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Abstract. We consider a coupled system consisting of a kinetic equation coupled to a macroscopic Stokes (or
Navier-Stokes) equation and describing the motion of a suspension of rigid rods in gravity. A reciprocal coupling leads
to the formation of clusters: The buoyancy force creates a macroscopic velocity gradient that causes the microscopic
particles to align so that their sedimentation reinforces the formation of clusters of higher particle density. We provide
a quantitative analysis of cluster formation. We derive a nonlinear moment closure model, which consists of evolution
equations for the density and second order moments and that uses the structure of spherical harmonics to suggest a closure
strategy. For a rectilinear flow we employ the moment closure together with a quasi-dynamic approximation to derive
an effective equation. The effective equation is an advection-diffusion equation with nonisotropic diffusion coupled to a
Poisson equation, and belongs to the class of the so-called flux-limited Keller-Segel models. For shear flows, we provide
an argument for the validity of the effective equation and perform numerical comparisons that indicate good agreement
between the original system and the effective theory. For rectilinear flow we show numerical results which indicate that
the quasi-dynamic provides accurate approximations. Finally, a linear stability analysis on the moment system shows
that linear theory predicts a wavelength selection mechanism for the cluster width, provided that the Reynolds number
is larger than zero.
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1. Introduction. Complex fluids with suspended microstructure might include diverse materials
such as polymeric solutions with a long chain structure, or suspensions of non-deformable particles with
an orientation (for example rod-like particles). Such systems might be modeled via continuum modeling
of viscoelastic fluids, or via mesoscopic models within the realm of kinetic theory, or even as particles
in a fluid. Multi-scale interactions cause interesting phenomena in the dynamics of complex flows, and
the area forms an interesting testing ground for examining the effect of change of scale and the passage
from microscopic to mesoscopic to macroscopic theories.

An interesting system is offered by a suspension of rod-like particles in a dilute solution under the
influence of gravity. For such a system, the macroscopic flow can cause a change of orientation for the
suspended microstructure, which in turn, produces an elastic stress that interacts with and modifies
the macroscopic flow. The sedimentation of dilute suspensions of rod-like particles can lead to cluster
formations and has been studied by several authors in theoretical, numerical and experimental work,
see the recent review paper by Guazzelli and Hinch [8] and references therein.

Experimental works by Guazzelli and coworkers [13, 14, 21] reveal the following scenarios: Starting
from a well-stirred suspension packets of particles form after some time. These packets seem to have
a mesoscopic equilibrium width, suggesting that the density of particles acquires variations of a char-
acteristic length scale. Within a cluster, individual particles are aligned with the direction of gravity
during most of the time; occasionally they flip. The average settling speed in a suspension is larger
than the sedimentation speed of a single particle oriented in the direction of gravity. The mechanism of
cluster formation was described in a fundamental paper of Koch and Shaqfeh [19]. In recent years the
sedimentation of rod-like (and other orientable) particles has also been studied via numerical simula-
tions of multi-scale models. Gustavsson and Tornberg [29, 9] used a very detailed description of rod-like
particles in a dilute suspension based on a slender body approximation. They were able to simulate
suspensions with up to a few hundred particles and a domain size of the order of a few particle length.
Butler and Shaqfeh [2] used a lower order slender body description. Saintillan et al. [25] accelerated this
algorithm using fast summation techniques. This allowed them to simulate several thousand particles.
Wang and Layton [31] used the immersed boundary method for their two-dimensional numerical stud-
ies. All numerical studies confirm the basic experimental findings: Packet formation and alignment in
gravity direction. Note that the models used in those simulations are of more microscopic nature than
the model considered here. Instead of a number density function for the rod orientation in every point
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of the domain, those authors model a large number of individual particles. Moreover, Brownian effects
are not considered in those models.

Our objective here is to provide a quantitative description of cluster formation by deriving an
effective theory via asymptotic methods. We focus on a multi-scale model that in non-dimensional form
reads

∂tf +∇x · (uf) +∇n · (P
n

⊥∇xunf)−∇x · ((I + n⊗ n) e3f)

= Dr∆nf + γ∇x · (I + n⊗ n)∇xf

σ =

∫

Sd−1

(dn⊗ n− I) f dn

Re (∂tu+ (u · ∇x)u) = ∆xu−∇xp+ δγ∇x · σ − δ

∫

Sd−1

f dne3

∇x · u = 0 .

(1.1)

Here, f(t,x,n) describes the distribution function of particles as a function of time t, space x ∈ R
d

and the orientation of the rod-like particles n ∈ Sd−1, u(t,x) stands for the velocity of the solvent,
p(t,x) is the pressure, while Dr, γ, δ and Re stand for non-dimensional numbers (see Section 2.2).
The model, described in detail in Section 2, puts together in a context of dilute suspensions of rod-
like particles various elements described in the book of Doi and Edwards [5]. Such kinetic models for
complex fluids hinge on hydrodynamical models for suspensions modeled by Fokker-Planck equations
[15, 16] and have a remarkable thermodynamical structure [5, Sec 8.6]. Similar models are studied in
[23, 11] in connection to shear band formation in polymeric flows. We note that the factors that lead,
according to Koch and Shaqfeh [19], to the instability of the sedimentation process are included in this
model, and the cluster formation mechanism is described in section 2.3.

Due to the high-dimensionality of the problem, numerical computations of the full five dimensional
problem (for d = 3) are cumbersome. We are therefore interested in the derivation of partial differential
equations (pdes), which describe the macroscopic flow without resolving the microscopic structure. Such
nonlinear models should also provide further insight into the basic nonlinear mechanism which leads
to cluster formation. Sections 3 and 4 are devoted to the derivation of such simpler pde models. In
Section 3, we perform a moment closure from the full multi-scale model, based on deriving equations
for the moments, and using the structure of spherical harmonics to suggest a closure strategy. We
adapt the results to various special flows of interest, including rectilinear flows and shear flows. The
obtained models (3.9) and (3.6) have some analogies to the familiar Oldroyd-B models in continuum
viscoelasticity (see Renardy [22] for a description and further references).

The moment closure leads to a d-dimensional system of pdes (1-dimensional for shear flow, 2-
dimensional for rectilinear flow) and thus reduces the dimension of the problem. A second approxi-
mation, explained in Section 4, leads to a scalar evolution equation for the particle density coupled to
the equation of the flow and provides an even simpler description of the process of cluster formation.
We call this quasi-dynamic approximation and it consists of setting the higher order moments to their
local equilibrium and evaluating them in terms of the zero-th moment and its spatial derivatives. It
leads to an emerging effective equation for the particle density. For the case of rectilinear flow along
the z-direction of the three-dimensional space x = (x, y, z), with ansatz

f = f(t, x, y,n) , u =
(
0, 0, w(t, x, y)

)T
,

the resulting effective system reads

∂tρ = ∇ ·
(

1

κ+ 10|∇w|2
[

I − 36|∇w|2
κ+ 46|∇w|2

∇w

|∇w| ⊗
∇w

|∇w|

]

κ
30ρ∇

(
w + 1

3 ln ρ
)
)

Re ∂tw = △(x,y)w + δ (ρ̄− ρ)

(1.2)

where ρ =
∫
fdn and κ = 422.

The system (1.2) should be compared to the Keller-Segel model (e.g. [18, 12, 1]) used as a model
for chemotaxis. There are two differences: (a) that the diffusion in (1.2)1 is anisotropic; more important
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(b) that both convection and diffusion are flux-limited, thus making the system belong to the general
type of flux-limited chemotaxis systems (e.g [6, 30, 24]).

We discuss in Sections 4.4 and 4.5 the nature of the quasi-dynamic approximation and provide some
justifying arguments. For the case of shear flows, an eigenvalues analysis of a linearized system suggests
that the approximation should be valid for moderate strain rates. Moreover, numerical simulations for
shear flows confirm that the solution structure obtained from the scalar evolution equation agrees very
well with the solution structure of the full model. Numerical results for rectilinear flow show a good
agreement between the nonlinear moment closure model and the quasi-dynamic approximation.

In appendix A, we summarise properties of the spherical harmonics, that are extensively used
throughout this work. In appendix B, we present results of a linear stability analysis for shear flows.
In particular, we show that linear stability theory predicts a wavelength selection only if the Reynolds
number of the macroscopic flow is larger than zero.

2. The mathematical model. We describe a kinetic model for sedimentation in dilute suspen-
sions of rod-like Brownian particles. Models of this type were introduced by Doi and Edwards, see [5,
Ch. 8]. In [23] and [11] a related model for suspensions of rod-like particles was considered. This model
is extended here to account for the effects of gravity in an effort to describe sedimentation of rod-like
particles in a solvent.

x3
g

n

u

x

x2

x1

Fig. 2.1. Basic notation for rod-like molecule which is falling sidewards.

We consider inflexible rod-like particles of thickness b which is much smaller than the particles
length l. Our considerations are restricted to the dilute regime which is characterised by the relation
ν ≪ l−3 where ν is the number density. Note that in contrast to the model considered in [23], the
number density is not constant here. The orientation of a rod-like particle is characterised by n ∈ Sd−1

where d is the dimension of the macroscopic physical space Ω ⊂ R
d. While the assumptions for the

dilute regime are satisfied for the well stirred dilute suspension of rod-like particles, at a later time
the assumption might be violated inside a cluster after particles have concentrated there. It would be
interesting to switch to a semi-dilute or concentrated model inside a cluster. We hope to consider such
extensions of the model in forthcoming work. However, we believe that the dilute model is appropriate
to study the initial stages of cluster formation.

We denote by e3 the unit vector in the upward direction and by g = −ge3 the acceleration of
gravity with gravitational constant g. Furthermore, let m0 denote the mass of an individual rod-like
particle and G = −m0ge3 be the force of gravity on a single particle. Some of our basic notation is
depicted in Figure 2.1.

In a quiescent suspension (i.e. macroscopic velocity u = 0) each particle sediments at a speed
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depending on its orientation n according to

dx

dt
=

1

ζ||
(G · n)n+

1

ζ⊥
(G− (G · n)n)

=

(
1

ζ||
n⊗ n+

1

ζ⊥
(I − n⊗ n)

)

G

=
1

ζ⊥
(n⊗ n+ I)G

where ζ|| and ζ⊥ are the frictional coefficients in the tangential and the normal direction. On the
basis of the Kirkwood theory ζ||, ζ⊥ satisfy ζ⊥ = 2ζ||, see [5, App 8.I]. In particular, a particle with
a horizontal orientation sediments slower than a particle with a vertical orientation and a particle of
oblique orientation moves also sideways.

In addition a macroscopic velocity gradient causes a rotation according to the equation

dn

dt
= P

n
⊥∇xun

where P
n

⊥∇xun := ∇xun− (∇xun · n)n is the projection of the vector ∇xun on the tangent space
at n.

