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Abstract The work of [5] on the extension of the relative entropy identity to the
class of hyperbolic-parabolic systems whose hyperbolic part is symmetrizable is
the context of this article. The general theory is presented and the derivation of the
relative entropy identities for both hyperbolic and hyperbolic-parabolic systems is
presented. The resulting identities are useful to provide measure valued weak ver-
sus strong uniqueness theorems as well as convergence results in the zero-viscosity
limit. An application of this theory is given for the example of the system of ther-
moviscoelasticity.

1 The Relative Entropy Method

This manuscript serves as a review article of the relative entropy method as it has
been recently extended in the work of Christoforou and Tzavaras in [?] for general
systems of hyperbolic-parabolic conservation laws

∂tA(u)+∂α Fα(u) = ε∂α(Bαβ (u)∂β u) . (1)

Here u(t,x) takes values in Rn, t ∈ R+, x ∈ Rd with n, d being integers represent-
ing the number of the conserved quantities and the space dimension. The functions
A,Fα : Rn → Rn , Bαβ : Rn → Rn×n are smooth, α,β = 1, ...,d, and the summa-
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tion convention over repeated indices is employed throughout the article. Also it is
assumed that the associated hyperbolic problem

∂tA(u)+∂α Fα(u) = 0 (2)

is symmetrizable in the sense of Friedrichs and Lax [17].
The idea of relative entropy, introduced by Dafermos [8, 9] and DiPerna [12], is

quite powerful in comparing solutions of conservation laws (e.g. [12, 3, 11, 24]),
or balance laws (e.g. [27, 23]), and has recently being applied to problems that are
classified under the domain of hyperbolic-parabolic systems (e.g [14, 21, 22, 4]).
The aim is to extend the class of computations that go under the general term relative
entropy to the broader class of systems (2) and (1) and to systematize the derivation
of relative entropy identities in a unifying framework. Moreover, the connection of
the relative entropy theory with its natural framework, the L2 theory of hyperbolic-
parabolic systems of Kawashima [19] and the developments on Green functions by
Liu-Zeng [28] is shown and in particular with the framework of thermodynamics. It
should be emphasised that from the very early developments of the method [8, 9, 18]
the theory appears in the context of thermodynamics. Therefore in the end of this
article, this connection is revisited in the context of the general constitutive theory
of thermoviscoelasticity, whose thermodynamical structure is specified in [6, 7, 26].

Hypotheses on the constitutive functions and the viscosity matrices that char-
acterise the class of systems (1) and (2) for which the relative entropy method is
extended are the following:

(H1) A : Rn→ Rn is a C2 globally invertible map,
(H2) existence of an entropy-entropy flux pair (η ,q), that is ∃ G : Rn→Rn, G = G(u)

smooth such that
∇η = G ·∇A

∇qα = G ·∇Fα , α = 1, ...,d ,

(H3) the matrix ∇2η(u)−G(u) ·∇2A(u) is symmetric and positive definite,
(H4) the matrix ∑α,β ∇G(u)T Bαβ (u) satisfies Kawashima condition; the matrix

∑α,β ∇G(u)T Bαβ (u)ωα ωβ is real symmetric, positive semi-definite for all ω ∈
Sd−1,

d

∑
α,β=1

ξ
T
α ∇G(u)T Bαβ (u)ξβ ≥ γ‖ξ‖, ∀ξα ,ξβ ∈ Rn.

These hypotheses are set and guided by the goal of rendering the relative entropy
identity useful and applying it to some standard problems. Let us add that Hypothe-
ses (H1)-(H3) are equivalent to the usual symmetrizability hypothesis in the sense of
Friedrichs and Lax and therefore, they render system (2) hyperbolic. The additional
hypotheses (H4) for the hyperbolic-parabolic systems (1) guarantees that the entropy
dissipates along the evolution. In [?], we prolong the relative entropy method to this
broader class of systems and derive the relative entropy identities for systems (1)
and (2). The derivation of these identities (19) and (20) is presented in Section 2.
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The structure of this manuscript is as follows: In Section 2 we state the main
hypotheses that make the relative entropy into a workable quantity, and establish
their connections to the theory of symmetrizable systems [17] and to the L2 theory
of hyperbolic-parabolic systems [19]. We then derive the relative entropy identities
in Section 3 for both hyperbolic systems (2) and hyperbolic-parabolic systems (1)
and see that the usual dissipative structure for hyperbolic-parabolic systems suffices
to control the various error terms that appear. We conclude in Section 4 by under-
taking this issue in the context of a specific application. We take up the system of
thermoviscoelasticity in several space dimensions under its constitutive theory. We
derive the relative entropy identity that is pertinent to this theory and describe how
the general theory for hyperbolic-parabolic systems takes particular shape when ap-
plied to the constitutive theory of thermoviscoelasticity. Related formulas in more
special situations have been computed in [14, 15] for gases with Stokes viscosity
and Fourier heat conduction and in [18] for the constitutive theory of thermoe-
lasticity. It should be noted that for this example, the convexity of the entropy in
the conserved variables translates into the usual thermodynamic stability conditions
ψFF(F,θ)> 0 and ηθ (F,θ)> 0 familiar from the work of Gibbs for a theory with
thermal and elastic effects.

