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Abstract

We survey the current state of the mathematical theory on fluid-dynamic limits for
BGK systems and discrete velocity models of relaxation type when the limit is a scalar
conservation law.

1 Introduction

The subject of fluid dynamic limits is motivated by the derivation of the compressible Euler
equations for a mono-atomic gas as the zero mean-free-path limit of the Boltzmann equation.
While the rigorous justification of the fluid-dynamic limit for the Boltzmann equation is a
challenging open problem, it has prompted recent work on the derivation of hyperbolic systems
of conservation laws from kinetic models in simpler situations, where the limits are scalar
equations or systems of two conservation laws.

In this note we outline certain techniques employed in the rigorous justification of fluid

limits to scalar conservation laws. Consider the kinetic model
1
0uf +al€) - Vuf = ZC((),8)
f(Oaxa 5) = fO(‘T7 5)

where z € R and C(f, €) is a functional on f(t, z,-) (depending on ¢) that encodes the detailed

properties of a collision process. The variable £ may be continuous ({§ € R) or it may take

(1.1)

discrete values; in the latter case (1.1) becomes a discrete velocity kinetic model. Both cases
are treated simultaneously and we retain a common notation.
The collision operator C' is assumed to satisfy the structural properties: The function f =0

is an equilibrium, i.e. C'(0(+),&) =0, and

(hyp) /IR C(f.€)dE =0
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so that (1.1) is equipped with a macroscopic balance law

(1.2) c’)t/fd§+divx/a(£)fd{f:0

for the "mass” u := [ fdf. Second, the equilibria of (1.1) are parametrized in terms of
exactly one scalar parameter w, which is either the mass itself (w = u) or, more generally, a

reparametrization of the mass v = b(w). It is assumed that the equilibria of C(f,&) = 0 are
(hyp2) fea=Mw,&)  where [ Ml )t = = b(w)

where M(0,¢) = 0 and b is a strictly increasing function, so that the map w — w is invertible.
(Note that whenever £ is a discrete variable d¢ should be understood as a counting measure.)
Let f¢ be a family of solutions to (1.1), u* = [ f, and set w® = b_l(ffg). Then, (1.2)

gives the approximate conservation law
(13) aub(0) + divs [ a(© M, = v [ o(6) M0~ 1))

We are interested in the behavior of (1.3) as ¢ — 0. It is conceivable that under appropriate
conditions on the collision operator the kinetic equation (1.1) generates a stable process, so
that its mass u® stabilizes and the kinetic function f°¢ approaches as ¢ — 0 the equilibrium

“local Maxwellian”. In analytical terms, if one were to provide conditions guaranteeing that
(a3) w® > w ae

and that Maxwellian distributions are enforced in the limit € — 0:

(ad) /a(g)(ff — M(uf,€) =0 inD, where wf= b_l(/fs).
3 £
then the limit u = b(w) would satisfy the scalar conservation law
(1.4) yb(w) + div, / (&) M(w, &) = 0.
3

In the sequel we review certain ideas from [11, 6, 10, 1, 4] developed, in the context of
various kinetic and discrete-kinetic (of relaxation type) models, to justify this limiting process.
All models treated (see (2.3), (2.5), (3.7), (4.1)) fit under the framework of (1.1) equipped with
exactly one conservation law, (hypl)-(hyp2). We begin in section 2 with a class of models that
generate L' contractions, [11, 6, 10, 1], for which the proof of convergence follows the general
outline of Kruzhkov theory [7]. Then in section 3 we review the kinetic formulation of of scalar
conservation laws (see [8]) and indicate how this notion of solution naturally arises from the
¢ — 0 behavior of a special BGK model [11, 8]. Finally, in section 4, we outline a methodology

from [4] that is useful for proving convergence for models that are not L!-contractive but are



equipped instead with strong dissipation estimates (see [16]). This approach, motivated by the
kinetic formulation, achieves a decomposition of the entropy dissipation via duality to arrive
at an approximate transport equation; one then concludes via the averaging lemma.