We next include the effects of rotational and translational Brownian motion and account for the
macroscopic mean flow u(x, t). The model then becomes the system of stochastic differential equations

dx = udt+

(
1

ζ||
n⊗ n+

1

ζ⊥
(I − n⊗ n)

)

G dt

+

√

2kBθ

ζ||
n⊗ n+

2kBθ

ζ⊥
(I − n⊗ n) dW

dn = P
n

⊥∇xun dt+

√

2kBθ

ζr
dB

(2.1)

where W is the translational Brownian motion and B is the rotational Brownian motion, ζr is the
rotational friction coefficient, kB is the Boltzmann constant and θ the absolute temperature. The
definition of the translational Brownian motion dW is classical, while the definition of the rotational
Brownian motion dB requires analysis of geometric flavor, see [7, 17].

The above stochastic equations may be equivalently expressed via the Smoluchowski equation for
the evolution of the local orientational distribution function:

∂tf +∇x ·
[(

u+
1

ζ⊥
(n⊗ n+ I) (−m0ge3)

)

f

]

+∇n · (P
n

⊥∇xunf)

=
kBθ

ζr
∆nf +

kBθ

ζ⊥
∇x · (n⊗ n+ I)∇xf.

(2.2)

Here f(x, t,n) dn describes the number of particles per unit volume at macroscopic position x and
time t with orientations in the element centered at n and of volume dn. The second term on the left
hand side of (2.2) models transport of the center of mass of the particles due to the macroscopic flow
velocity and due to gravity. The last term on the left hand side models the rotation of the axis due
to a macroscopic velocity gradient ∇xu. The terms on the right hand side describe rotational as well
as translational diffusion. They together amount to non-isotropic spatial diffusion, which is one of the
main features of the model at hand. The gradient, divergence and Laplacian on the sphere are denoted
by ∇n, ∇n· and ∆n, while the gradient and divergence in the macroscopic flow domain are denoted by
∇x and ∇x·. The total number of rod-like particles is

∫

Ω

∫

Sd−1

f(x, t,n) dn dx =

∫

Ω

∫

Sd−1

f(x, 0,n) dn dx = N,
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i.e. f has dimensions of number density. It is convenient to rewrite the Smoluchowski equation in the
form

∂tf +∇x · (uf) +∇n · (P
n

⊥∇xunf)

= Dr∆nf +D⊥∇x · (I + n⊗ n)
(

∇xf +
1

kBθ
f ∇xU

)

,
(2.3)

where Dr := kBθ
ζr

and D⊥ := kBθ
ζ⊥

stand for the rotational and translational diffusion coefficients and

U(x) = m0g(x · e3) is the potential of the gravity force G = −∇U = −m0ge3. The reader is referred
to [17, Ch 1 & Ch 3] for the Ito calculus required to establish the relation between the stochastic
differential equation (2.1) and the kinetic equation (2.3). In the sequel, we work with equation (2.3).

As can be seen from (2.3), a velocity gradient ∇xu distorts an isotropic distribution f which leads
to an increase in entropy. Thermodynamic consistency requires that this is balanced by a stress tensor
σ(x, t) given by

σ(x, t) := kBθ

∫

Sd−1

(dn⊗ n− I) f(x, t,n)dn. (2.4)

(see [5, Sec 8.6] and compare with Section 2.1).
Local variations in the density m0

∫

Sd−1 fdn lead to spatial variations of the specific weight of the
suspension that generally can not be compensated by a hydrostatic pressure and thus trigger a fluid
motion (buoyancy). The macroscopic flow is described by the Navier-Stokes equation. Let ρf be the
density of the fluid which is assumed to be constant. The balance laws of mass and momentum have
the form

ρf

[

∂tu+ (u · ∇x)u
]

= µ△xu−∇xp+∇x · σ

− ρfge3 −
(∫

Sd−1

fdn
)

m0ge3

∇x · u = 0

(2.5)

The coupling between the kinetic equation and the macroscopic flow is effected through the viscoelastic
stress σ in (2.4) and the buoyancy of the rods (the last term in (2.5). One might also include an effect
of viscous forces induced by the rods, see [15] and [5, Sec 8.6.1]; such an effect is neglected here.

The term ρfge3 can be incorporated to the pressure. For the linear stability analysis it will be
convenient to express the momentum equation in the equivalent form

ρf (∂tu+ (u · ∇x)u) = µ∆xu−∇xp
′ +∇x · σ +

(
N

V
−
∫

Sd−1

f dn

)

m0ge3

∇x · u = 0

(2.6)

by redefining the pressure,

p′ = p+ ρfge3 · x+
m0Ng

V
e3 · x ,

to account for the hydrostatic pressures, where V is the volume occupied by the suspension and N the
total number of rod-like particles.

We summarise the final model :

∂tf = −∇x · (uf)−∇n · (P
n

⊥∇xunf) +Dr∆nf

+D⊥∇x · (I + n⊗ n)

(

∇xf +
1

kBθ
m0ge3f

)

(2.7)

σ(x, t) = kBθ

∫

Sd−1

(dn⊗ n− I) f(x, t,n)dn (2.8)

∇x · u = 0 (2.9)

ρf (∂tu+ (u · ∇x)u) = µ∆xu−∇xp+∇x · σ −
( ∫

Sd−1

f dn
)

m0ge3 (2.10)
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2.1. Thermodynamic consistency of the model. To show thermodynamic consistency of the
model we use the free energy functional

A[f ] :=

∫

Ω

∫

S2

(kBθf ln f + fU(x)) dndx, (2.11)

where U(x) = m0gx · e3 is the gravitational potential.
Proposition 2.1. For f satisfying the Smoluchowski equation (2.7), the free energy A[f ] defined

in (2.11) satisfies the identity

∂tA[f ] +DrkBθ

∫

Ω

∫

S2

f |∇n ln f |2dndx

+D⊥kBθ

∫

Ω

∫

S2

∇x

(
ln f +

1

kBθ
U
)
·
(
I + n⊗ n

)
∇x

(
ln f +

1

kBθ
U
)
dndx

=

∫

Ω

∇xu : σdx+

∫

Ω

m0ge3

(∫

S2

fdn

)

· udx

(2.12)

Moreover, the total energy

E[u, f ] =

∫

Ω

(
1

2
ρf |u|2 +

∫

S2

(

(kBθ)f ln f + fU(x)
)

dn

)

dx (2.13)

of the system (2.7)-(2.10) dissipates.
The proof is based on vector calculus formulas for the surface gradient operator ∇n. Let F = F (n)

be a vector valued function and f = f(n) be a scalar valued function with n ∈ Sd−1. Then the relations
∫

S2

(∇n · F )fdn = −
∫

S2

F · (∇nf − 2nf)dn (2.14)

∫

S2

n⊗∇nfdn =

∫

S2

∇nf ⊗ n dn =

∫

S2

(3n⊗ n− id)fdn (2.15)

hold. A proof of (2.14) and (2.15) can be found in an appendix of [23].
Proof: We differentiate (2.11) with respect to t,

∂tA[f ] =

∫

Ω

∫

S2

(

kBθ(1 + ln f) + U(x)
)

ft dndx (2.16)

and use (2.7) to express the various contributions.
The contribution of the transport term −∇x · (uf) gives

Itr = −
∫

Ω

∫

S2

(

kBθ(1 + ln f) + U(x)
)

∇x · (uf) dndx

=

∫

Ω

∫

S2

(

kBθ∇xf + f∇xU
)

· udndx

(2.9)
=

∫

Ω

m0ge3

(∫

S2

fdn

)

· u dx

The contribution of the drift term −∇n · (P
n

⊥∇xunf) is :

Idr = −
∫

Ω

∫

S2

(

kBθ(1 + ln f) + U(x)
)

∇n · (P
n

⊥∇xunf) dndx

(2.14)
=

∫

Ω

∫

S2

kBθ∇n ln f · P
n

⊥ (∇xunf) dndx

=

∫

Ω

∇xu : kBθ

∫

S2

n⊗∇nf dn dx

(2.15),(2.8)
=

∫

Ω

∇xu : σ dx.
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The contribution of rotational diffusion leads to

Ird =

∫

Ω

∫

S2

(

kBθ(1 + ln f) + U(x)
)

Dr∆nf dndx

=

∫

Ω

∫

S2

(

kBθ(1 + ln f) + U(x)
)

Dr∇n · (f∇n ln f) dndx

= − (kBθ)
2

ζr

∫

Ω

∫

S2

|∇n ln f |2f dndx .

Finally, the contribution of the last term in (2.7), modeling the effect of translational friction and
translational diffusion, reads

Itdf =

∫

Ω

∫

S2

(

kBθ(1 + ln f) + U(x)
)

D⊥∇x · (I + n⊗ n)
(

∇xf +
f

kBθ
∇xU

)

= − (kBθ)
2

ζ⊥

∫

S2

∫

Ω

∇x

(

ln f +
1

kBθ
U

)

· (I + n⊗ n) f∇x

(

ln f +
1

kBθ
U

)

Combining all these contributions together yields (2.12).
Next, we multiply the Navier-Stokes equation (2.10) by u and integrate over Ω to obtain the balance

of the kinetic energy

d

dt

∫

Ω

1

2
ρf |u|2dx+ µ

∫

Ω

∇xu : ∇xu dx

= −
∫

Ω

∇xu : σ dx−
∫

Ω

u ·m0ge3

(∫

S2

fdn

)

dx .

(2.17)

Combining (2.12) and (2.17) leads to the balance of total energy. In particular, it follows that the total
energy dissipates.

2.2. Non-dimensionalization. We first list the dimensions of the terms that appear in the equa-
tions. The units of mass, length and time are denoted by M , L and T . We also monitor the dependence
on the number of particles N .

• v: velocity
[
L
T

]

• m0g: mass × acceleration
[
ML
T 2

]
;

• kBθ: energy = force × length
[
ML2

T 2

]

• ζ⊥: translational friction orthogonal to rod = force / velocity
[
M
T

]

D⊥ = kBθ
ζ⊥

[
L2

T

]

• ζr: rotational friction = torque / rotational velocity
[
ML2

T

]

Dr = kBθ
ζr

[
1
T

]

• µ =
force/area

velocity gradient

[
M
LT

]

• p: pressure = force/area
[

M
LT 2

]

• f : number of particles / volume
[
N
L3

]

• σ ∼ (kBθ)f
[
MN
LT 2

]

Now we consider a change of scale of the form

t = T t̂, x = Xx̂, u =
X

T
û, f =

N

V
f̂, p =

µ

T
p̂, σ = (kBθ)

N

V
σ̂. (2.18)

In these new units the Smoluchowski equation takes the form

∂t̂f̂ +∇x̂ ·
(

ûf̂
)

+∇n ·
(

P
n

⊥∇x̂ûnf̂
)

= TDr∆nf̂

+
T

X2
D⊥∇x̂ · (I + n⊗ n)∇x̂f̂ +

D⊥
X

T
m0g

kBθ
∇x̂ ·

(

(I + n⊗ n) e3f̂
) (2.19)
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The non-dimensionalization of the elastic stress tensor (2.8) leads to the expression

σ̂ =

∫

Sd−1

(dn⊗ n− I) f̂dn , (2.20)

while the conservation of momentum for the flow leads to

X2

Tµ
ρf

[

∂t̂û+ (û · ∇x̂) û
]

= ∆x̂û−∇x̂p̂+
XT

µ

kBθ

X

N

V
∇x̂ · σ̂ − N

V
m0g

XT

µ

(∫

Sd−1

f̂ dn

)

e3.

