

(i) In subsection 4.1, we find the equilibria Mλ,m,n
i , i = 0, 1, 2, 3, of ((P )λ, m, n)

and compute their local eigenstructure.
(ii) In subsection 4.2, we single out a heteroclinic orbit having the expected be-

havior as η → ±∞.

4.1. Equilibria and linear stability. The system ((P )λ,m, n) has four equi-
librium points in the first octant of the phase space. The four equilibrium points
are

Mλ,m,n
0 =





0
0
a



 , Mλ,m,n
1 =





0
1
c



 , Mλ,m,n
2 =





0
1
0



 , Mλ,m,n
3 =





0
0
0



 ,

where a is the exponent in (14) and

(25) c =
2− n

1 +m− n
−

1−m+ n

(1 +m− n)(m− n)
λ .
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Further, we define the constants:

d =
1−m

1 +m− n
+

2

1 +m− n
λ, e =

1−m

1 +m− n
−

2(m− n)

1 +m− n
λ,

f =
1−m

1 +m− n
−

1−m+ n

(1 +m− n)(m− n)
λ, g =

2− n

1 +m− n
+

1−m+ n

1 +m− n
λ,

h =
2− n

1 +m− n
−

2(m− n)

1 +m− n
λ,

and

A =

(

m− n

n

)

a

λ
, B =

(

m− n

n

)

c

λ
, C =

(

m− n

1−m+ n

)

B.

that are used to express the eigenvalues of the associated linearized problems. Note
that the constants A, B, and C diverge as n → 0.

The analysis below applies to the case n > 0, where we have eigenvalues µi3,
i = 0, 1, 2, 3 that are of O( 1

n
). It is clear however that when n = 0, the last equation

of ((P )λ,m, n) becomes algebraic equation and the orbits are restricted on the pieces
of surface the equation specifies. There is no chance to escape the surface, i.e., the
asymptotic structure around the equilibrium point is essentially of two dimensions.

Figure 1 depicts the four equilibrium points in the first octant Arrows indicate

the stable and unstable subspaces of each equilibrium point. When λ > (2−n)(m−n)
1−m+n

,
c becomes negative and M1 lies below the plane r = 0. We will only be interested in
the cases where M1 lies above the plane r = 0 and only in the region r > 0. Thus,
the case c ≤ 0 is excluded from our study and accordingly λ has the upper bound

(26) 0 < λ <
(2− n)(m− n)

1−m+ n
.

Next, when λ = 2−n
2(m−n) , M3 is replaced by a line of equilibria which is the p-axis.

Because it takes place on the plane r = 0, this case is not treated separately.
Now, we present the linear stability analysis of the equilibria. We denote the three

eigenvalues of the linearization at each Mi by µij and the associated eigenvectors by
~Xij , j = 1, 2, 3. The eigenvalues and eigenvectors as well as the equilibrium points
are functions of λ, m, and n. We omit this dependency for better readability but we
will use superscripts when we need a clear distinction.

• M0 is an unstable node: all eigenvalues are real and positive; the first and the
last eigenvectors lie on the (q, r)-plane, the first one is pointing right and down on the
(q, r)-plane and the last one is pointing towards the origin on the r-axis. The second
eigenvector is going off the (q, r)-plane.

~X01 =

(

0, 1,−
λ

m− n

(

1

1−A−1

)

)

, µ01 = 1,

~X02 =

(

1, ab,−
λad

m− n

(

1

1− 2A−1

)

)

, µ02 = 2,

~X03 = (0, 0, 1), µ03 = A.

We require n to be sufficiently small so that A−1 is small, 1−A−1 > 0 and 1−2A−1 >
0.
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M0

M1

M2M3

p

q

r

Fig. 1. Equilibria of the (p, q, r)-system and the associated linearized vector fields for λ satis-

fying (26) and for µ31 > 0.

• M1 is a saddle : all eigenvalues are real, two of them are negative and one is
positive. The unstable eigenspace,

~X13 = (0, 0, 1), µ13 = B > 0 ,

points towards the equilibrium M2 and lies on the (q, r)-plane. There are two negative
eigenvalues µ11 = −1 and µ12 = − 1−m+n

m−n
and the associated stable eigenspace is two

dimensional. Note that µ12 = µ11 when m− n = 1
2 . We specify the subspaces below:

1. If e = 1−m
1+m−n

− 2(m−n)
1+m−n

λ = 0,

~X11 =

(

0, 1,−
λ

m− n

(

1

1 +B−1

)

)

, ~X12 =

(

1 , 0 , −
λ

m− n

λc

1 + C−1

)

.

2. If e 6= 0 and m−n = 1
2 , then µ11 = µ12 = −1 but its geometric multiplicity is

1. It has the eigenvector ~X11, and the generalized eigenvector ~X ′

12 such that

~X11 =

(

0, 1,−
λ

m− n

(

1

1 +B−1

)

)

, ~X ′

12 =

(

1 , −λc− 2λn
e

1 +B−1
, 0

)

.