The reader is referred to [2, 12] for general information on fluid dynamic limits and to [17]
for a survey of the mathematical aspects of fluid limits. Apart from the aforementioned works,
we refer to [13] for the subject of kinetic formulations and averaging lemmas, and to [3, 5, 9, 15]

(and references therein) for the subject of relaxation approximations.

2 Kinetic models that generate L'-contractions

In this section we supplement the model (1.1) with a hypothesis on the collision operator

stating that

(hyp3) /R (CU(),6) = CF().€)) sen(f = P& dg <0,

for all f(-), f(-). Note that (hyp3) is equivalent to requiring that the space-homogeneous
version of (1.1) be a contraction in Lé.
This property is carried over to the space-inhomogeneous case and, as a consequence, (1.1)

is endowed with a class of “kinetic entropies”.
Theorem 1 Under hypotheses (hypl)-(hyp3) :
(i) The kinetic model is a contraction in L'(R% x Re)

(i) For all k € R, we have
(2.1) o [ 17 = Mk, O)| + divs [ a(©)lf ~ M(x,€)| <0 in .
4 3

(i1i) If for some a,b it is M(a,§) < M(b,€) for all &, then the domain [[[M(a,§), M(b,§)]

1s positively invariant.

Proof. Let f and f be two solutions. By subtracting the corresponding equations, multiplying

by sgn (f — f) and using (hyp3), we obtain
@2) o [[17 - fldg+di @~ fI= 1 [ (€008 - CF0,O)sen(s - ) <0.
5
Hence, f and f satisfy the L!-contraction property
//|f — fl(t,z,€) dzdé s decreasing in t.
zJE

Moreover, since fw i) 6( f — f) dzd€ is a conserved quantity, we also have
//(f — )T (t,x,€) dzd¢ s decreasing in t,
zJE

3



resulting to the comparison principle:
it fo<fo then f(t)<f(t),t>0.

A special class of solutions to (1.1) are the global Maxwellians M(k, ). These may be used

as comparison functions. For instance
if fo(z,&) < M(a,§), for some a € R, then f(t,2,&) < M(a,§)

whence, part (iii) follows. Finally, if f = M(k,&) in (2.2) then
1
[0+ a(©)-lf ~ M )1 = - [ 70, s (F ~ M, 8)) <0
which shows (2.1). O
We next present two specific models that satisfy hypotheses (hypl)-(hyp3).

I. A discrete velocity model. Consider the system

d

Oifo+ag-Vyifo= lz (fi — hi(fo))
(2.3) ¢ =

1 .
atfi‘l‘ai'vwfi:—g(fi—hi(fo)) ZZl,...,d.
for the evolution of f = (fo, f1,---, fa) where ag,ay,...,aq € R?. This model is developed in

[6] as a relaxation approximation for the scalar multi-dimensional conservation law. Assume
that

(A) hi(w) are strictly increasing, i =1,...,d,
and let u = fo + Y, fr. The Maxwellian functions are

feq = M(w7j>j:0,1,...,d = (’U), hl (’U}), s ,hd(’ll))) 3
where u =w + Z hi(w) =: b(w) .

2

Clearly (hypl) and (hyp2) are satisfied. To see (hyp3), note that

T
M-

(C(s.9) = C(F.0))sen (f; = i)

<.
Il
o

I
.M&

(£i = Fi = (halfo) = ilFo)) ) (s8n (fo — fo) — sen (fi = £2)) <0,

=1

where the last inequality follows from (A).