The identities derived in the general theory in Section 2 or the example in ther-
moviscoelasticity in Section 3 are quite powerful in establishing weak versus strong
uniqueness theorems, stability of bounded smooth solutions of hyperbolic-parabolic
systems as well as convergence results in the zero viscosity limit to a smooth solu-
tion of inviscid system (2). Several propositions in each setting are proven in [5]
using the relative entropy identities. However these are not presented in this review
article. We refer the reader to [5] to realise how these identities are exploited in
these theorems. Let us only add that an interesting feature of the analysis is how
concentration measures are defined for a symmetrizable hyperbolic system (2) and
the associated form of the averaged relative entropy identity. Last, systems of bal-
ance laws are also studied in [5] and the role of the source terms in the derivation of
the relative entropy identity is investigated in the proof of the weak-strong unique-
ness result.

2 The General Framework

Consider first the constituent system of conservation laws (2) and assume that A :
Rn→ Rn is a C2 map which is one-to-one and satisfies

∇A(u) is nonsingular ∀u ∈ Rn . (H1)

By the inverse function theorem the map v = A(u) is locally invertible with the
inverse map u = A−1(v) a C2 map.

Next, a structural hypothesis is added that is the system (2) is endowed with an
additional conservation law
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∂tη(u)+∂α qα(u) = 0 . (3)

Indeed this is expressed as follows: The functions η-q, q = (qα), α = 1, ...,d, are
called an entropy pair (η is called entropy and q= (qα), the associated entropy-flux)
if there exists a smooth function G : Rn→ Rn, G = G(u), such that simultaneously

∇η = G ·∇A

∇qα = G ·∇Fα , α = 1, ...,d .
(H2)

If (H2) is satisfied then smooth solutions of (2) satisfy the additional identity (3).
One checks that (H2) is equivalent to requiring that G satisfies the simultaneous
equations

∇GT
∇A = ∇AT

∇G (4)

∇GT
∇Fα = ∇Fα

T
∇G , α = 1, ...,d . (5)

That is, if there exists a multiplier G(u) satisfying (H2) (equivalently (4), (5)) then
(2) is endowed with the additional conservation law (3) and it is well known that
systems from mechanics naturally inherit the entropy pair structure from the second
law of thermodynamics.

Given two solutions u, ū of (2), the relative entropy is defined via

η(u|ū) = η(u)−η(ū)−G(ū) · (A(u)−A(ū)) (6)

while the relative flux(es) by

qα(u|ū) = qα(u)−qα(ū)−G(ū) · (Fα(u)−Fα(ū)) . (7)

Formula (6) will be used to estimate the distance between two solutions u and ū.
To make it amenable to analysis, we note that ∇2η(u)−G(u) ·∇2A(u) is symmetric
and require that it is positive definite, that is

ξ ·
(
∇

2
η(u)−G(u) ·∇2A(u)

)
ξ > 0 for ξ ∈ Rn \{0} . (H3)

Under (H3), expression (6) is useful for comparing the distance between two so-
lutions u(t,x) and ū(t,x). The definition of relative entropy and flux(es) given by
(6)–(7) extends to the case of system (2) a well known definition pursued in [8, 12]
for the case A(u) = u with the same objective of calculating the distance between
two solutions. Also in [19], one can find a special case of the quantity (6) for com-
paring a general solution u(t,x) to a constant state ū, in connection to asymptotic
behavior problems.