(2.21)

We have used two length scales in (2.18): a length scale X that is microscopic in nature and a
length scale L standing for the size of the macroscopic domain and entering only through the volume
V occupied by the suspension V = O(L3). T is an observational time scale and its role will be clarified
later. The ratio X/T is fixed at this point to be the velocity of sedimentation

X

T
=

m0g

ζ⊥
=: vsed, (2.22)

i.e. the velocity scale is proportional to the motion of a single rod falling due to gravity in a friction
dominated flow.

A review of the Navier-Stokes equation indicates that there are three dimensionless numbers at
play: First, a Reynolds number based on the velocity X/T = vsed

Re :=
Xvsed

µ
ρf

= ρf
X2

Tµ
. (2.23)

Second, a dimensionless number Γ describing the ratio of elastic versus viscous stresses at the fluid,

Γ :=
XT

µ

kBθ

X

N

V
=

(
X2ρf
Tµ

)(

N

V

kBθ

ρf
(
X
T

)2

)

(2.24)

=
inertial

viscous

elastic

inertial

Third, a dimensionless number δ describing the ratio between buoyancy forces and viscous stresses,

δ :=
N

V
m0g

XT

µ
=

(
X2ρf
Tµ

)(

Nm0g

V ρf
X
T 2

)

(2.25)

=
inertial

viscous

buoyancy

inertial

In interpreting the above definitions one observes that V ρfv
2
sed = V ρf

(
X
T

)2
is the total kinetic

energy of the sedimenting solution, while NkBθ stands for the total elastic energy of entropic origin
of the microstructure. Hence, the last term in (2.24) is the ratio of elastic over inertial forces. The
term V ρf

X
T 2 is the inertial force of the solution at the selected length and time scales, while Nm0g

stands for the total buoyancy force. Hence, the last term in (2.25) stands for the ratio of buoyancy
over inertial forces, and in the usual practice of fluid mechanics it will be denoted as 1

Fr
where Fr is a

Froude number. Hence, we have

δ = Re
1

Fr

We also define

γ :=
Γ

δ
=

kBθ

Xm0g
(2.26)
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and note that γ stands for the ratio of elastic over buoyancy forces, while δ is the ratio of the buoyancy
over viscous stresses. The non-dimensional form of the Navier-Stokes equation then becomes

Re (∂t̂û+ (û · ∇x̂) û) = ∆x̂û−∇x̂p̂+ δγ∇x̂ · σ − δ

(∫

Sd−1

f̂ dn

)

e3. (2.27)

We turn now to the transport equation (2.19). We introduce the Deborah number

De :=
1

DrT

which as usual expresses the ratio of a stress relaxation time 1
Dr

over the observational time scale T .
We also note that by virtue of (2.26) and (2.22)

T

X2
D⊥

1

γ
=

T

X2

kBθ

ζ⊥

Xm0g

kBθ
= 1

Hence, the kinetic equation (2.19) may be expressed in the dimensionless form

∂t̂f̂ +∇x̂ ·
(

ûf̂
)

+∇n ·
(

P
n

⊥∇x̂ûnf̂
)

=
1

De
∆nf̂ +∇x̂ · (I + n⊗ n)

(

γ∇x̂
f̂ + e3f̂

)

dependent on two dimensionless numbers: γ defined in (2.26) and the Deborah number De (or equiv-
alently the observational time scale T ). In the sequel we will use the notation Dr (of the rotational
diffusion coefficient) in the place of 1

De
in order to simplify the notation.

We summarise the non-dimensional form of the equations (dropping the hats)

∂tf +∇x · (uf) +∇n · (P
n

⊥∇xunf)−∇x · ((I + n⊗ n) e3f)

= Dr∆nf + γ∇x · (I + n⊗ n)∇xf

σ =

∫

Sd−1

(dn⊗ n− I) f dn

Re (∂tu+ (u · ∇x)u) = ∆xu−∇xp+ δγ∇x · σ − δ

(∫

Sd−1

f dn

)

e3

∇x · u = 0

(2.28)

If we express the Navier-Stokes equation in the equivalent form (2.6), then the associated non-dimensional
form is given by

Re (∂tu+ (u · ∇x)u) = ∆xu−∇xp+ δγ∇x · σ + δ

(

1−
∫

Sd−1

f dn

)

e3

∇x · u = 0

(2.29)

2.3. Multi-scale mechanism for instability and cluster formation. The multi-scale mecha-
nism that leads to the instability and the formation of clusters was first explained by Koch and Shaqfeh,
see [19].

In our kinetic model, the function

ρ(x, t) =

∫

Sd−1

f(x, t,n)dn

measures the density of rod like particles. By virtue of the buoyancy term in the Stokes equation, a
density modulation (as indicated in Figure 2.2 (a)) triggers a modulated shear flow with flow direction
e3 (see Fig. 2.2 (b)).

By virtue of the microscopic drift term on the sphere ∇n · (P
n

⊥∇xunf) this shear destroys the
uniform distribution f in n. For moderate local Deborah numbers the distribution f slightly concen-
trates in a direction at 45 degrees between the flow direction and the shear direction as shown in Fig.
2.2 (c). For larger shear rates the distribution f concentrates more pronounced in direction of gravity.
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(a) (b) (c) (d)

Fig. 2.2. Illustration of the concentration mechanism (a) initial density modulation, (b) velocity field, (c) microscopic
orientation: plot of λr, where λ is the largest eigenvalue of σ and r is the corresponding eigenvector, (d) increased density
modulation at later time.

In this figure we plotted the average microscopic orientation λr, where λ is the largest eigenvalue of σ
and r is the corresponding eigenvector.

By virtue of the term −∇x · ((I + n⊗ n) e3f) this nonuniform distribution in n implies that
particles on average fall in a direction which is at a non-vanishing angle between flow direction and
shear direction. Hence this term acts as a horizontal drift term for the modulated density ρ . In fact,
it reinforces the original horizontal modulation of the density ρ since particles with an orientation as
shown in Fig. 2.2 (c) move towards the center.

The goal of this article is to provide a quantitative analysis of the mechanism of cluster formation.
In the process we will use the model (2.28) as well as some simplified problems derived from that system.

2.4. Perturbation of the quiescent flow - the linearized problem. The problem (2.28) ad-
mits a special class of trivial solutions describing a quiescent flow. One verifies that functions (f̄ , ū, σ̄, p̄)
given by

f̄ = f0 , ū = 0 , σ̄ = σ0 , p̄ = p0(x) = −δf0ad−1e3 · x (2.30)

where f0 is a constant,

σ0 := f0

∫

Sd−1

(dn⊗ n− I) dn ,

and ad−1 =
∫

Sd−1 1dn the area of the (d-1)-dimensional sphere, are special solutions for any constant
f0, where p0(x) stands for hydrostatic pressure induced by the presence of the rods.

We derive now the linearized equation obeyed for a perturbation of the quiescent flow. For simplicity
take f0 = 1, that is the basic flow is f̄ = 1, ū = 0, p̄ = p0(x) = −δad−1e3 · x. Write

f = 1 + F , u , σ = σ0 +Σ , p = p0(x) + P (2.31)

a perturbation of the flow and let

m =

∫ ∫

Sd−1

F (x,n)dndx

be the initial mass of the perturbation (which is of course conserved).
One computes easily that the linearized system satisfied by the perturbation (F, u, P ) of the flow is

∂tF +∇n · (P
n

⊥∇xun)−∇x · ((I + n⊗ n) e3F ) = Dr∆nF + γ∇x · (I + n⊗ n)∇xF

Σ =

∫

Sd−1

(dn⊗ n− I)F dn

Re∂tu = ∆xu−∇x(P + δme3 · x) + δγ∇x · Σ+ δ
(
m−

∫

Sd−1

F dn
)
e3

∇x · u = 0

(2.32)

The study of the linearized system (2.32) is a challenging problem, even if one restricts to the case
γ = 0 where the elastic effects of the microstructure decouple. Nevertheless, it is an important problem
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for the following reason: Statistical analysis of realisations of sedimenting flows in the experimental
works [13, 14] indicates that there exists a characteristic length associated to the cluster formation. It
would be important to study if the linearized analysis can predict such a length selection mechanism
and how it relates to the various parameters of the flow. We have taken a step in this direction in
Appendix B: for a linearized moment closure approximation of shear flow, we perform a linear stability
analysis and show that when Re > 0 then there exists a most unstable wavelength.

2.5. Some special sedimenting flows. We now present some special flows that are adapted to
sedimentation of rigid rods in the vertical direction. The flows take place in R

3 with the generic point
x = (x, y, z)T . The gravity is in the direction of the negative z-axis, while the rigid rods take values on
the sphere n = (n1, n2, n3)

T ∈ S2.

2.5.1. Rectilinear flows. We consider first the question whether (2.28) admits solutions following
the ansatz of a rectilinear flow, namely

f = f(t, x, y,n) , u =







u

v

w







=







0

0

w(t, x, y)







, p = p(t, x, y, z) . (2.33)

The incompressibility condition is automatically satisfied, equation (2.28)1 gives

∂tf +∇n ·
[
P
n

⊥(0, 0, n1∂xw + n2∂yw)
T f
]
− ∂x(n1n3f)− ∂y(n2n3f)

= Dr∆nf + γ
(

(1 + n2
1)∂

2
xf + 2n1n2∂x∂yf + (1 + n2

2)∂
2
yf
)

,
(2.34)

while the Navier-Stokes equation (2.28)3 reduces to

∂xp = δγ(∂xσ11 + ∂yσ12)

∂yp = δγ(∂xσ21 + ∂yσ22)

∂zp = −Re
∂w

∂t
+△(x,y)w + δγ(∂xσ31 + ∂yσ32)− δ

∫

S2

f dn

(2.35)

where △(x,y) stands for the two-dimensional Laplace operator and

σ = σ(t, x, y) =

∫

S2

(3n⊗ n− I) f dn . (2.36)

The ansatz (2.33) implies the right hand side in (2.35)3 depends only on (x, y). We deduce that
the pressure

p = κz + P (x, y) ,

where κ is arbitrary and reflects the effect of an imposed pressure gradient (or it might even be that
κ = κ(t) if the imposed gradient varies with time). The functions (f, w) are selected by solving the
coupled system consisting of (2.34), (2.36) and

Re
∂w

∂t
= △(x,y)w + δγ(∂xσ31 + ∂yσ32) + δ(m−

∫

S2

f dn) . (2.37)

In (2.37) we selected the constant κ = ∂zp = −δm with m the total mass

m =

∫∫ ∫

S2

f dn dx dy

which is conserved under appropriate (say periodic) boundary conditions in (x, y). Note that there is
an arbitrary gradient of pressure that can be imposed from the outside. The selected constant is the
one amounting to equilibration of the mean flow.
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Finally, in order to understand the solution of (2.34), (2.36), (2.37) as a rectilinear flow we have to
select the pressure P (x, y) by solving

∂xP = δγ(∂xσ11 + ∂yσ12)

∂yP = δγ(∂xσ21 + ∂yσ22)
(2.38)

This system is consistent provided that σ satisfies the consistency condition

∂xy(σ11 − σ22) + (∂yy − ∂xx)σ12 = 0 .