3. If e 6= 0 and m− n 6= 1
2 ,

~X11 =

(

0, 1,−
λ

m− n

(

1

1 +B−1

)

)

,

~X12 =

(

− 1−m+n
m−n

+ 1

ec
, 1 , −

λ

m− n

(

− 1−m+n
m−n

+ 1
)

λ+ e

e(1 + C−1)

)

.

The first eigenvector is in the (q, r)-plane and points up towards M1 from the left.
The second eigenvector or generalized eigenvector points towards M1 coming from a
direction off the (q, r)-plane.
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• M2 is a stable node: all eigenvalues are real and negative. The eigenvectors are
the coordinate basis vectors.

~X21 = (1, 0, 0), µ21 = −
g

λ
,

~X22 = (0, 1, 0), µ22 = −1,

~X23 = (0, 0, 1), µ23 = −B.

•M3 is at the origin and is a saddle: all eigenvalues are real, the second eigenvalue
is positive and the last eigenvalue is negative. The first eigenvalue changes sign at
λ̄ = 2−n

2(m−n) ; it is negative if λ < 2−n
2(m−n) and positive if λ > 2−n

2(m−n) . The eigenvectors

are the coordinate basis vectors.

~X31 = (1, 0, 0), µ31 = −
h

λ
,

~X32 = (0, 1, 0), µ32 = 1,

~X33 = (0, 0, 1), µ33 = −A.

4.2. Characterization of a suitable heteroclinic orbit. Since there are four
equilibria, the unstable or stable manifolds of each equilibrium point may conceivably
intersect in various ways and produce multiple heteroclinic connections. Our goal is
to identify a heteroclinic connection that provides a meaningful (from the perspective
of mechanics) self-similar solution. Its characterization comes from analyzing the
expected behavior as η → ±∞.

4.2.1. Behavior at +∞. The profile of the targeted solution should correspond
mechanical loading in the shearing direction, and the resulting strain should be an
increasing function of time at any spatial point. For example, the strain of the uniform
shearing solutions (10) grows linearly in time. We expect that the strain that is
physically desirable for our solution should grow at a polynomial order. Note, that if
γ ∼ tρ, the quantity tγt

γ
→ ρ as t → ∞. The quantity r is

r =
ũ

γ̃
=

ξ−αŪ(ξ)

ξ−αΓ̄(ξ)
=

Ū(ξ)

Γ̄(ξ)
=

t−(b+λ)v̄x
t−aγ̄

=
tγ̄t
γ̄

and thus we expect r as η → ∞ to tend to a (strictly) positive value. Among the
equilibria Mi, i = 0, 1, 2, 3, M0 is an unstable node, so we find M1 as the only
possibility that can provide the desired behavior. Thus, we select M1 as the target of
the desired heteroclinic as η → ∞.

4.2.2. Behavior at −∞. The boundary conditions (18) provide the desired
behavior as η → −∞.

Proposition 2. Let
(

Γ̄(ξ), V̄ (ξ)
)

be a smooth solution of (16) with boundary

conditions (18), and let
(

p(η), q(η), r(η)
)

be the associated orbit obtained via the trans-
formations (21) and (24). Then

e−2η









p(η)
q(η)
r(η)



−M0



→ κ ~X02, as η → −∞(27)

for the constant κ = Γ̄(0)1+m−na−n > 0.
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Proof. Let us compute the Taylor expansions of variables p(log ξ), q(log ξ) and
r(log ξ) near ξ = 0. The values of the variables and their derivatives evaluated at
ξ = 0 can be inferred by (18) and by differentiating the system (16) repeatedly. A
straightforward but cumbersome calculation yields

V̄ (0) = 0, V̄ξ(0) = Ū(0) = Γ̄(0)a, Σ̄(0) =
Ūn

Γ̄m
(0) = Γ̄(0)−(m−n)an,

Γ̄ξ(0) = Σ̄ξ(0) = Ūξ(0) = 0,

Γ̄ξξ(0) = −
(

Γ̄(0)2+m−na−n
) λad

m− n

(

1

1− 2A−1

)

1

λ
,

Ūξξ(0) = −
(

Γ̄(0)2+m−na−n
) λad

m− n

(

a+ 2λ

1− 2A−1

)

1

λ
,

and the leading orders of the Taylor expansion of the field variables near ξ = 0 are

V̄ (ξ) = Ū(0)ξ + o(ξ2),

Γ̄(ξ) = Γ̄(0) +
ξ2

2
Γ̄ξξ(0) + o(ξ2),

Σ̄(ξ) = Σ̄(0) +
ξ2

2
Σ̄ξξ(0) + o(ξ2),

Ū(ξ) = Ū(0) +
ξ2

2
Ūξξ(0) + o(ξ2).

Using (21) and (20), we calculate the Taylor expansion of p(log ξ) near ξ = 0,

p(log ξ) =
γ̃

σ̃
=

ξ
2

1+m−n Γ̄

ξ−(m−n) 2
1+m−n Σ̄

= ξ2
Γ̄

Σ̄

= ξ2
Γ̄(0)

Σ̄(0)
+ o(ξ2) = Γ̄(0)1+m−na−nξ2 + o(ξ2).