Regarding the hyperbolic–parabolic system (1), in addition to hypotheses (H1),
(H2), (H3) on the hyperbolic part, we assume that the viscosity matrices that induce
a dissipative structure. Using the multiplier G(u) in (H2), we deduce that smooth
solutions of (1) satisfy the identity
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∂tη(u)+∂α qα(u) = ε∂α(G(u) ·Bαβ (u)∂β u)− ε∇G(u)∂α u ·Bαβ (u)∂β u . (8)

We will require that the entropy dissipates along the evolution, namely that the
matrix ∑α,β ∇G(u)T Bαβ (u)ωα ωβ is real (symmetric) positive semi-definite for all
ω ∈ Sd−1,

∇G(u)T Bαβ (u) = Bαβ (u)
T

∇G(u)
d

∑
α,β=1

ξα ·∇G(u)T Bαβ (u)ξβ ≥ 0 ∀ξα ,ξβ ∈ Rn,
(H4)

Hypothesis (H4) is natural in the context of applications to mechanics as it is con-
nected to entropy dissipation and the Clausius-Duhem inequality. When exploiting
the identities, we often impose a strengthened version of (H4):

∇G(u)T Bαβ (u) = Bαβ (u)
T

∇G(u)
d

∑
α,β=1

ξα ·∇G(u)T Bαβ (u)ξβ > 0.
(H4s)

∀ξα ,ξβ ∈ Rn \{0}. The minimum ν(u) and maximum N(u) eigenvalues of the as-
sociated quadratic form, for u ∈ Rn, may be used to express (H4s) in an equivalent
(more quantitative) format:

0 < ν(u)|ξ |2 ≤
d

∑
α,β=1

ξα ·∇G(u)T Bαβ (u)ξβ ≤ N(u)|ξ |2, (H4p)

∀ξ ∈ Rn.

Remark 1. We can compare the Hypotheses (H2) and (H3) with the familiar notion
of symmetrizable first-order systems of Friedrichs and Lax [17] using the transfor-
mation v = A(u) since this is invertible by Hypothesis (H1). Then systems (2) and
(3) can be expressed in terms of the conserved variables v,

∂tv+∂α(Fα ◦A−1)(v) = 0 (9)

∂t(η ◦A−1)(v)+∂α(qα ◦A−1)(v) = 0 . (10)

Setting

fα(v) = Fα ◦A−1(v) , H(v) = η ◦A−1(v) , Qα(v) = qα ◦A−1(v) . (11)

we obtain the formulas

η(u) = H(A(u)) , qα(u) = Qα(A(u)) . (12)

One can easily check that (H2) is equivalent to

∇vQα(v) = ∇vH(v) ·∇v fα(v) , (h2)
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and

G(u) = (∇vH)(A(u)) (13)

Hence η −q is an entropy pair for (2) satisfying (H2) if and only if the pair H−Q
is an entropy pair for (9) satisfying (h2). Also Hypothesis (H3) translates to the
requirement that the entropy H(v) is convex,

ζ ·∇2
vH(v)ζ > 0 for ζ ∈ Rn, ζ 6= 0 . (h3)

In summary, (H1), (H2) and (H3) are equivalent to the usual symmetrizability hy-
pothesis of [17]. To study the meaning of Hypothesis (H4) first rewrite (1) and mul-
tiply by ∇G(u)T to get

∇G(u)T
∇A(u)∂tu+∇G(u)T

∇Fα(u)∂α u = ε∇G(u)T Bαβ (u)∂α ∂β u

+ε∇G(u)T
∇Bαβ (u) : (∂α u,∂β u) .

(14)

Hypothesis (H4) implies that the diffusion coefficient matrix ∑α,β B̃αβ (u)ωα ωβ =

∑∇G(u)T Bαβ (u)ωα ωβ is symmetric and positive semi-definite satisfying

B̃αβ (u) = B̃αβ (u)
T , ∑

α,β

ξα · B̃αβ (u)ξβ ≥ 0 , (HB)

∀ξα ,ξβ ∈Rn. This hypothesis is connected to the local well-posedness of hyperbolic-
parabolic systems (1), cf. [19, Ch II] and [10].

Remark 2. The analysis by Christoforou and Tzavaras [5] is not a direct application
of the change of variable v = A(u) to the existing theory for A(u) = u that one might
at a first glance believe. Indeed the theory for hyperbolic-parabolic systems cannot
be studied only based on the change of variables due to the viscous part of the system
as one can see from the computation of the previous remark. This raised the need
to extend the relative entropy method to a more general framework for systems (1)
and (2).

3 The relative entropy identity

In this section we extend a well known calculation developed in [8, 12] for the case
A(u) = u to the hyperbolic system (2), subject to hypotheses (H1), (H2) and (H3).