Such conditions reflect symmetries of the initial data that give rise to the special rectilinear flow and
will not be pursued further here. In the sequel, we only consider the special case γ = 0 reflecting
the case that elastic forces are much less important than buoyancy forces. This also has the effect
that translational Brownian motion is neglected. For the case γ = 0 we have P (x, y) = const and the
pressure takes the form p = −mz.

2.5.2. Shear flows. Shear flows follow the ansatz

f = f(t, x,n) , u =







0

0

w(t, x)







, p = p(t, x, z) . (2.39)

where x is the horizontal direction and z is the vertical direction (as before). However, n is still allowed
to take values in S2 which means that the rigid rods are allowed to move out of the plane of the shear
flow. Shear flow is a special case of the rectilinear flow, and adapting the equations from the previous
section we conclude that (f, w) satisfy the coupled system

∂tf +∇n ·
[
P
n

⊥(0, 0, n1∂xw)
T f
]
− ∂x(n1n3f) = Dr∆nf + γ(1 + n2

1)∂
2
xf

Re
∂w

∂t
= ∂2

xw + δγ∂xσ31 + δ
(

m−
∫

S2

f dn
) (2.40)

3. Derivation of a nonlinear moment closure. Henceforth we take for simplicity Dr = 1 and
consider the Smoluchowski equation in the form

∂tf +∇x · (uf) +∇n · (P
n

⊥∇xunf)

= ∆nf + γ∇x · (I + n⊗ n)∇xf +∇x · ((I + n⊗ n) fe3)
(3.1)

3.1. Equations of moments. The objective is to derive a moment system at the level of second
moments. We define the quantities:

0th moment: ρ :=

∫

Sd−1

fdn

2ndmoment: S :=

∫

sd−1

(

n⊗ n− 1

d
I

)

fdn, i.e. Sij =

∫

Sd−1

(

ninj −
1

d
δij

)

fdn

4thmoment: P :=

∫

Sd−1

n⊗ n⊗ n⊗ nfdn, i.e. Pαβij =

∫

Sd−1

nαnβninjfdn

The evolution equation for ρ is obtained by integrating the Smoluchowski equation (3.1) over the
sphere Sd−1. There are no contributions from the third and fourth term, and we obtain

∂tρ+ u · ∇xρ = γ∇x ·
∫

Sd−1

(I + n⊗ n)∇xfdn+∇x ·
∫

Sd−1

(I + n⊗ n) fe3dn

= γ∇x · ∇x ·
∫

Sd−1

((

n⊗ n− 1

d
I

)

+
d+ 1

d
I

)

fdn

+∇x ·
∫

Sd−1

((

n⊗ n− 1

d
I

)

+
d+ 1

d
I

)

e3fdn

= γ∇x · ∇x ·
(

S +
d+ 1

d
Iρ

)

+∇x ·
[(

S +
d+ 1

d
Iρ

)

e3

]
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Next we derive the evolution equation for the components of S. Note that in the following we
make frequent use of the Einstein summation convention. Multiplying (3.1) with

(
n⊗ n− 1

d
I
)
and

integrating over Sd−1, provides

∂tSαβ + (u · ∇x)Sαβ +

∫

Sd−1

(

nαnβ − 1

d
δαβ

)

∇n · (P
n

⊥∇xunf) dn

︸ ︷︷ ︸

(I1)αβ

=

∫

Sd−1

(

nαnβ − 1

d
δαβ

)

∆nfdn

︸ ︷︷ ︸

(I2)αβ

+γ

∫

Sd−1

(

nαnβ − 1

d
δαβ

)

∇x · (I + n⊗ n)∇xfdn

︸ ︷︷ ︸

(I3)αβ

+

∫

Sd−1

(

nαnβ − 1

d
δαβ

)

∇x · (I + n⊗ n) fe3dn

︸ ︷︷ ︸

(I4)αβ

.

We now calculate the different integrals separately.

I1 =

∫

Sd−1

(

n⊗ n− 1

d
I

)

∇n · P
n

⊥∇xunfdn = −
∫

Sd−1

∇n

(

n⊗ n− 1

d
I

)

· P
n

⊥∇xunfdn

= −
∫

Sd−1

∇n (n⊗ n) · ∇xunfdn

︸ ︷︷ ︸

I1
1

+

∫

Sd−1

n ((n · ∇n)n⊗ n) · ∇xunfdn

︸ ︷︷ ︸

I2
1

where

(I11 )αβ =

∫

Sd−1

∇n (nαnβ) · ∇xunfdn =

∫

Sd−1

∂

∂ni

(nαnβ)
∂ui

∂xj

njfdn

=

∫

Sd−1

(δiαnβ + nαδiβ)
∂ui

∂xj

njfdn =

∫

Sd−1

∂uα

∂xj

njnβf +
∂uβ

∂xj

nαnjfdn

=

∫

Sd−1

(
∂uα

∂xj

(

njnβ − 1

d
δjβ

)

+
∂uβ

∂xj

(

nαnj −
1

d
δαj

)

+
1

d

(
∂uα

∂xβ

+
∂uβ

∂xα

))

fdn

=
∂uα

∂xj

Sjβ +
∂uβ

∂xj

Sαj +
1

d

(
∂uα

∂xβ

+
∂uβ

∂xα

)

ρ

i.e.

I11 = ∇xuS + S∇xu
T +

1

d

(
∇xu+∇xu

T
)
ρ,

and

(I21 )αβ =

∫

Sd−1

nk

∂

∂nk

(nαnβ)ni

∂ui

∂xj

njfdn =

∫

Sd−1

nk (δαknβ + nαδkβ)ni

ui

∂xj

njfdn

= 2
∂ui

∂xj

∫

Sd−1

nαnβninjfdn

i.e.

I21 = 2P : ∇xu.

Therefore,

I1 = −∇xuS − S∇xu
T − 1

d

(
∇xu+∇xu

T
)
ρ+ 2P : ∇xu.
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We next turn to I2:

I2 =

∫

Sd−1

(

n⊗ n− 1

d
I

)

∆nfdn

=

∫

Sd−1

∆n

(

n⊗ n− 1

d
I

)

fdn

= 2d

∫

Sd−1

(

n⊗ n− 1

d
I

)

fdn = 2dS

Note that the components of S are the surface spherical harmonics of order 2 and thus eigenfunctions
of the Laplacian on S.

For I3 and I4 we obtain

(I3)αβ = ∂xi
∂xj

(

Sαβδij + Pαβij −
1

d
δαβSij +

1

d2
δαβδijρ

)

(I4)αβ = ∂xi

(

Pαβi3 −
1

d
δαβSi3 +

1

d2
δαβδi3ρ+ Sαβδi3

)

Putting these together, we obtain evolution equations for ρ and S:

∂tρ+ u · ∇xρ = γ∇x · ∇x ·
(

S +
d+ 1

d
ρI

)

+∇x ·
(

S +
d+ 1

d
ρI

)

e3

∂tSαβ + (u · ∇x)Sαβ − ∂uα

∂xj

Sjβ − ∂uβ

∂xj

Sαj −
1

d

(
∂uα

∂xβ

+
∂uβ

∂xα

)

ρ+ 2Pαβij

∂ui

∂xj

= −2dSαβ + γ∂xi
∂xj

(

Sαβδij + Pαβij −
1

d
δαβSij +

1

d2
δαβδijρ

)

+ ∂xi

(

Pαβi3 −
1

d
δαβSi3 +

1

d2
δαβδi3ρ+ Sαβδi3

)

(3.2)

3.2. Moment closure. The evolution equation for ρ is expressed in terms of 0th and 2nd moments,
the evolution equation of S involves 2nd and 4th-order moments and so on. We would like to close the
system at the level of the 2nd-order moments.

The problem of moment closure is studied in detail in [16] for a related (but simpler) problem of
a suspension of rigid particles subjected to a homogeneous time-dependent flow with constant strain
rate. The kinetic equation used in [16] is a Fokker-Planck type equation, depending on the microscopic
orientation. For our model we would obtain a similar kinetic equation if we restrict our considerations to
a constant externally imposed velocity gradient. Various methodologies of closure are proposed mostly
based on approximating limiting equilibrium flows. The reader is referred to [15, 16] and [5, Sec 8.6.2]
for a discussion of various closure mechanisms.

In the present problem, the kinetic function depends both on the kinetic and the spatial variable
and is expected to have different behaviors in different regions of the flow domain: the microstructure
is expected to be strongly oriented inside the clusters but nearly isotropic in regions away from the
clusters. We thus will perform a closure that is not associated to an expected Maxwellian, but rather
uses the geometric structure of harmonic polynomials outlined in Appendix A, in particular (A.2).
We will close the system at the level of second moments by projecting the fourth order homogeneous
polynomials to the subspace of spherical harmonics of 2nd and 0th-order. This has the advantage that
it is a general rule equally applicable to the whole flow region, but the disadvantage that its validity
cannot be quantitatively assessed via an asymptotic method. To carry out the procedure, we employ
(A.2) and express the higher order terms of Pαβij in terms of the harmonic polynomial basis presented
in Appendix A. To get a moment closure on the level of second moments, we then neglect all the
projections to the 4th order part of the basis and retain only the projections to the 2nd and 0th-order
part of the basis.
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In the sequel we restrict to special flows, shear or rectilinear flows, and implement this derivation
in Sections 3.3 and 3.4. For these special flows, the only terms of the form Pαβij which do not cancel
are Pαβ13 = Pαβ31 and Pαβ23 = Pαβ32. We restrict our considerations to these terms, and introduce
the notations pαβij = nαnβninj and the matrix s with entries sij = ninj− 1

3δij , i, j = 1, 2, 3. Note that

s =







n2
1 − 1

3 n1n2 n1n3

· n2
2 − 1

3 n2n3

· · n2
3 − 1

3







=







1
2P

−2
2 − 1

2P
0
2

1
2P

2
2 P−1

2

· − 1
2P

−2
2 − 1

2P
0
2 P 1

2

· · P 0
2







,

where we used the harmonic polynomial basis of Appendix A and only write out the upper part of the
symmetric matrix.