Also, the Taylor expansion of q(log ξ) near ξ = 0 is given by

q(log ξ) = b
ṽ

σ̃
=

b ξ
1−m+n
1+m−n Γ̄

ξ−(m−n) 2
1+m−n Σ̄

= bξ
V̄

Σ̄

= b

[

ξ
V̄ (0)

Σ̄(0)
+ ξ2

(

V̄ξ(0)

Σ̄(0)
−

V̄ (0)Σ̄ξ(0)

Σ̄2(0)

)

+ o(ξ2)

]

=
(

Γ̄(0)1+m−na−n
)

abξ2 + o(ξ2).

Finally, r(log ξ) = a at ξ = 0 and the Taylor expansion of r(log ξ)− a near
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ξ = 0 yields,

r(log ξ)− a =
ũ

γ̃
− a =

ξ
2

1+m−n Ū

ξ
2

1+m−n Γ̄
− a =

Ū

Γ̄
(ξ) −

Ū(0)

Γ̄(0)

= ξ
Ū(0)

Γ̄(0)

(

Ūξ(0)

Ū(0)
−

Γ̄ξ(0)

Γ̄(0)

)

+
1

2
ξ2
[

Ūξξ(0)

Γ̄(0)
− 2

Ūξ(0)Γ̄ξ(0)

Γ̄2(0)
+ Ū(0)

(

−
Γ̄ξξ(0)

Γ̄2(0)
+ 2

(

Γ̄ξ(0)
)2

Γ̄3(0)

)]

+ o(ξ2)

=
(

Γ̄(0)1+m−na−n
) −λad

m− n

(

1

1− 2A−1

)

ξ2 + o(ξ2).

From log ξ = η and the eigenvector of the unstable node M0, we conclude that

e−2η









p(η)
q(η)
r(η)



−M0



→ Γ̄(0)1+m−na−n ~X02, as η → −∞.(28)

4.2.3. Selection of the targeted heteroclinic orbit. The asymptotic be-
havior as η → ±∞ suggests to look for a heteroclinic orbit joining M0 to M1 that
emanates in the direction of ~X02. Recall that M0 is an unstable node and that M1

has two dimensions of stable eigenspace. We conjecture from that there is a surface
G ⊂ Wu(M0)∩W s(M1), the intersection of the unstable manifold of Mλ,m,n

0 and the

stable manifold of the equilibrium Mλ,m,n
1 .

Assuming the surface, there is a one-parameter family of heteroclinic curves join-
ing M0 to M1. In the neighborhood of M0, because µ01 = 1 < 2 = µ02, all the
curves meet M0 tangentially to ~X01 except one; this exceptional curve meet M0 tan-
gentially to the eigenvector ~X02. In other words, the asymptotic behavior at η = ±∞
we established in section 4.2.2 characterizes to consider this exceptional curve.

In an autonomous system, if ϕ⋆(η) is a heteroclinic orbit then so is ϕ⋆(η+ η0) for
any constant η0. This implies that there is one-parameter family of heteroclinics that
share the same orbit in phase space. (28) indicates that Γ̄(0), the constant factor of
the self-similar strain profile is responsible for fixing the shift η0. Let us be precise on
this procedure. Any orbit near M0 has the asymptotic expansion

(29) ϕ(η) −M0 = κ1e
η ~X01 + κ2e

2η ~X02 + higher-order terms

as η → −∞ for some constants κ1 and κ2. Let





P (η)
Q(η)
R(η)



 be a trajectory emanating in

the direction of ~X02 and κ̄2 be the corresponding constant (κ̄1 = 0 for this trajectory).
Any shifted trajectory

ϕ⋆(η) =





p(η)
q(η)
r(η)



 =





P (η + η0)
Q(η + η0)
R(η + η0)





reparametrizes the same orbit and satisfies the asymptotic behavior

e−2η









P (η + η0)
Q(η + η0)
R(η + η0)



−M0



→ κ̄2e
2η0 ~X02, as η → −∞.
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We select the shift η0 so as to satisfy (27), that is

η0 =
1

2
log

Γ̄(0)1+m−na−n

κ̄2
.

Remark 3. In the course of the selection, it is the parameters m and n of the
material law, the focusing rate λ, and the shift η0 that fixes the heteroclinic orbit.
From the perspective of the application, we may let

(

Γ̄(0), Ū(0)) the initial size of
nonuniformities in the strain and that in the strain rate be the primary parameters
instead of λ and η0. λ and η0 are then determined by

(30) λ =
1+m− n

2

( Ū(0)

Γ̄(0)
−

2− n

1 +m− n

)

, η0 =
1

2
log

Γ̄(0)1+mŪ(0)−n

κ̄2
,

where we exploited Ū(0)
Γ̄(0)

= a. (26) pinpoints the range

(31)
2− n

1 +m− n
<

Ū(0)

Γ̄(0)
<

2− n

1−m+ n
,

where admissible self-similar solutions are attained. In summary, for each given (m,n),
we are looking for a two-parameter family of self-similar solutions. The two param-
eters, the sizes of the initial nonuniformities

(

Γ̄(0), Ū(0)), need to take values in the
range (31).