Let u be an entropy weak solution of (2), that is u is a weak solution of (2) that
satisfies in the sense of distributions the inequality

∂tη(u)+∂α qα(u)≤ 0 . (15)

Let ū be a strong (conservative) solution of (2) that is satisfying the entropy identity
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∂tη(ū)+∂α qα(ū) = 0 . (16)

We proceed to compute the relative entropy identity for the quantities relative
entropy (6) and relative flux (7). Observe first that u, ū satisfy the chain of identities

∂t

(
G(ū) · (A(u)−A(ū))

)
+∂α

(
G(ū) · (Fα(u)−Fα(ū))

)
= ∇G(ū)∂t ū · (A(u)−A(ū))+∇G(ū)ūxα

· (Fα(u)−Fα(ū))

=−ūxα
·∇Fα(ū)T

∇A(ū)−T
∇G(ū)T (A(u)−A(ū))

+∇G(ū)ūxα
· (Fα(u)−Fα(ū))

=−∇G(ū)ūxα
·∇Fα(ū)∇A(ū)−1(A(u)−A(ū))

+∇G(ū)ūxα
· (Fα(u)−Fα(ū))

=: ∇G(ū)ūxα
·Fα(u|ū) ,

(17)
where

Fα(u|ū) := Fα(u)−Fα(ū)−∇Fα(ū)∇A(ū)−1(A(u)−A(ū)) . (18)

Combining (15), (16) and (17), we obtain

∂tη(u|ū)+∂α qα(u|ū)≤−∂α G(ū) ·Fα(u|ū) . (19)

The above calculation is formal, it can however be made rigorous following ideas
that are well developed (see e.g. [10, Ch V]) and provides a way of comparing a
weak entropic to a strong solution of (2). There exist variants of this calculation
that compare entropic measure valued solutions to strong solutions of hyperbolic
conservation laws (see [3, 11, 5]).

An analogous but more complicated analysis leads us to the relative entropy iden-
tity

∂tη(u|ū)+∂α qα(u|ū)+ ε∇G(u)∂α(u− ū) ·Bαβ (u)∂β (u− ū)

=−∇G(ū)(∂α ū) ·Fα(u|ū)+ ε∂xα
(Jα + jα)+ ε

6

∑
i=1

Qi
(20)

among two solutions u and ū of (1) under the framework (H1)–(H4). Here the vis-
cous fluxes Jα and jα are

Jα = (G(u)−G(ū)) · (Bαβ (u)uxβ
−Bαβ (ū)ūxβ

)+Bαβ (ū)ūxβ
·G(u|ū) , (21)

jα := Bαβ (ū)ūxβ
·∇G(ū)φ(u|ū) , (22)

with
G(u|ū) := G(u)−G(ū)−∇G(ū)∇A(ū)−1(A(u)−A(ū)) . (23)

while Qi represent quadratic ”error” terms. The details of this derivation can be
found in Section 2.4 of [5].
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4 Application in Thermoviscoelasticity

Here we present the relative entropy calculation for the system of thermoviscoelas-
ticity in several space dimensions. In [5] this calculation is also performed for the
system of thermoviscoelasticity when restricted to one-space dimension (when re-
stricted to the particular case of Stokes viscosity and Fourier heat conduction). The
requirements imposed from thermodynamics on the constitutive theory of thermo-
viscoelasticity were developed in [6, 7] and a summary can be found in [10, Sec
3.2]. The constitutive theory takes the form

ψ = ψ(F,θ) ,

Σ =
∂ψ

∂F
(F,θ) ,

η =−∂ψ

∂θ
(F,θ) ,

e = ψ +θη .

(24)

The total stress is decomposed into an elastic part Σ and a viscoelastic part Z =
Z(F,θ ,G, ˙̄F) where Σ and Z are both symmetric tensor valued functions, Z(F,θ ,0,0)=
0 so that

S = Σ(F,θ)+Z(F,θ ,G, ˙̄F)

=
∂ψ

∂F
(F,θ)+Z(F,θ ,G, ˙̄F) ,

Q = Q(F,θ ,G) .

Moreover, the heat flux Q and the viscoelastic contribution to the stress Z have to
satisfy

1
θ

G ·Q(F,θ ,G)+ ˙̄F : Z(F,θ ,G, ˙̄F)≥ 0 ∀(F,θ ,G, ˙̄F) , (H)

which along with (24) guarantee consistency for smooth processes with the Clausius-
Duhem inequality [6, 7].

For simplicity we assume that Z = Z(F,θ , ˙̄F) i.e. Z is taken independent of G =
∇θ . Hence condition (H) implies Q(F,θ ,0) = 0, Z(F,θ ,0) = 0, and accordingly (H)
decomposes into two distinct inequalities

1
θ

G ·Q(F,θ ,G)≥ 0 and ˙̄F : Z(F,θ , ˙̄F)≥ 0 . (H′)

The system of thermoviscoelasticity then takes the form

Ft = ∇v

vt = div(Σ +Z)+ f

∂t(
1
2 |v|

2 + e) = div(v ·Σ + v ·Z)+divQ+ v · f + r .