Now we can verify that

(pαβ13)α,β=1,2,3 =







n3
1n3 n2

1n2n3 n2
1n

2
3

· n1n
2
2n3 n1n2n

2
3

· · n1n
3
3







=







sin3 θ cos θ cos3 φ sin3 θ cos θ sinφ cos2 φ sin2 θ cos2 θ cos2 φ

· sin3 θ cos θ sin2 φ cosφ sin2 θ cos2 θ sinφ cosφ

· · sin θ cos3 θ cosφ







=







1
4P

−3
4 − 3

28P
−1
4 + 3

7s13
1
4P

3
4 − 1

28P
1
4 + 1

7s23
1
14P

−2
4 − 1

70P
0
4 − 1

7s22 +
1
15

· − 1
4P

−3
4 − 1

28P
−1
4 + 1

7s13
1
14P

2
4 + 1

7s12

· · 1
7P

−1
4 + 3

7s13







and

(pαβ23)α,β=1,2,3 =







n2
1n2n3 n1n

2
2n3 n1n2n

2
3

· n3
2n3 n2

2n
2
3

· · n2n
3
3







=







sin3 θ cos θ sinφ cos2 φ sin3 θ cos θ sin2 φ cosφ sin2 θ cos2 θ sinφ cosφ

· sin3 θ cos θ sin3 φ sin2 θ cos2 θ sin2 φ

· · sin θ cos3 θ sinφ







=







1
4P

3
4 − 1

28P
1
4 + 1

7s23 − 1
4P

−3
4 − 1

28P
−1
4 + 1

7s13
1
14P

2
4 + 1

7s12

· − 1
4P

3
4 − 3

28P
1
4 + 3

7s23 − 1
14P

−2
4 − 1

70P
0
4 − 1

7s11 +
1
15

· · 1
7P

1
4 + 3

7s23







.

Finally we drop higher order terms, i.e. we drop all the multiples of the 4th order basis polynomials,
and obtain the approximations

(pαβ13)α,β=1,2,3 ≈







3
7s13

1
7s23 − 1

7s22 +
1
15

· 1
7s13

1
7s12

· · 3
7s13







(pαβ23)α,β=1,2,3 ≈







1
7s23

1
7s13

1
7s12

· 3
7s23 − 1

7s11 +
1
15

· · 3
7s23







.
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Now it is straight forward to see that Pαβ13 and Pαβ23 can analogously be approximated by

(Pαβ13)α,β=1,2,3 ≈







3
7S13

1
7S23 − 1

7S22 +
1
15ρ

· 1
7S13

1
7S12

· · 3
7S13







(Pαβ23)α,β=1,2,3 ≈







1
7S23

1
7S13

1
7S12

· 3
7S23 − 1

7S11 +
1
15ρ

· · 3
7S23







.

(3.3)

Furthermore, we note that Pαβ13 = Pαβ31 and Pαβ23 = Pαβ32 holds for all α, β = 1, 2, 3.

3.3. Shear flow. In the special case of shear flow, we consider functions of the form

f = f(t, x,n)

u = (0, 0, w(t, x))T

Sij = Sij(t, x).

(3.4)

Furthermore, we restrict our considerations to the case γ = 0. Under these assumptions, the system
(3.2) can be written in the form

∂tρ = ∂xS13

∂tSαβ − ∂uα

∂x
S1β − ∂uβ

∂x
Sα1 −

1

d

(
∂uα

∂xβ

+
∂uβ

∂xα

)

ρ

= −2dSαβ − 2Pαβ31wx + ∂x

(

Pαβ13 −
1

d
δαβS13

)

.

(3.5)

Now we approximate Pαβ31 according to (3.3) and obtain the nonlinear moment closure model equations

∂tρ = ∂xS13

∂tS11 −
(
3

7
− 1

d

)

∂xS13 = −2dS11 −
6

7
wxS13

∂tS22 −
(
1

7
− 1

d

)

∂xS13 = −2dS22 −
2

7
wxS13

∂tS33 −
(
3

7
− 1

d

)

∂xS13 = −2dS33 +
8

7
wxS13

∂tS13 +
1

7
∂xS22 = −2dS13 + wx

(

S11 +
2

7
S22

)

+ wxρ

(

− 2

15
+

1

d

)

+
1

15
∂xρ,

(3.6)

which need to be solved together with the Stokes or Navier-Stokes equations. The evolution equations
for S12 and S23 are decoupled from the system (3.6) and can be neglected.

3.4. Rectilinear flow. Now we restrict our considerations to a rectilinear flow, i.e. taking the
form

f = f(t, x, y,n)

u = (0, 0, w(t, x, y))T

S = S(t, x, y)

(3.7)
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Furthermore, we consider again the case γ = 0. Under these assumptions, the system (3.2) can be
written in the form

∂tρ = ∂xS13 + ∂yS23

∂tSαβ − ∂uα

∂x
S1β − ∂uα

∂y
S2β − ∂uβ

∂x
Sα1 −

∂uβ

∂y
Sα2 −

1

d

(
∂uα

∂xβ

+
∂uβ

∂xα

)

ρ

= −2dSαβ − 2wxPαβ31 − 2wyPαβ32 + ∂x

(

Pαβ13 −
1

d
δαβS13

)

+ ∂y

(

Pαβ23 −
1

d
δαβS23

)
(3.8)

Using the approximation (3.3), we obtain the nonlinear moment closure for rectilinear flow

∂tρ = ∂xS13 + ∂yS23

∂tS11 + 2dS11 = (−2wx + ∂x)
3

7
S13 + (−2wy + ∂y)

1

7
S23 −

1

d
(∂xS13 + ∂yS23)

∂tS22 + 2dS22 = (−2wx + ∂x)
1

7
S13 + (−2wy + ∂y)

3

7
S23 −

1

d
(∂xS13 + ∂yS23)

∂tS33 + 2dS33 = 2wxS13 + 2wyS23 + (−2wx + ∂x)
3

7
S13 + (−2wy + ∂y)

3

7
S23 −

1

d
(∂xS13 + ∂yS23)

∂tS13 + 2dS13 = (S11 +
ρ

d
)wx + S12wy + (−2wx + ∂x)

(

−1

7
S22 +

ρ

15

)

+ (−2wy + ∂y)
1

7
S12

∂tS23 + 2dS23 = wxS12 + wy

(

S22 +
ρ

d

)

+ (−2wx + ∂x)
1

7
S12 + (−2wy + ∂y)

(

−1

7
S11 +

ρ

15

)

∂tS12 + 2dS12 = (−2wx + ∂x)
1

7
S23 + (−2wy + ∂y)

1

7
S13,

(3.9)

which should be solved together with the macroscopic Stokes or Navier-Stokes equations.

4. Derivation of an effective equation via a quasi-dynamic approximation. In this section,
we derive a scalar evolution equation for the particle density ρ, which describes the cluster formation
process for intermediate and long times. We will separately consider shear flow and rectilinear flow.
The computation is much simpler for the shear flow and it serves as a pedagogical example to explain
the main approximation idea.

4.1. Shear flow. We consider the system (3.6) describing a shear flow. The rods are allowed to
move out of the plane of the shear and n takes values on the sphere S2, hence d = 3. The system then
is written as

∂tρ = ∂xS13 (4.1)

∂tS +A∂xS = LS + f(wx, ρ, ρx), (4.2)

where S = (S11, S22, S33, S13)
T ,

f(wx, ρ, ρx) =
(
0, 0, 0,

(
3
15wxρ+

1
15ρx

))T

,

A =










0 0 0 1
3 − 3

7

0 0 0 1
3 − 1

7

0 0 0 1
3 − 3

7

0 1
7 0 0










, L =










−6 0 0 − 6
7wx

0 −6 0 − 2
7wx

0 0 −6 8
7wx

wx
2
7wx 0 −6










. (4.3)

The idea of the quasi-dynamic approximation is the following: the density ρ is generated by the 0-th
order harmonic polynomials associated to the eigenvalue λ0 = 0 of the Laplace-Beltrami operator; the
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stresses Sij are generated by the 2-nd order spherical harmonics sij which are eigenfunctions of Laplace-
Beltrami associated to the common eigenvalue λ = −6. The stresses are thus expected to decay faster;
similarly higher-order harmonics that are neglected in (3.6) are expected to decay even faster. We split
the system according to the decay rates of the modes in (4.1), (4.2) and set the faster decaying modes
to their local equilibrium; we call this approximation quasi-dynamic approximation since part of the
modes evolve dynamically while the rest of the modes are relaxed immediately to their local equilibrium
values.

To accomplish that we set (4.2) to its equilibrium LS + f(wx, ρ, ρx) = 0 and the dynamics of (3.6)
is approximated by

∂tρ = ∂xS13

S11 +
6

42
wxS13 = 0

S22 +
2

42
wxS13 = 0

S33 −
8

42
wxS13 = 0

− 7

42
wxS11 −

2

42
wxS22 + S13 = 1

90 (3ρwx + ρx)

(4.4)

As already mentioned, the underlying thinking is that (S11, S22, S33, S13) relax fast to their local equi-
libria, since their decay rate (at least near equilibrium) is determined by the first nonzero eigenvalue of
the Laplace-Beltrami operator, while ρ does not relax, as it corresponds to the eigenvalue λ0 = 0 of the
Laplace Beltrami operator.

Solving the algebraic equation in (4.4), we obtain

S13 = κ
90

1

κ+ 46w2
x

(
3ρwx + ρx

)
where κ = 422 . (4.5)

The effective equation for the evolution of ρ then has the form

∂tρ = ∂x

(

κ
90

1

κ+ 46w2
x

(
3ρwx + ρx

)
)

(4.6)

which needs to be solved together with the Stokes or Navier-Stokes equation for shear flow

Re ∂tw(t, x) = ∂xxw(t, x) + δ (m− ρ) . (4.7)

The system (4.6)-(4.7) should be compared to the Keller-Segel model (e.g. [18, 12, 1]) that has been
extensively used as a model for chemotaxis in biology. Compared to the Keller-Segel model, the present
system has the noteworthy difference that the convection and diffusion coefficients in (4.6) depend
nonlinearly on the gradient of the ”potential” (played here by the shear wx) and are in fact decreasing
for increasing shear. It is an example within the general class of flux-limited systems proposed in [6],
[30, 24] as models for flux-limited diffusion, although strictly speaking the present model is not included
in the models listed in the above references and has the feature to be endowed with both flux-limited
convection and diffusion. An extension that also presents anisotropic diffusion is developed in the next
section to describe cluster formation for rectilinear flows.