Under (A) the model (2.3) is endowed with a globally defined entropy function

d n d
o a(3h+ W) +div(ag s+ D a(f) + 2 D il fi) =0,
=1 =1 =1
where 5
i Ji) = Z Y1) dr
() / Bl () dr,
i(fo, fi) = (fo — hi ' (f2)) (hi(fo) — fi),

U, is positive and strictly convex, while ¢; satisfies ¢; > 0 with ¢; = 0 if and only if f is a
Maxwellian, i.e. if f; = M(w,j) for some w. The identity provides control on the distance of
solutions from equilibrium: If % > c then ¢; > c(h;(fo) — f;)? and (2.4) leads to

o d
L L et - o2 st < 0fe).

II. A BGK model. Consider next the kinetic model of BGK type

0uf +a(6) - Vaf =~ (f ~ M(w,©))
(2.5)
with u =
: /5 /

where x € R? and ¢ € R. The model is introduced in [11] for the special choice of Maxwellian
function M(u, &) = 1(u,&). The general case is developed in [10, 1]. It is assumed that M (u, §)

is smooth and satisfies
(B) M(-,€) is strictly increasing, u= /M(u,f)

Then (hypl) and (hyp2) are satisfied. The monotonicity of M states M(u,&) > M(a,§) iff

u > u, and, hence,

M08 ~ M@0 = s (0= ) (| M) - ,0))
=il =11 < 151

The model also possesses an analog of the H-theorem. If we multiple (2.5) by (M 1(f,&) —
u), integrate over £ € R and denote by u(f,&) = fof M~1(g,€) dg then u(-,€) is convex and we

have

which is easily seen to give (hyp3).

o [ () +divs. [ a©ur) ~u(0 +divs [ a(e)s)

(2.6)
+ é /(M_l(.ﬂg) - U)(f — M(uaf)) =0

5



The third term vanishes due to the conservation law and the last term is positive due to the
monotonicity assumption. If we further assume that d,,M > c¢ then the last equation yields
the bound

(2.7) ///c|f M, )2 < /// §) = u)(f - M(1,€)) < 0(c)

stating that Maxwellians are enforced in the fluid limit ¢ — 0.

The fluid-dynamic limit for a kinetic BGK-model
We provide an outline of the convergence justification for the fluid dynamic limit of the
BGK-model

Ouf7 + al6) - Vaf© =~ (£ — M(u, )
f5(0,2,€) = fos(xvg)

where u® = [ f¢, z € R?, ¢ € R Tt is assumed that a(¢) is uniformly bounded and that the
Maxwellians are smooth functions that satisfy M(0,&) = 0,

(2.8)

M(u,-) € L%, M(-,€) is strictly increasing
(@) )
u= [ M(u,§)d§.
R
Then (hypl) and (hyp2) and (hyp3) are fulfilled. Let w(7) be a positive, increasing function

denoting a modulus of continuity, limsup,_,o, w(r) = 0.

Theorem 2 Let |a(§)| < M and assume the initial data satisfy

(a,6) < f2(2,6) < M(b,€)  for some a <b
2.9) //|f€xg\dxd§<c
[ [zt ne) - st s <) for h e B
Then

(2.10) u® —/f5—>u a.e. and in L7 ((0,T) x R%) for 1 <p < oo
and u € C([0,T); L*(R%)) N L*>®((0,T) x R?) is an entropy solution:
(2.11) Ot|lu — k| + divg(F(u) — F(k))sgn(u — k) <0 in D', for k € R,

where F(u f§ €) d¢.



Proof. From the L' contraction property, the invariance under translations, and upon using

Maxwellians as comparison functions we have

M(a, &) < fo(t,z,&) < M(b,E) fora <b

(212) [weor [ fi< [ [im<c

and

[t 1) = w(t,) s/x/§|f8<t,x+h,f>—f&(t,x,fn

(2.13)
< / /g 5+ hy€) — f2(2,6)] < w(hl)

Using a lemma of Kruzhkov (see [7] and the appendix in [17]) we obtain that for & > 0
(2.14) / i (¢ + b, 7) — uF (£, )| dav. < Cus(k)

From (2.12), (2.13) and (2.14), u® is precompact in L} ((0,T) x R%) and, along a subsequence,
u® — u a.e. By (2.14) and Fatou’s lemma, u € C([0, T]; L*(R%)).