4.3. Asymptotics of the profile. In a similar fashion to the analysis providing
the behavior at ξ = 0, we can pursue the asymptotic expansion of the heteroclinic
near M1 on G. Similarly to (29), we have

(a) if m− n = 1
2 and λ 6= 1−m

(32) ϕ⋆(η)−M1 = κ′

1e
−η ~X11 + κ′

2ηe
−η ~X ′

12 + higher-order terms

(b) otherwise

(33) ϕ⋆(η) −M1 = κ′

1e
−η ~X11 + κ′

2e
−

1−m+n
m−n

η ~X12 + higher-order terms

as η → ∞.
The following Proposition collects the calculations on the asymptotic behaviors.

Proposition 4. Let
(

Γ̄(ξ), V̄ (ξ), Σ̄(ξ), Ū(ξ)
)

be a smooth self-similar profile sat-

isfying (18) and let ϕ⋆(η) =
(

p(η), q(η), r(η)
)

be the associated variables defined by
(21) and (24). Suppose ϕ⋆(η) is the heteroclinic orbit of ((P )λ,m, n) that connects
M0 to M1. Then,

(i) At ξ = 0, the self-similar profiles satisfy the boundary conditions

V̄ (0) = Γ̄ξ(0) = Σ̄ξ(0) = Ūξ(0) = 0, Γ̄(0), Ū(0) are given parameters.

(ii) The asymptotic behavior as ξ → 0 is given by

(34)

V̄ (ξ) = Ū(0)ξ +O(ξ3), Γ̄(ξ) = Γ̄(0) +O(ξ2),

Σ̄(ξ) =
Ū(0)n

Γ̄(0)m
+O(ξ2), Ū(ξ) = Ū(0) + O(ξ2).

(iii) The asymptotic behavior as ξ → ∞ is
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(a) if m− n = 1
2 and λ 6= 1−m

(35)
V̄ (ξ) = O((log ξ)−

1
3 ), Γ̄(ξ) = O(ξ−

1
m−n (log ξ)

2
3 ),

Σ̄(ξ) = O(ξ(log ξ)−
1
3 ), Ū(ξ) = O(ξ−

1
m−n (log ξ)

2
3 ),

(b) and for all other cases

(36)
V̄ (ξ) = O(1), Γ̄(ξ) = O(ξ−

1
m−n ),

Σ̄(ξ) = O(ξ), Ū(ξ) = O(ξ−
1

m−n ).

Proof. (i) and (ii) were verified in the proof of Proposition 2. To show (iii), the
asymptotic behavior of ϕ⋆(η) in a neighborhood of M1 is investigated. The asymp-
totic behavior of a nonlinear problem near the hyperbolic equilibrium point M1 is
determined by the associated linearized problem. As the orbit ϕ⋆(η) lies in the stable
manifold of M1, its asymptotic behavior in the neighborhood of M1 is expressed by
(32) for the case m− n = 1

2 and λ 6= 1−m and by (33) for the rest of cases. We first
focus on the latter.

For the orbit ϕ⋆(η), one can further exclude the possibility that the coefficient
κ′

2 = 0 in (33). Indeed, the plane p = 0 is invariant for the dynamical system
((P )λ,m, n), and the corresponding orbits on the plane p = 0 can be calculated. In
this case the equation for q decouples and one can integrate for q and r. In particular,
the heteroclinic that connects M0 to M1 on the plane p = 0 can be calculated and
has κ′

2 = 0 for its coefficient. Since the orbit ϕ⋆(η) ventures out of the plane p = 0,
we conclude that for this one κ′

2 6= 0.

In addition, observe that p → 0 and the p-component of ~X11 vanishes, which
implies

p = κ′

2e
−

1−m+n
m−n

η + higher-order terms, q → 1, r → c as η → ∞.

The reconstruction formulas for
(

ṽ, γ̃, σ̃, ũ
)

from
(

p, q, r
)

are

(37)
ṽ =

1

b

(

p−(m−n)q1+m−nrn
)

1
1+m−n

, γ̃ =
(

prn
)

1
1+m−n

,

σ̃ =
(

p−(m−n)rn
)

1
1+m−n

, ũ =
(

pr1+m
)

1
1+m−n

.

Hence, we conclude

ṽ ∼ e
1−m+n
1+m−n

η, γ̃ ∼ e−
1−m+n

(m−n)(1+m−n)
η, σ̃ ∼ e

1−m+n
1+m−n

η, ũ ∼ e−
1−m+n

(m−n)(1+m−n)
η

as η → ∞ and then setting ξ = eη and (21) provides (iii)-(b).
For the special case when m− n = 1

2 and λ 6= 1−m, with same reasoning κ′

2 6= 0

in (32) and the p-component of ~X11 vanishes but we have

p = κ′

2ηe
−η + higher-order terms, q → 1, r → c as η → ∞.

Straightforward calculations again from (37) gives (iii)-(a).