4.2. Rectilinear flow. For rectilinear flows we again apply the quasidynamic approximation,
similar in spirit as for shear flows but now requiring more cumbersome calculations. We rewrite equation
(3.9) in the form

∂tρ = ∂xS13 + ∂yS23

∂tS +Ax∂xS +By∂yS = LS + f(wx, wy , ρ, ρx, ρy),
(4.8)
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with S = (S11, S22, S33, S13, S23, S12)
T , d = 3 and n taking values in S2,

Ax =















0 0 0 1
3 − 3

7 0 0

0 0 0 1
3 − 1

7 0 0

0 0 0 1
3 − 3

7 0 0

0 1
7 0 0 0 0

0 0 0 0 0 − 1
7

0 0 0 0 − 1
7 0















, By =















0 0 0 0 1
3 − 1

7 0

0 0 0 0 1
3 − 3

7 0

0 0 0 0 1
3 − 3

7 0

0 0 0 0 0 − 1
7

1
7 0 0 0 0 0

0 0 0 − 1
7 0 0















, (4.9)

L =















−6 0 0 − 6
7wx − 2

7wy 0

0 −6 0 − 2
7wx − 6

7wy 0

0 0 −6 8
7wx

8
7wy 0

wx
2
7wx 0 −6 0 5

7wy

2
7wy wy 0 0 −6 5

7wx

0 0 0 − 2
7wy − 2

7wx −6















, f =















0

0

0
3
15wxρ+

1
15ρx

3
15wyρ+

1
15ρy

0















. (4.10)

The quasi–dynamic approximation is obtained by setting the second equation of (4.8) to its local
equilibrium, i.e. the solution of

LS + f(∇w, ρ,∇ρ) = 0 . (4.11)

After some manipulations this leads to solving for (S13, S23) the algebraic system

(κ+ 10(w2
x + w2

y) + 36w2
x)S13 + 36wxwyS23 = κ

30 (wxρ+
1
3ρx)

36wxwyS13 + (κ+ 10(w2
x + w2

y) + 36w2
y)S23 = κ

30 (wyρ+
1
3ρy) ,

(4.12)

where κ = 422, and evaluating the remaining stresses via

S11 = − 6
42wxS13 − 2

42wyS23

S22 = − 2
42wxS13 − 6

42wyS23

S23 = 8
42wxS13 +

8
42wyS23

S12 = − 2
42wyS13 − 2

42wxS23 .

(4.13)

The solution of the algebraic system (4.12) is expressed in the form
(

S13

S23

)

= D(∇w) κ
30ρ∇

(

w + 1
3 ln ρ

)

, (4.14)

where ∇ = (∂x, ∂y), and D(∇w) is a matrix obtained by inverting (4.12) and given in the successive
forms

D(∇w) :=
1

(κ+ 10|∇w|2)(κ+ 46|∇w|2)

(

κ+ 10|∇w|2 + 36w2
y −36wxwy

−36wxwy κ+ 10|∇w|2 + 36w2
x

)

=
1

κ+ 10|∇w|2
[

I − 36

κ+ 46|∇w|2 ∇w ⊗∇w

]

=
1

κ+ 46|∇w|2
[

I +
36

κ+ 10|∇w|2
(
|∇w|2I −∇w ⊗∇w

)]

(4.15)

When (4.14) is introduced into (4.8)1 we obtain the non-isotropic diffusion equation

∂tρ = ∇ ·
(
D(∇w) κ

30ρ∇
(
w + 1

3 ln ρ
))

, (4.16)

which is conjectured to describe the effective response of the system.
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4.3. The effective equation for rectilinear flow. Combining (4.8)1 with (4.14), (4.15) and
(2.37) (for γ = 0), we obtain the effective equation describing the dynamics of the rectilinear sedimenting
flow. This takes the form

∂tρ = ∇ ·
(

1

κ+ 10|∇w|2
[

I − 36

κ+ 46|∇w|2 ∇w ⊗∇w
]

κ
30ρ∇

(
w + 1

3 ln ρ
)
)

Re ∂tw = △(x,y)w + δ (ρ̄− ρ)

(4.17)

The constant ρ̄ is selected to be either the initial mass over a period (if the problem is periodic) or
the total mass ρ̄ =

∫
ρ(x, t)dx (for the Cauchy problem). In either case the mass is conserved and the

selection of ρ̄ amounts to a change of Galilean frame for observing the flow.
Equation (4.17)1 describes anisotropic diffusion. The diffusion matrixD(∇w) in (4.15) is symmetric

and positive definite. The system (4.17) is invariant under rotations in the x, y-plane. Indeed, for
x′ = Qx with Q ∈ SO(2), we have ∇x′ = QT∇x and |∇xw| = |Q∇x′w| = |∇x′w|. Then (4.15) implies

D(∇xw) = D(Q∇x′w) = QD(∇x′w)QT

and (4.17)1 is invariant,

∂tρ = Q∇x′ ·QD(∇x′w)QT κ
30ρQ∇x′

(
w + 1

3 ln ρ
)

= ∇x′ ·D(∇x′w) κ
30ρ∇x′

(
w + 1

3 ln ρ
)

The same is true for (4.17)2 due to the invariance of the Laplacian under rotations.
Finally, we show that (4.17) is endowed with an entropy-dissipation structure. For concreteness,

we assume periodic boundary conditions over a domain of periodicity T. The total density is then
conserved, and we select ρ̄ in (4.17)2 as

ρ̄ =

∫

T

ρ(x, t)dx =

∫

T

ρ0(x)dx .

Note that this choice can be always assured by changing Galilean frame of reference. Moreover,
∫

T

wtdx = 0 ,

∫

T

w(x, t)dx =

∫

T

w0(x)dx

Next, we multiply (4.17)1 by 1
3 (1 + ln ρ) + w and (4.17)2 by wt ; after some integrations by part we

respectively obtain

∂t
(
1
3ρ ln ρ+ ρw

)
− ρwt = ∇ ·

(
1
3 (1 + ln ρ) + w

)
κ
30ρD(∇w)∇

(
w + 1

3 ln ρ
)

−∇
(
w + 1

3 ln ρ
)
· κ
30ρD(∇w) ∇

(
w + 1

3 ln ρ
)

ρwt +Rew2
t + ∂t

1
2 |∇w|2 = ∇ · wt∇w + δρ̄wt

and the entropy (free-energy) dissipation identity

d

dt

∫

T

(
1
3ρ ln ρ+ ρw + 1

2 |∇w|2
)
dx

+

∫

T

[
Rew2

t +∇
(
w + 1

3 ln ρ
)
· κ
30ρD(∇w) ∇

(
w + 1

3 ln ρ
)]

dx = 0 .

(4.18)

4.4. Remarks concerning the validity of the quasidynamic approximation. The validity
of the conjecture that the long time dynamics of (4.8) together with Stokes is described by the system
(4.17) is at present an open problem. In the sequel, we take up the case of rectilinear flows, and give some
partial arguments highlighting the idea and the analytical difficulties for justifying the quasidynamic
approximation. Then, in the following section, we will restrict to the case of shear flows, and give
numerical evidence that shows that the quasidynamic approximation is a good representation of the
full dynamics of the kinetic model for long times, and will present a heuristic argument towards justifying
the approximation for shear flows.
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The idea behind the approximation is that the transient dynamics of S is replaced by its equilibrium
response. This amounts to considering the simplified linear non-homogeneous problem

∂tS +Ax∂xS +By∂yS = LS + f(x)

and postulating that its solution is well approximated for long-times by its local equilibrium

LS + f(x) = 0 .

This would be the case provided the solutions of the homogeneous system

∂tS +Ax∂xS +By∂yS − LS = 0 (4.19)

decay to zero for large times, i.e. S(x, t) → 0 as t → ∞.
The solution of (4.19) can be visualised as the Trotter product of the semigroup generated by the

system of ordinary differential equations

∂tS − LS = 0 (4.20)

and the semigroup generated by the linear hyperbolic system

∂tS +Ax∂xS +By∂yS = 0 . (4.21)

The eigenvalues of (4.20) are computed by finding the roots of the characteristic polynomial
det(−λI + L) = 0 where

L− λI =















−(λ+ 6) 0 0 − 6
7wx − 2

7wy 0

0 −(λ+ 6) 0 − 2
7wx − 6

7wy 0

0 0 −(λ+ 6) 8
7wx

8
7wy 0

wx
2
7wx 0 −(λ+ 6) 0 5

7wy

2
7wy wy 0 0 −(λ+ 6) 5

7wx

0 0 0 − 2
7wy − 2

7wx −(λ+ 6)















. (4.22)

They can be computed via the following formula: If A, B, C, D are square matrices of the same size
and the matrix A is invertible, then

K :=

(

A B

C D

)

=

(

A 0

C I

) (

I A−1B

0 D − CA−1B

)

and

detK = detAdet(D − CA−1B) (4.23)

Using this formula, a lengthy but straightforward calculation yields that the six eigenvalues of (4.20)
are







λ1,2 = −6 with multiplicity 2

λ3,4 = −6± ı
√
46
7

√

w2
x + w2

y

λ5,6 = −6± ı
√
10
7

√

w2
x + w2

y

All the eigenvalues have strictly negative real parts and the solution of (4.20) converges to zero as
t → ∞.
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The same formula can be used to calculate the eigenvalues of (4.21) and establish that this system
is hyperbolic. Indeed, for a vector ν = (νx, νy) ∈ R

2, ν 6= 0, we use formula (4.23) and compute that
the eigenvalues of (−λI + νxAx + νyBy) are







λ1,2 = 0 of multiplicity 2

λ3,4 = ± 2
7
√
3

√

ν2x + ν2y

λ5,6 = ± 1
7

√

ν2x + ν2y

One easily checks that the eigenspace corresponding to the zero-eigenvalue is two-dimensional. The
problem (4.21) is hence hyperbolic. It is tempting to conclude that S converges to zero as time tends
to infinity. Such results are available when the matrices Ax and By are symmetric (see [27]), but we are
not aware of a corresponding theory covering the case that the matrices Ax and By are not symmetric.
We have not been able to compute the eigenvalues for the full homogeneous problem (4.19), what would
provide a quantitative criterion for what flows the quasidynamic approximation is valid. Our conjecture
is that the validity of the approximation extends to flows where |∇w| remains moderate. This conjecture
is justified in the following section for shear flows and is consistent with the numerical simulations of
section 4.6.

4.5. Justification for shear flows. To justify the quasidynamic approximation for shear flow,
we show that for moderate values of |wx| solutions of the homogeneous system

∂tS +A∂xS − LS = 0, (4.24)

with A and L as described in (4.3) decay to zero for large times. We look for solutions of the form

S(x, t) = r exp(λt+ ikx), (4.25)

with λ, k ∈ R \ {0}. Computing such solutions amounts to finding eigenvalues λ and eigenvectors r for
the problem

(λI + ikA− L)r = 0.