Note that a < u® < b is uniformly bounded and that (2.7) implies |f¢ — M(u®,&)| — 0 a.e
(t,z,€). Using (2.12) we conclude

/§|f5—./\/l(u5,§)| -0 ae. (t,7)

Along a further subsequence, f¢ — M(u, &) a.e., and passing to the limit in the kinetic entropies
(2.1) we see that

) / M, €) — Mk, €)] + divy / a(€)|M(u, €) — M(k, €| d€ <0
£ £

in D'. This is recast in the form (2.11) by using (a) and the property sgn (M (u,&)—M(k,§)) =

sgn (u — k). Since u is an entropy solution, it is unique and the whole family u® — u in Ll o0c?

1<p<oo. O

3 The connection with the kinetic formulation

Consider the scalar conservation law

{@u+dWFw)=o

(3.1) u(z,0) = up(x)

with data u, € L' N L. There are two equivalent notions of solution for this problem: The
notion of Kruzhkov entropy solution [7] stating that u is an entropy solution of the initial value
problem (3.1) if

(3.2) ess limy g / (2, £) — () |dz = 0

7



and u satisfies the entropy conditions

(3.3) Am(u) + divg(u) <0

in D' for all entropy pairs n — ¢ with 7 convex. (Recall that entropy pairs  — ¢ are required
to satisfy ¢;(u) = n'(u)a;(u), i =1,...,d, where a; = F.)

The second notion is the so called kinetic formulation of Lions-Perthame-Tadmor [8] and

is based on the representation formulas for entropy pairs

n(u) — n(0) = /§ 1o, ) (€)de
(3.4)
4i(u) — ¢;(0) = /f Uos, )ay (€)' (€)de

in terms of the kernel

(3.5) L,(€) = L(u, &) = { 0 ifu=0
—]1u<£<0 if u <0

The kinetic formulation is equivalent to the Kruzhkov entropy solution and states that u is
a solution of (3.1) if it takes the initial data as in (3.2) and there exist a positive bounded
measure m = m(t,z,&) on Rf x RY x Re so that

(3-6) 9 M(u, &) + a(§) - Voll(u,§) = Oem

Moreover, the measure m is supported on shocks.

This notion arises naturally as the ¢ — 0 limit of the special BGK model

1
Ohf*+a(§) Vaf = —g(fg —1(u,¢))
F50,2,8) = Wuo(x), §)
where £ € R Note that (3.7) is of the form (1.1), for a special selection of the Maxwellian

kernel. This allows to calculate the kinetic equation that the limiting f satisfies. Following
[11, 8] we show:

(3.7)

Theorem 3 As e — 0,
u® —>u  a.e, ff=x=1u,é) ae
and x satisfies (3.6) for some positive bounded measure m.

Proof. As before (3.7) defines an L'-contraction and u® — u a.e. Comparisons with the
Maxwellians 1(V, §) and 1(—V,§), where V' = sup |u,(z)|, give

-1< <1,  suppgf° C [V, V]
fE>0for£>0, f5<0 for & <0.



Introduce m® by
>0 foré<u®

<0 foré& >u®

1
dgm* = — (1w, §) - %) = {
The function

¢
me = / Laee.6) - ro(e)) a

o €
satisfies m®(—oo) = 0, m®(4o00) = 0 by conservation, and m*® > 0 for £ € R.
We may thus write the BGK-model in the form

O f* +a(f) -V ft = 0em.