5. Existence of the heteroclinic orbit. In the preceding section, we identified
the heteroclinic of ((P )λ,m, n) on the hypothesized surface G = Wu(M0) ∩W s(M1).
We are now in a position to apply geometric singular perturbation theory to achieve
the surface and the heteroclinic orbit. Our goal is to prove the following theorem.
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Theorem 5. Let Λ be a domain of the tuple (λ,m, n) ∈ R
3 defined by

0 < m ≤ 1 (strain softening with m ≤ 1),(38)

n > 0 (rate sensitivity),(39)

−m+ n < 0 (unstable regime),(40)

0 < λ <
(2− n)(m− n)

1−m+ n
(strain must be increasing).(41)

For each (λ,m, 0) ∈ Λ, there is n0(λ,m), such that for n ∈ (0, n0), (λ,m, n) ∈ Λ

and the system ((P )λ,m, n) admits a heteroclinic orbit joining equilibrium Mλ,m,n
0 to

equilibrium Mλ,m,n
1 with the following property

(42) e−2η









p(η)
q(η)
r(η)



−M0



→ κ ~X02, for some κ > 0.

In the rest of this section, we divide the proof into several steps:
(i) In preparation, we specify the two-dimensional critical manifold G0. We

inspect its normal hyperbolicity.
(ii) Via geometric singular perturbation theory we continue this invariant surface

to n > 0 attaining the surface Gn.
(iii) We apply the Poincaré-Bendixson theorem to show the existence of the target

heteroclinic orbit on Gn.

5.1. Critical manifold. The system in fast scale with the independent variable
η̃ = η/n is

p
′ = np

( 1

λ

(

r −
2− n

1 +m− n

)

−

1−m+ n

1 +m− n
+1− q − λpr

)

,

q
′ = nq

(

+1− q − λpr
)

+ nb
λ,m,n

pr,(P̃ )λ,m, n

r
′ = r

(

m− n

λ

(

r −
2− n

1 +m− n

)

+
1−m+ n

1 +m− n
−1 + q + λpr

)

=: fλ,m,n(p, q, r),

where we denoted (·)′ = d
dη̃
(·). The right-hand side of the equation on r is denoted by

fλ,m,n(p, q, r). We specify the critical manifold Gλ,m,0 in the below that is a compact
subset of {(p, q, r) | fλ,m,0(p, q, r) = 0}. The latter set consists of the equilibria of the

system ˜(P )
λ,m,0

.
In the region r > 0, one solves the algebraic equation fλ,m,0(p, q, r) = 0,

(43) r = hλ,m,0(p, q) =
m
λ

2
1+m

− 1−m
1+m

+ 1− q
m
λ
+ λp

,

from which we notice that the contour lines are straight lines; after rearranging,

(44) q + λrp =
2m

1 +m
−

m

λ

(

r−
2

1 +m

)

, for hλ,m,0(p, q) = r.

In view of (44), the contour lines in the pq-plane sweep out the first quadrant from
the origin. See Figure 2b. More precisely, the contour line passes the origin when
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r = aλ,m,0 at the same time as its lift in the pqr-space passes the equilibrium Mλ,m,0
0 .

As r decreases, the contour line intersects the p and q axes and becomes steeper.
When r reaches cλ,m,0, the contour line passes (0, 1) at the same time as its lift passes

Mλ,m,0
1 . r then further decreases to 0.
Note that the inequality (41) implies cλ,m,0 > 0. We let T be the triangle enclosed

by the p-axis, q-axis and the one contour line of (44) with 0 < r < cλ,m,0. We choose
D ⊃⊃ T whose compact closure D̄ is strictly away from r = 0 plane. The critical
manifold for each λ and m is defined by

(45) Gλ,m,0 = {(p, q, r) ∈ D̄ | r = hλ,m,0(p, q)}.

p

q

r

M0

M1

(a) phase space

p

q

T

h0(p, q) = a

h0(p, q) = c

h0(p, q) = r

h0(p, q) = 0
(b) Contours on the pq-plane

Fig. 2. Critical manifolds Gλ,m,0 =
(

p, q, hλ,m,0(p, q)
)

, 0 < m ≤ 1.

Lemma 6. Gλ,m,0 is a normally hyperbolic invariant manifold with respect to the
system (P̃ )λ,m,0.

Proof. We linearize the system (P̃ )λ,m,0 around Gλ,m,0, and show that 0 is the
eigenvalue with a multiplicity of exactly 2. Let the perturbations of p, q, and r be P ,
Q, and R, respectively. After discarding terms higher than the first order, we obtain





P ′

Q′

R′



 =





0 0 0
0 0 0

λ(hλ,m,0)2 hλ,m,0 (m
λ
+ λp)hλ,m,0









P
Q
R



 .

The coefficient matrix has eigenvalues of 0 and (m
λ
+ λp)hλ,m,0. Since we take hλ,m,0

away from zero and p ≥ 0, the latter eigenvalue is strictly greater than zero. Thus, 0
is an eigenvalue with multiplicity 2.

5.1.1. Flow on the critical manifold : the case m = 1. The marginal case
m = 1 provides closer detail. If one substitutes m = 1, n = 0, hλ,1,0(p, q) in the
first two equations of ((P )λ,m, n), the resulting system can be explicitly solved. The
general solution on the graph is a family of parabolae p = kq2 and r = hλ,1,0(p, q).
This includes the two extremes p = 0 and q = 0, where k takes 0 and ∞ respectively.
See Figure 3. We focus on discussing two points: 1) In an effort to apprehend the
flow of the rest of cases, we remark a few features for this marginal case, which in
turn persist under the perturbation; and 2) we report features that do not persist too.
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These features do not play any role in our study, but this degenerate case is described
here for clarity.