The solutions S(x, t) of (4.24) decay to zero, if Re(λ) < 0 for all possible solutions λ, r of (4.25). We
find that λ has the form

λ1,2 = −6± 1

21
κ, with κ :=

√

36ikwx − 12k2 − 414w2
x

λ3,4 = −6.
(4.26)

Corresponding eigenvectors are given by

r1 =
1

κ










2(ik − 9wx)

−2(2ik + 3wx)

2(ik + 12wx)

κ










, r2 =
1

κ










−2(ik − 9wx)

2(2ik + 3wx)

−2(ik + 12wx)

κ










, r3 =










0

0

1

0










, r4 =










ik−2wx

7wx

1

0

0










(4.27)

Now we use the relation

Re(
√
a+ ib) =

√

a+
√
a2 + b2

2
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in order to compute the real part of κ.

Re(κ) = Re
(√

−12k2 − 414w2
x + 36ikwx

)

=

√

−12k2 − 414w2
x +

√

122k4 + 11232k2w2
x + 4142w4

x

2

<

√

−12k2 − 414w2
x +

√

(12k2 + 468w2
x)

2

2

=
√
27|wx|

Thus, Re(λ) < −6 +
√
27
21 |wx| < 0 whenever |wx| < 14

√
3.

Finally, we present numerical results for the shear flow problem, which confirm that the quasi-
dynamic approximation leads to an accurate representation of the solution structure. We use the
parameter values Dr = δ = Re = 1 and γ = 0.

For shear flow, the full model has the form

∂tf +∇n ·
(
P
n

⊥(0, 0, n1wx)
T f
)
− ∂x (n1n2f) = ∆nf

∂tw =
∂2w

∂x2
+

(

m−
∫

S2

fdn

)

.
(4.28)

The effective equation for the evolution of ρ has the form

∂tρ = ∂x

(
κ

90

1

κ+ 46w2
x

(3ρwx + ρx)

)

(κ = 422)

wt = wxx + (m− ρ).

(4.29)

Furthermore, we compare the simulations of the full model (4.28) with results for the nonlinear moment
closure (3.6) and the linear model

∂tρ− ∂xS13 = 0

∂tS11 −
2

21
∂xS13 = −6S11

∂tS22 +
4

7
∂xS13 = −6S22

∂tS33 −
2

21
∂xS13 = −6S33

∂tS13 +
1

7
∂xS22 −

1

15
∂xρ = −6S13 +

1

5
∂xw

∂tw = ∂xxw + (m− ρ),

(4.30)

which is obtained by linearizing the nonlinear moment closure model around the state ρ = 1 and w = 0.
We compute periodic solutions on the intervall 0 ≤ x ≤ 100. The computational domain in the

x-direction is discretized with 400 grid cells. The initial values are set to be

ρ(xk, 0) = 1 + 10−4

(

ǫ(xk)−
1

2

)

,

where ǫ(xk) is a random number between 0 and 1 and k = 1, . . . , 400. The initial values for the velocity
are set to zero, i.e. w(x, 0) = 0. Figure 4.1 shows plots of the initial values.

In our simulations of the full model, the initial values for f are set to be

f(xk, 0,n) =
ρ(xk)

4π
, k = 1, . . . , 400,n ∈ S2
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Fig. 4.1. Initial values for ρ and w.

In the simulations of the nonlinear and the linear moment closure model, the initial values for S11, S22, S33, S13

are computed via the relation

Sij(xk, 0) =

∫

S2

(

ninj −
1

3
δij

)

f(xk, 0,n)dn, k = 1, . . . , 400.

Figures 4.2-4.4 present the results of our numerical simulations. In all of these plots, the black line
is the density ρ or the absolute value of velocity gradient |wx| as computed from the full model. This
solution is compared with results of the nonlinear moment closure model (red dashed curves in the left
plots), the linear moment closure model (red dashed curve in the middle plots) as well as with results
of the quasidynamic approximation (red dashed curve in the right plots).

For small times, i.e. the linear regime shown in Figure 4.2, we see that all models provide an
accurate prediction of the solution structure. At later times as shown in Figure 4.3, nonlinear effects
start to become important and the linear moment closure model becomes less accurate. At even later
times, as shown in Figure 4.4, the predictions of the linear model are inaccurate, while the nonlinear
moment closure as well as the quasidynamic approximation lead to an accurate prediction of the solution
structure. Note however, that the linear model provides a good prediction of the number of clusters
which appear.

4.6. Numerical simulations for rectilinear flow. We also show numerical simulations for recti-
linear flow, comparing the nonlinear moment closure system (3.9) with the quasidynamic approximation
(4.17). So far we don’t have numerical results for the full model in the rectilinear flow case. Note that
the full model is a four-dimensional time-dependent problem, requiring the solution of a drift-diffusion
equation on the sphere in each grid cell of a two-dimensional mesh and during each time step.

Our numerical results for rectilinear flow agree well with the findings for shear flow. Starting with a
quiescent flow and a uniform distribution of rod orientations with a randomly perturbed density around
ρ = 1, we observe the formation of clusters with higher particle density. Furthermore, we observe that
the nonlinear moment closure model and the quasidynamic approximation leads to very similar results.

For our numerical results shown in Figure 4.5 we used the parameter values Re = δ = 1 and show

density and velocity gradient
√

w2
x + w2

y at time t = 450.

Appendices. Appendix A. Harmonic Polynomials and Spherical Harmonics.

For the reader’s convenience we review some material on harmonic polynomials and spherical har-
monics that is used in the text. We refer to Stein and Weiss [28, Ch 4] and Helgason [10, Intro Thm
3.1] for further details.

Let Pk(R
d) be the space of homogeneous polynomials of degree k on R

d. We denote by Pk(S
d−1)

the restrictions of polynomials P ∈ Pk(R
d) on the sphere Sd−1. The dimension dimPk(R

d) =
(
d+k−1

k

)
.
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Fig. 4.2. Numerical results comparing the full model (black solid line) with (left) the nonlinear moment closure,
(middle) the linear moment closure, and (right) the quasidynamic approximation. The results of the macroscopic models
are shown as red dashed line. Top line shows results for density, bottom line shows results for the absolut value of the
velocity gradient.

0 10 20 30 40 50 60 70 80 90 100

0.8

1

1.2

1.4

1.6

1.8

2
Density at time t=400 

0 10 20 30 40 50 60 70 80 90 100
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Density at time t=400 

0 10 20 30 40 50 60 70 80 90 100

0.8

1

1.2

1.4

1.6

1.8

2
Density at time t=400 

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

|w
x
| at time t=400 

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

|w
x
| at time t=400 

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

|w
x
| at time t=400 

Fig. 4.3. Numerical results comparing the full model (black solid line) with (left) the nonlinear moment closure,
(middle) the linear moment closure, and (right) the quasidynamic approximation.

Let Hk(R
d) be the space of homogeneous polynomials of degree k on R

d that are harmonic,

Hk(R
d) = {P ∈ Pk(R

d) : △P = 0}.

The elements of Hk(R
d) are called solid harmonics. The spherical harmonics Hk(S

d−1) are defined as
the restrictions of P ∈ Hk(R

d) on the sphere. The map ρ : Hk(R
d) → Hk(S

d−1) that maps the above
polynomial to its restriction is a bijection.

The relation between these spaces of polynomials is given by the following proposition.
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Fig. 4.4. Numerical results comparing the full model (black solid line) with (left) the nonlinear moment closure,
(middle) the linear moment closure, and (right) the quasidynamic approximation.

Fig. 4.5. Numerical results for rectilinear flow, showing the density and the velocity gradient.

Theorem A.1. The map △ : Pk(R
d) → Pk−2(R

d) is onto for all d and k ≥ 2. Furthermore, we
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have the orthogonal direct sum decomposition

Pk(R
d) = Hk(R

d)⊕ |x|2 Pk(R
d) for k ≥ 2.

This proposition allows to compute the dimension of Hk(S
d−1) as

dimHk(R
d) = Hk(S

d−1) =

(
d+ k − 1

k

)

−
(
d+ k − 3

k − 2

)

for k ≥ 2.

Note also that dimH0(R
d) = 1 and dimH1(R

d) = d. Moreover, proceeding via induction we deduce
the direct sum decompositions

Pk(R
d) = Hk(R

d)⊕ |x|2Hk−2(R
d)⊕ ...⊕ |x|2[ k2 ]H

k−2[ k2 ]
(Rd) (A.1)

Pk(S
d−1) = Hk(S

d−1)⊕Hk−2(S
d−1)⊕ ...⊕H

k−2[ k2 ]
(Sd−1) (A.2)

The importance of spherical harmonics stems from the property that for P ∈ Hk(R
d) the restriction

H = P
∣
∣
∣
Sd−1

∈ Hk(S
d−1) is an eigenfunction of the Laplace-Beltrami operator △Sd−1 . To see that for

P ∈ Hk(R
d) we write x = rn, with r = |x| and n = x

|x| , and write P (x) = P (rn) = rdH(n). Recall

that for f ∈ C∞(Rd) the Laplacian is expressed as

△f =
1

rd−1

∂

∂r

(

rd−1 ∂f

∂r

)

+
1

r2
△Sd−1f

Using this formula we compute

△P = 0 ⇐⇒ △Sd−1H = −k(d+ k − 2)H

Moreover, one has the following theorem (see [10, Intro Thm 3.1]:
Theorem A.2. The eigenspaces of the Laplace-Beltrami operator △Sd−1 are the spaces of spherical

harmonics Hk(S
d−1) with associated eigenvalue -k (d+k-2). The eigenspaces are ortogonal and L2(Sd−1)

admits the direct sum decomposition

L2(Sd−1) =

∞⊕

k=0

Hk(S
d−1) (A.3)

In the present context we are interested in functions on the sphere Sd−1 that are even, that is
f(−n) = f(n). In this case the basis will only involve the even spherical harmonics and the direct
sum in (A.3) will extend over the even integers. On S2 the spherical harmonics are computed by using
the Legendre and associated Legendre polynomials. In Table A we list the harmonic polynomial basis
functions (up to order 4) that are used in the calculations of the present article.

Appendix B. Linear stability analysis. Experimental studies for the sedimentation of sus-
pensions with rod-like particles [13, 14, 21] reveal the formation of packets of particles which seem to
have a mesoscopic equilibrium width. Our goal is to give an explanation of this wave length selection
mechanism based on linear stability theory.