We multiply by ¢ and integrate over [0,7] x R x R. Taking account of the compact support

/OT/w/gmgz_/$/€§f€(t,x,§)d§dw+/I/gﬁfo(fﬂaﬁ)d&dw
SV/m/§|‘f"‘|+V/$/§\folsc

ut = u ae., fE—1w€)—=0inD, 1(u,€) — 1(u,f) ae.

in £ we obtain

Using the relations

and the property (along subsequences)
m® — m weak-x in measures

we pass to the limit ¢ — 0 in D’ to arrive at (3.6). ]

4 Kinetic decomposition of approximate solutions

Consider now the relaxation system
d
Oru + Zaxjvj =0
(4.1) =
owi + A20yu = —%(vz—Fz(u)) i=1,---,d.

where u,v; : RZ x R — R, and the flux F = (Fy(u),...,Fy(u)) is a smooth function. Let
a; = F] and assume that the constants A; satisfy the subcharacteristic condition

(4.2) AZ>|CLZ(U)| 1=1,---,d, u€eR.

In particular, (4.2) implies F; are globally Lipshitz.



The system (4.1) belongs to the class of relaxation systems proposed in [5], and solutions
(u®,v%) of (4.1) are formally expected to converge as ¢ — 0 toward a weak solution (u,v),

v = F(u), of the scalar conservation law
(4.3) Ou~+ divF(u) =0.

The 1-d version of (4.1) is L!'-contractive (see [9]). If one considers the 1-d variant and intro-
duces Riemann coordinates the system is diagonalized and fits under the structure discussed
in section 2. By contrast, the multi-d version of (4.1) is not diagonalizable, the L!-contraction
property cannot be established by the previous method and L*° estimates are not available.
In the sequel, we show how to deal with the convergence problem using an alternative ap-
proach, in the spirit of the kinetic formulation; we work on the natural L? stability-framework
suggested by lemma 4.
The system (4.1) is written in the form of regularization by a wave operator

d d
O+ 0n Fj(u) = On; (Fy(u) — v))
(4.4) = =

d
= E(Z A?@xjxju - 8ttu) .
7j=1

Moreover, it satisfies a strong dissipation identity (see [16, 4] for the derivation):

d d

1 1

(5 (u+ eug)? + 552(””2 +2 ) AHOnu)?) + > 0, Q5(w)
Jj=1

j=1
d
(4.5) + elug+ divE(u)? +e Y (A7 — Fj(u)?)(0y,u)
j=1

d
= Z Oz, (EAguumj + 252A?utumj).
j=1
where Q; =ul ]’ . Using the notation u® €, X to denote sequences that are uniformly bounded
in the norm of the Banach space X, we obtain from (4.5) and the subcharacteristic condition
the bounds:

Lemma 4 If (4.2) holds and the initial data satisfy the uniform bound

d

(4.6) gl 2 (ray + € Beufll 2 ray + & Y 100, upll 2 (ray = O1),
j=1

10



then the solutions of (4.1) satisfy the uniform estimates

(4.7) uf(x,t) €, L°(R'T;L*(RY))
d

(4.8) e> (Onu(z,)> € L'(R'xRY)
j=1

(4.9) e(Opuf (x,1))?> €, LY(R? x RT)

Next, we outline a duality type of argument, used to obtain an approximate kinetic equation
from the entropy dissipation estimate of the relaxation system; one then concludes via the
averaging lemma [13, 14].

Theorem 5 Assume that F; are globally Lipshitz and satisfy the genuine-nonlinearity condi-

tion
(4.10) meas{é | T+ a(€) -0 =0} =0 for (r,0) € R x R with 72+ |o|* =1.

Let A; be selected so that (4.2) holds, and let u® be a family of solutions to (4.1) generated by
data subject to the uniform bounds (4.6). Then, along a subsequence if necessary, u® converges
tow in L (RY xRY), 1 <p <2, and u is a weak solution of (4.3).