We address the first point. Emanating from Mλ,1,0
0 in Figure 3b is a family of

parabolae. Our interested direction ~X02 and the other ~X01 are indicated near Mλ,1,0
0

by a dotted arrow. The family of parabolae is manifesting the fact that orbit curves
meet Mλ,1,0

0 tangentially to ~X01; one exception is the degenerate straight line that

emanates in ~X02, which is depicted as the green one in Figure 3, the target orbit.
Another observation from the pq-plane is that the flow in the first quadrant far away
from the origin is inwards. More precisely, as illustrated in Figure 3b, whenever
0 < r < 1 = cλ,1,0 the flow on the contour line r = hλ,1,0 is inwards. We make use of
this observation in the proof of subsection 5.2.

Now, we describe the second point. The crucial difference is that Mλ,1,0
1 is re-

placed by a line of equilibria hλ,1,0(p, q) = cλ,1,0 = 1, which is the red line in Figure 3.

As a result, each of the parabolae emanated from Mλ,1,0
0 lands at a point among

these equilibria. ~X02 lies in the plane q = 0 distinctively from all other cases and the
target orbit in particular lands at the q-intercept of the line of equilibria. To compare
this observation to the statement of Theorem 5, the target orbit does not connect
Mλ,1,0

0 to Mλ,1,0
1 but to this q-intercept. This observation does not spoil our proof in

subsection 5.2 because we assert the persistence of the critical manifold not the target
orbit.

p

q

r

M0

M1

(a) phase space

p

q

T

h0(p, q) = 1

h0(p, q) = r

~X01
~X02

(b) pq-plane

Fig. 3. Critical manifold Gλ,1,0 =
(

p, q, hλ,1,0(p, q)
)

when m = 1 and the flow on the manifold.
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5.2. Proof of the theorem.

Proof. Step 1. Regularly perturbed reduced system.
By Lemma 6, there exists n0, such that for n ∈ [0, n0), locally invariant manifold

Gλ,m,n with respect to ((P̃ )λ,m, n) exists. Moreover, Gλ,m,n is again given by the
graph (p, q, hλ,m,n(p, q)) on D̄. The condition that Gλ,m,n is disjoint from r = 0 plane
for all n ∈ [0, n0) must persist by making n0 smaller if necessary. In addition, n0 is
chosen in the valid range of inequalities (40) and (41).

After achieving hλ,m,n(p, q), substitution of the function in place of r in system
((P )λ,m, n) leads to the reduced systems that are parametrized by λ, m, and n ∈
[0, n0):

ṗ = p
( 1

λ

(

h
λ,m,n(p, q)−

2− n

1 +m− n

)

−

1−m+ n

1 +m− n
+ 1− q − λph

λ,m,n(p, q)
)

,

q̇ = q
(

1− q − λph
λ,m,n(p, q)

)

+ b
λ,m,n

ph
λ,m,n(p, q),

(R)λ,m, n

Step 2. Mλ,m,n
0 and Mλ,m,n

1 are still on the graph.

In fact, only Mλ,1,n
1 needs to be checked because, other than that, the equilibrium

points are hyperbolic. At (p, q) = (0, 1), from the system ((R)λ,m, n), we see ṗ = q̇ = 0.

Now ṙ = ∂hλ,1,n

∂p
ṗ+ ∂hλ,1,n

∂q
q̇ = 0 because the derivatives of hλ,1,0 do not diverge and

derivatives of hλ,1,n are close to them. This equilibrium point must be Mλ,1,n
1 since

there is no other equilibrium point near Mλ,1,n
1 . Similar reasoning in fact applies for

the hyperbolic equilibrium points.

Step 3. T is positively invariant under the flow ((R)λ,m, n) if n is sufficiently
small.

First, we show the claim when n = 0 and prove that it persists under the perturbation.
Consider the system (R)λ,m,0. On p = 0, it is invariant; on q = 0, the inward normal
vector is (0, 1) and the inward flow q̇ = bλ,m,0phλ,m,0 ≥ 0. On the hypotenuse contour
line, if p is the p-intercept and q is the q-intercept, that is

q =
2m

1 +m
−

m

λ

(

r−
2

1 +m

)

, p =
q

λr
,

then (−q,−p) is an inward normal vector. The inward normal component of the
vector field on the line is then

(−q,− p) · (ṗ, q̇)

= −pq(1− q)− p
q

m

( 2m

1 +m
−

m

λ

(

1−
2

1 +m

)

− q
)

≥ −pq(1− q)

=: δ > 0.

The inequality comes from 0 < r < cλ,m,0 ≤ 1. δ is a fixed constant that is strictly
positive, proving that the triangle T is invariant.