We consider the linear pde for shear flow

∂tρ = ∂xS13

∂tS11 =
2

21
∂xS13 − 6DrS11

∂tS22 = −4

7
∂xS13 − 6DrS22

∂tS33 =
2

21
∂xS13 − 6DrS33

∂tS13 = −1

7
∂xS22 +

1

15
∂xρ− 6DrS13 +

1

5
∂xw

Re ∂tw = ∂xxw + δ(m− ρ),

(B.1)
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0th order 2nd order 4th order

P−4
4 = sin4 θ cos 4φ

P−3
4 = sin3 θ cos θ cos 3φ

P−2
2 = sin2 θ cos 2φ P−2

4 = sin2 θ(7 cos2 θ − 1) cos 2φ

P−1
2 = sin θ cos θ cosφ P−1

4 = sin θ(7 cos3 θ − 3 cos θ) cosφ

P 0
0 = 1 P 0

2 = cos2 θ − 1
3 P 0

4 = 35 cos4 θ − 30 cos2 θ + 3

P 1
2 = sin θ cos θ sinφ P 1

4 = sin θ(7 cos3 θ − 3 cos θ) sin φ

P 2
2 = sin2 θ sin 2φ P 2

4 = sin2 θ(7 cos2 θ − 1) sin 2φ

P 3
4 = sin3 θ cos θ sin 3φ

P 4
4 = sin4 θ sin 4φ

Table A.1

Harmonic polynomial basis functions.

which is obtained by linearizing the nonlinear moment closure system (3.6) around the state ρ = 1 and
u = 0.

Fourier transformation of the first five equations of (B.1) leads to the linear system of ordinary
differential equations

ρ̂′(ξ, t) = iξŜ13(ξ, t)

Ŝ′
11(ξ, t) =

2

21
iξŜ13(ξ, t)− 6DrŜ11(ξ, t)

Ŝ′
22(ξ, t) = −4

7
iξŜ13(ξ, t) − 6DrŜ22(ξ, t)

Ŝ′
33(ξ, t) =

2

21
iξŜ13(ξ, t)− 6DrŜ33(ξ, t)

Ŝ′
13(ξ, t) = −1

7
iξŜ22(ξ, t) +

1

15
iξρ̂(ξ, t)− 6DrŜ13(ξ, t) +

1

5
iξŵ(ξ, t).

(B.2)

The case Re = 0:. First we consider the case Re = 0. In this case, Fourier transformation of the
last equation of (B.1) leads to the relation

0 = −ξ2ŵ(ξ) + δ (mδξ − ρ̂(ξ)) ,

where δξ is the delta function. Thus we can replace ŵ in the last equation of (B.2) by

ŵ(ξ) =
1

ξ2
δ (mδξ − ρ̂(ξ)) .

We obtain a linear ode system of the form

∂tU(ξ, t) = A(ξ, δ,Dr)U(ξ, t) + δmδξe5,

with U = (ρ̂, Ŝ11, Ŝ22, Ŝ33, Ŝ13)
T and

A =












0 0 0 0 iξ

0 −6Dr 0 0 2
21 iξ

0 0 −6Dr 0 − 4
7 iξ

0 0 0 −6Dr
2
21 iξ

− 1
5ξ iδ +

1
15 iξ 0 − 1

7 iξ 0 −6Dr












. (B.3)
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Let α(A) denote the spectral abscissa of the matrix A, i.e.

α(A) := max
j

Re(λj),

where λ1, . . . , λ5 are the eigenvalues of A. The solution U(ξ, t) of the linear system remains bounded
provided α(A) ≤ 0 and U(ξ, t) → 0 as t → ∞ if α(A) < 0.

For Dr = 0 the eigenvalues of (B.3) are

λ1,2,3 = 0, λ4,5 = ±
√

−1635ξ2 + 2205δ.

This predicts the instability of density modulations for horizontal waves with a sufficiently small
wavenumber but not a wavelength selection mechanism. This agrees with previous findings of Koch
and Shaqfeh [19]. We also see that the problem becomes more unstable if we increase δ.

The introduction of Brownian effects in terms of translational difusion (a case which was excluded
here by setting γ = 0) does also not provide a wavelength selection mechanism at the level of linear
stability analysis, see Saintillan [26]. If we include Brownian effects in terms or rotational diffusion,
i.e. in the case Dr > 0, then we don’t have such a simple formula for the eigenvalues. However, we
computed the spectral abscissa as a function of ξ. The results of these computations are shown in
Figure B.1. In all three plots we set δ = 1 and varied the value of Dr. By increasing the value of Dr

(a)
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

ξ

sp
ec

tr
al

 a
bs

ci
ss

a

D
r
 = 0, δ = 1

(b)
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

ξ

sp
ec

tr
al

 a
bs

ci
ss

a

D
r
 = 0.01, δ = 1

(c)
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

ξ

sp
ec

tr
al

 a
bs

ci
ss

a

D
r
 = 0.1, δ = 1

Fig. B.1. Spectral abscissa as a function of wavenumber ξ for δ = 1, Re = 0 and different values of Dr.

the problem becomes less unstable. There is no wavelength selection mechanism.

The case Re > 0:. Now we consider the case Re > 0. Fourier transformation of the linearized
equation for w gives

Re∂tŵ(ξ, t) = −ξ2ŵ(ξ, t) + δ(mδξ − ρ̂(ξ, t)). (B.4)

We consider the linear stability of the system (B.2) together with (B.4). This system has the form

∂tU(ξ, t) = A(ξ, δ,Dr, Re)U(ξ, t) + δmδξe6,

with U = (ρ̂, Ŝ11, Ŝ22, Ŝ33, Ŝ13, ŵ)
T and

A =















0 0 0 0 iξ 0

0 −6Dr 0 0 2
21 iξ 0

0 0 −6Dr 0 − 4
7 iξ 0

0 0 0 −6Dr
2
21 iξ 0

1
15 iξ 0 − 1

7 iξ 0 −6Dr
1
5 iξ

− δ
Re

0 0 0 0 − 1
Re

ξ2















. (B.5)

For δ = 0 and Dr = 0, the eigenvalues of A are

λ1,2,3 = 0, λ4,5 = ± 1

105
i
√
1635ξ, λ6 = − ξ2

Re
,
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and thus the linear system is stable. For δ > 0, we observe instability as well as a wavelength selection.
In Figure B.2, we plot the spectral abscissa as a function of ξ for δ = 1, Dr = 0 and different values
of Re. An increase of Re reduces the spectral abscissa, i.e. it makes the system less unstable. The
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Fig. B.2. Spectral abscissa as a function of wavenumber ξ for δ = 1, Dr = 0 and different values of Re.

wavelength of the most unstable wave increases (the wavenumber decreases).
As in the case Re = 0, an increase of Dr has a stabilising effect, while an increase of δ has a

destabilising effect. In addition, an increase of Dr leads to the selection of a longer wavelength, while
an increase of δ leads to the selection of a shorter wavelength. In Figure B.3 we show plots of the
spectral abscissa vs. the wavenumber for Re = 1, δ = 1 and different values of Dr.
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Fig. B.3. Spectral abscissa as a function of wavenumber ξ for δ = 1, Re = 1 and different values of Dr.

Appendix C. Some remarks about the numerical methods. In this appendix we give some
details about the numerical methods, which were used to simulate the three different models for shear
flow. For rectilinear flow, the moment closure model and the quasi-dynamic approximation can be
discretized using two-dimensional versions of the methods described here.

For each model, the method is based on an operator splitting approach, i.e. during each time step
we successively approximate the different components of the coupled system.

We use a staggered grid and discretize the velocity w at the nodes of the grid, i.e. wn
i+ 1

2

≈ w(xi+ 1
2
, tn)

for i = 0, . . . ,m and the density ρ at midpoints of a grid cell, i.e.

ρni ≈ 1

∆x

∫ x
i+1

2

x
i− 1

2

ρ(x, tn)dx ≈ ρ(xi, tn) i = 1, . . . ,m.

Each subproblem is discretized using either a second order accurate finite volume or a second order
accurate finite difference method. The update of w is computed using the Crank-Nicolson method for
periodic solutions.

For the full model (4.28), the evolution of f is split into the subproblems

∂tf +∇n ·
(
P
n

⊥(0, 0, n1wx)
T f
)
= ∆nf (C.1)

and

∂tf − ∂x(n1n3f) = 0. (C.2)
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Recall that f = f(x, t,n). Thus, subproblem (C.1) is a drift diffusion equation on the sphere, which
needs to be solved at all the discrete positions x1, . . . , xm. In our example, we solve during each time
step 400 times this drift diffusion equation on the sphere (m = 400). In each case we need to use
another value for wx, i.e.

wx(xi, tn) =
wn

i+ 1
2

− wn
i− 1

2

∆x
, i = 1, . . . ,m.

To discretize (C.1) at a point xi, we use the sphere grid from [4]. In this approach, a single
rectangular computational domain (discretized with an equidistant Cartesian mesh) is mapped to the
sphere. In our simulations, the sphere was discretized by mapping a rectangular Cartesian mesh with
60 × 30 grid cells to the sphere. This means that the position vector n is discretized at 1800 discrete
points on the sphere, which are denoted by nj,k, j = 1, . . . , 60, k = 1, . . . , 30.

In [4], it was shown how LeVeque’s wave propagation method [20] can be used to discretized
hyperbolic pdes on the sphere. A version of the wave propagation algorithm was here used to discretize

∂tf +∇n ·
(
P
n

⊥(0, 0, n1wx)
T f
)
= 0.

Diffusion on the sphere, i.e. the subproblem

∂tf = ∆nf,

was approximated using a finite volume method for parabolic problems on surfaces, see [3].
Finally, we discretize the transport equation (C.2) for all discrete representations of the position

vector n on the sphere. Note that for fixed values of j and k, n1n2 in (C.2) is constant. To discretize
(C.2), we solve an advection equation for each choice of j and k, i.e. in our test simulations we solved
during each time step 1800 advection equations, each with a different advection speed. Each of these
advection equations was discretized on a grid with 400 grid cells (the number of grid cells used to
discretize the macroscopic space). We used again the high-resolution wave propagation algorithm to
approximate these advection problems.

Compared to the full system, the discretization of the effective equation (4.29) as well as the dis-
cretization of the linear model (4.30) is simple and computationally much less expensive. The evolution
equation for ρ in the effective equation (4.29) is a combination of the wave propagation algorithm for
an advection problem with spatially varying advection speed and a finite difference discretization for
the nonlinear diffusion term. To discretize the linear moment closure model (4.30), we note that the
evolution of ρ, S11, S22, S33, S13 can be formulated as a linear hyperbolic system with source term. For
its discretization, we use the wave propagation algorithm for linear hyperbolic systems together with
an ODE solver for the source term.

In the rectilinear flow case, the evolution of ρ in the quasi-dynamic approximation is approximated
by a two-dimensional version of the wave propagation algorithm for scalar transport equations with
spatially varying flux function and a finite-difference approach for the diffusion term. The approxima-
tion of the nonlinear moment closure system combines the use of the wave propagation algorithm for
multidimensional linear hyperbolic systems with an ode solver for the source terms.
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