Proof. 'We give a sketch of the proof and refer to [4] for the details. Let (u®,v°) be a family of
solutions to (4.1). For n — ¢ an entropy-entropy flux pair, we compute the entropy dissipation

d
O (u®) + divg(u®) = E(Z A?@mjmjn(us)) — e0yn(u®)
7j=1
d
(4.11) — " (u)(D_ A3(8a;u%)?) + en’" (uF) (Opu) .
j=1

Fix ¢(z,t) € CP(R? x RY) and regard 1/(¢) € C(R) as a test function in velocity space.
Using (3.4), the notations

X (2,1, €) = (v, §)

d
(4.12) GF(2,1) = E( D A% (0,u%) - (atus)Z) :
j=1

the fact that G° €, L'(R?Y x RY) (by lemma 4), and the Schwartz kernel theorem, we obtain
from (4.11)

<O +alf) - VX, 1 (el t) >
d
(4.13) = <) 0y (6A§8xjx5) — 0 (€0x%) s ' (&), 1) >
j=1

+ < Oe(8(u® — &G, ' (&)p(z,t) > .

11



Since the subspace generated by the direct sum test functions p®n' is dense in C°(R? xRt xR),
the bracket (4.13) is extended to test functions 6(z,t,&) € CP(R? x Rt x R) and we have

d
10 Ox" +a(f) - VX" = 0n; (24302, X°) — 01(0ix°) + 0ed(u — §)G° in Dl
. =

with 71'? = gAiaijS, 7-(-(5) = —Eatxg, k€ = (S(uE — £)G5 .

Using again the estimates in lemma 4, it is a technical but straightforward matter to show
that k° lies in a bounded set of the space of bounded measures M(R? x RT x R) (the dual
of Cp(R? x Rt x R), the continuous functions that vanish at infinity), and that the terms
75 (2,1,€), §=0,1,...,d satisfy

€0y 1(uf,&) = 0 in L2 ,(H; ),
edl(uf,€) = 0 in L2 (H. ).

The Sobolev embedding theorem, in turn, implies M is compactly embedded in VVl;C1 P for
1<p< %, and thus k¢ is precompact in Wl;cl P(RY x Rt x R), for the same range of p. Thus
x¢ = 1(uf, £) satisfies the approximate transport equation

d
(4.15)  OX"+a(f) - VX° =Y Ou; (G5 + Oeg5) + 00 (95 + Oegl) + 0ck*  in D,
j=1

where g5, g — 0 in LZ(Rd x Rt x R), k° is bounded in measures (not necessarily positive)
and precompact in W, PRI x RY X R) for 1 < p < gﬁ From the averaging lemma in [14]
we deduce that, for 9(§) € CX(R),

d+2

/ll(ug,f)w(f)df is precompact in L} ;1 <p < ——.
¢ d+1

Let R be a large positive number and consider ¢ € C°(R) such that ¢ = 1 on (—R, R)
and 0 <1 < 1. Then

w = [ 2 uiene] =| [ 106,00 - wie)ag

sA|(,M@+LwH,ow=w&Rﬁ+w+m—

Moreover,

/(ug —R)" + (uf + R) dxdt < / |uf| dxdt
|u¢|>R

< _/ /|u€|2da:d %

12



Hence {u®} is Cauchy in Llloc,:c,t and, since u® €, L®(L?), it follows that (along subsequences)
u® — win LD

1oes P < 2, and almost everywhere and that u € L (L?). Integration of (4.14) over
¢ yields

o [ xds + div [ ale)¢de o,

and, as ¢ — 0, u satisfies the scalar conservation law.
Next, we pass to the limit € — 0 in (4.15). Note that
X =1(u,¢) - x=1(u,§)  ae. and in L?

(4.16) loc,x,t
k=GOt — &) = k weak-x in Mgt e

(L), 1<p<2

and y satisfies
(4.17) Ox+a(§) Vx=0k in D

a

Note that while (4.17) is of the general type of the kinetic formulation (3.6), it is not
known whether the limiting k is positive. For the 1-d variant it is possible (using a different
decomposition) to obtain (4.17) with k a positive measure (see [4]). This is in accord with the
fact that the 1-d case is an L' contaction and produces in the limit an entropy solution for the

conservation law.
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