Now, we show that this positively invariant property persists under perturbation.
We examine the same triangle T but with the system (R)

λ,m,n
with n > 0. Again,

sides of p = 0 and q = 0 are invariant or inward for the same reason. Now, the line
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p

q

r

M0

M1

(a) phase space

p

q

T

h0(p, q) = r

~X01~X02

(b) pq-plane

Fig. 4. Schematically drawn sketches of the perturbed invariant manifold and the flow. The

triangle T was determined by the contour line of the graph r = h0(p, q) but T is positively invariant

under the flow ((R)λ,m, n) for all n ∈ [0, n0).

of the hypotenuse of T is no longer a contour line of hλ,m,n(p, q) = r, but hλ,m,n(p, q)
remains close to r, that is

hλ,m,n(p, q) = r + ng1(n, p, q), by Taylor theorem.

g1 is uniformly bounded in n, p, and q. The inward normal component of the vector
field on the line is computed as

(−q,− p) · (ṗ, q̇)

= −qp
( 1

λ

(

h(p, q)−
2

1 +m

)

+
2m

1 +m
− q − λph(p, q)

)

− pq(1− q − λph(p, q))

− pbλ,m,nph(p, q)

= −qp
( 1

λ

(

r−
2

1 +m

)

+
2m

1 +m
− q − λpr

)

− pq(1− q − λpr)− pbλ,m,0pr

+ n
(

− qp
( 1

λ
g1 − λpg1

)

− pq
(

− λpg1
)

)

− p
(bλ,m,n − bλ,m,0

n
pr + bλ,m,npg1

)

)

= −pq(1 − q)− p
q

m

( 2m

1 +m
+

m

λ

( 2

1 +m
− 1
)

− q
)

+ n
(

− qp
( 1

λ
g1 − λpg1

)

− pq
(

− λpg1
)

)

− p
(bλ,m,n − bλ,m,0

n
pr + bλ,m,npg1

)

)

≥ δ + ng2(n, p, q),

where g2(n, p, q) is the expression in the parentheses of the last equality that is
multiplied by n, which is also uniformly bounded in n, p, and q. We have used

bλ,m,n − bλ,m,0 = n (1−m)+2λ
(1+m−n)(1+m) . Therefore, n0 can be chosen, even smaller if neces-

sary, so that the last expression becomes positive. This proves the claim.

Note that ~X02 is pointing inward of the triangle T from (0, 0). Thus, the orbit

emanating in ~X02 is continued to the interior of T by the stable(unstable) manifold
theorem. The ω-limit set of this orbit cannot contain the limit cycle because when
n > 0, there is no equilibrium point inside of T other than (0, 0) and (0, 1). Recall
that (0, 0) is the unstable node and (0, 1) generates the stable subspace. Thus, the
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Poincaré-Bendixson theory (for example in [16]) implies that the orbit converges to
(0, 1). The lifting of this orbit to the three dimensional phase space is the desired
heteroclinic orbit.

6. Two-parameter family of focusing solutions. Theorem 5 determines the
orbit curve, and the translation factor η0 fixes the one heteroclinic orbit. As stated
earlier,

(

Γ̄(0), Ū(0)
)

determine η0 and λ by (30). In summary, for each
(

Γ̄(0), Ū(0)
)

such that

2− n

1 +m− n
<

Ū(0)

Γ̄(0)
<

2− n

1−m+ n
,

and for material parameters m and n this procedure gives rise to a solution of (12).
By tracing back the nonlinear transformations (24), (21), and (15)

γ(x, t) = (1 + t)
2−n

1+m−n
+ 2

1+m−n
λ Γ̄
(

x(1 + t)λ
)

,

v(x, t) = (1 + t)
1−m

1+m−n
+ 1−m+n

1+m−n
λ V̄

(

x(1 + t)λ
)

,

σ(x, t) = (1 + t)−
2m−n

1+m−n
−

2(m−n)
1+m−n

λ Σ̄
(

x(1 + t)λ
)

,

u(x, t) = vx(x, t) = (1 + t)
1−m

1+m−n
+ 2

1+m−n
λ Ū

(

x(1 + t)λ
)

,

(46)

Note that the
(

Γ̄, V̄ , Σ̄, Ū
)

coincide with the initial nonuniformities of
(

γ, v, σ, u
)

at
t = 0.

We next describe the asymptotic behavior of the solutions. We omit the special
case m− n = 1

2 and λ 6= 1−m. We focus on the remaining cases; in the special case
m− n = 1

2 and λ 6= 1−m, a logarithmic correction will be required.

Initial nonuniformities
(

Γ̄, V̄ , Σ̄, Ū
)

. We first look into the profiles
(

Γ̄, V̄ , Σ̄, Ū
)

of

the initial nonuniformities. From (34) and (36) we infer that Γ̄ and Ū peak at the

origin and decay at the order ξ−
1

m−n as ξ → ∞. They are thus bell-shaped even
nonuniformities. On the other hand, V̄ is an odd function of ξ connecting −V̄∞ to
V̄∞ as ξ runs from −∞ to ∞, which describes the loading. V̄∞ = limξ→∞ V̄ (ξ) is a
positive constant. We remark that − 1

m−n
< −1, and in the range of the parameters

that we consider, Ū = V̄ξ is integrable. The stress Σ̄ = Γ̄−mŪn, an even function of
ξ, has the local minimum Σ̄(0) = Γ̄(0)−mŪ(0)n at ξ = 0 and the asymptotic linear
growth as |ξ| → ∞.

Below, we summarize the localizing behaviors of
(

γ, v, σ, u
)

. Due to the similarity
structure ξ = x(1+t)λ, the solution profiles shrink toward the origin as time proceeds.
Second, due to the multiplier polynomials of t in (46), the heights of the profiles
increase (or decrease). The actual rate of growth or decay at a fixed point x 6= 0 is
calculated by taking the shrinking effect into account, contrasting the behavior near
the origin to the rest of the points.

• strain: We let the growth order t
2−n

1+m−n be critical. If m = 1, it is of linear
order and corresponds to that of the uniform shearing solution. If 0 < m < 1, it is
superlinear. We observe

γ(0, t) = (1 + t)
2−n

1+m−n
+ 2

1+m−n
λ Γ̄(0),

γ(x, t) ∼ t
2−n

1+m−n
−

1−m+n
(1+m−n)(m−n)

λ|x|−
1

m−n as t → ∞ for x 6= 0,
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and the tip of the strain γ(0, t) grows supercritically and γ(x, t), x 6= 0 grows subcrit-
ically as t → ∞.

• strain rate: We observe

u(0, t) = (1 + t)
1−m

1+m−n
+ 2

1+m−n
λ Ū(0),

u(x, t) ∼ t
1−m

1+m−n
−

1−m+n
(1+m−n)(m−n)λ|x|−

1
m−n as t → ∞ for x 6= 0,

whose growth orders are by definition less by 1 than those of the strain. The tip of the
strain rate u(0, t) certainly grows to ∞ as t → ∞. Different from the strain, u(x, t),
x 6= 0 does not necessarily grow as time proceeds.

• velocity: The velocity v(x, t) at a fixed time connects the −v∞ to v∞ as x
runs from −∞ to ∞, where v∞ = limx→∞ v(x, t). This transition eventually becomes
as drastic as the step function as t → ∞. The limit value v∞ ∼ tb.

• stress: We observe

σ(0, t) = (1 + t)−
2m−n

1+m−n
−

2(m−n)
1+m−n

λ Γ̄(0)−mŪ(0)n,

σ(x, t) ∼ t−
2m−n

1+m−n
+ 1−m+n

1+m−n
λ|x| as t → ∞ for x 6= 0.

As the strain localizes near the origin, the stress at the origin collapses quickly. σ(x, t),
x 6= 0 also decays to zero but at slower order; − 2m−n

1+m−n
+ 1−m+n

1+m−n
λ always is negative.

Appendix A. Geometric singular perturbation theory. In this section,
we collected the part of geometric singular perturbation theory that we use. Our work
requires only the basic technique; readers are refered to [4, 5, 11, 23, 14] for further
results and references.

The material below is taken from [11, 14]. Let us consider the fast-slow system
in the fast independent variable

x′ = f(x, y, ǫ),

y′ = ǫg(x, y, ǫ)
(47)

and its critical case when ǫ = 0

x′ = f(x, y, 0),

y′ = 0.
(48)

Here, x ∈ R
m is called a fast variable and y ∈ R

n a slow variable. We assume the
vector field of (47) has a definition for (x, y) ∈ U ⊂ R

m+n an open set and for ǫ ∈ I,
the interval containing 0. Let

C0 := {(x, y) ∈ U | f(x, y, 0) = 0} .

To state a version of a theorem of geometric singular perturbation theory, we
introduce two notions.

Definition 7 (Normally hyperbolic invariant manifold in C0 to (48)). A subset
S ⊂ C0 is called normally hyperbolic if the m × m matrix (Dxf)(p, 0) of first par-
tial derivatives with respect to the fast variables x has no eigenvalues with zero real
part for all p ∈ S.
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Definition 8 (Local invariance of (47)). Let φt(·) denote the flow defined by the
vector field of (47) and M be a compact connected C∞-manifold with boundary em-
bedded in U . M is called a locally invariant manifold if for each p ∈ M , there exists
a time interval Ip = (t1, t2) such that 0 ∈ Ip and φt(p) ∈ M for all t ∈ Ip.

Next, we specify three hypotheses:
(H1) f, g ∈ C∞(U × I),
(H2) The set M0 ⊂ C0 is a compact manifold, possibly with boundary, and is

normally hyperbolic relative to (48) in the sense of Definition 7.
(H3) The set M0 is given as the graph of the function h0(y) ∈ C∞(D̄) where

D̄ ⊂ R
n is a compact simply connected domain with C∞ boundary.

Below is a version of the theorem that is simpler in a sense that it involves a graph
rather than a manifold.

Theorem 9 (Graph version, theorem 2 in [11]). Under the assumptions (H1),
(H2), and (H3), if ǫ > 0 is sufficiently small, there is a function hǫ(y), defined on D̄,
so that the graph Mǫ = {(x, y) | x = hǫ(y)} is locally invariant to (47). Moreover, hǫ

is Cr(D̄) for any r < +∞, jointly in y and ǫ.
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