(25)
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Recall that x stands for the Lagrangean variable, div is the usual divergence operator
(in spatial coordinates), while ∂t is here the material derivative, hence Ft =

˙̄F . One
checks that smooth solutions of (25) satisfy the energy dissipation identity

∂te = ∇v : (Σ +Z)+divQ+ r

and the entropy production identity

∂tη−div
Q
θ

=
1

θ 2 ∇θ ·Q+
1
θ

∇v : Z +
r
θ
. (26)

To relate now to the general theory of the previous sections, we set

U =

F
v
θ

 ∈ Rd2+d+1 , A(U) =

 F
v

1
2 v2 + e(F,θ)


and impose eθ (F,θ)> 0 so that A(U) is invertible. Also we set

η̂(U) :=−η(F,θ)

where η̂(U) is the mathematical entropy and η(u,θ) the thermodynamic one. Here
the relative entropy identity takes the form

η̂(U |Ū) =−η(F,θ)+η(F̄ , θ̄)− 1
θ̄
(Σ̄ , v̄,−1) ·

(
F− F̄ , v− v̄, e(F,θ)+ 1

2 |v|
2− e(F̄ , θ̄)− 1

2 |v̄|
2
)

(24)
=

1
θ̄

[
ψ(F,θ |F̄ , θ̄)+ 1

2 |v− v̄|2 +(η(F,θ)−η(F̄ , θ̄))(θ − θ̄)
]
.

(27)
We use the notation

ψ(F,θ |F̄ , θ̄) = ψ(F,θ)−ψ(F̄ , θ̄)− ∂ψ

∂F
(F̄ , θ̄) : (F− F̄)− ∂ψ

∂θ
(F̄ , θ̄)(θ − θ̄)

= ψ− ψ̄− Σ̄ : (F− F̄)+ η̄(θ − θ̄)
(28)

and set ψ̄ = ψ(F̄ , θ̄), η̄ = η(F̄ , θ̄) and so on. We see that

∇
2
η̂(U)−G(U) ·∇2A(U)

(24)
=

 1
θ

ψFF 0 0
0 1

θ
0

0 0 1
θ

ηθ


and the positivity for the matrix ∇2η̂(U)−G(U) ·∇2A(U) is equivalent to the usual
Gibbs thermodynamic stability conditions ψFF > 0 and ηθ > 0.

A careful analysis in a similar fashion as in Section 3 leads to the relative entropy
identity or the system of thermoviscoelasticity (25)
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∂t

(
ψ(F,θ |F̄ , θ̄)+(η− η̄)(θ − θ̄)+ 1

2 |v− v̄|2
)

−div
(
(v− v̄) · (Σ +Z− Σ̄ − Z̄)+(θ − θ̄)

(Q
θ
− Q̄

θ̄

))
=−θ̄t η(F,θ |F̄ , θ̄)+ F̄t : Σ(F,θ |F̄ , θ̄)

−θθ̄

(
∇v
θ
− ∇v̄

θ̄

)
:
(Z

θ
− Z̄

θ̄

)
−
(

θ̄
Q
θ
−θ

Q̄
θ̄

)
·
(

∇θ

θ
− ∇θ̄

θ̄

)
+(v− v̄) · ( f − f̄ )+(θ − θ̄)

( r
θ
− r̄

θ̄

)
.

(29)

Here we have set

η(F,θ |F̄ , θ̄) := η(F,θ)−η(F̄ , θ̄)+
∂Σiα

∂θ
(F̄ , θ̄)(Fiα − F̄iα)−

∂η

∂θ
(F̄ , θ̄)(θ − θ̄) ,

Σ jβ (F,θ |F̄ , θ̄) := Σ jβ (F,θ)−Σ jβ (F̄ , θ̄)− ∂Σiα

∂Fjβ
(F̄ , θ̄)(Fiα − F̄iα)−

∂Σ jβ

∂θ
(F̄ , θ̄)(θ − θ̄) .

Let us just comment that in (29), the effect of viscous dissipation and heat conduc-
tion is captured respectively by the terms

Dv := θθ̄

(
∇v
θ
− ∇v̄

θ̄

)
:
(Z

θ
− Z̄

θ̄

)
Dq :=

(
θ̄

Q
θ
−θ

Q̄
θ̄

)
·
(

∇θ

θ
− ∇θ̄

θ̄

)
.

Moreover it can be easily checked that the same relative entropy formula can be
derived for the case that we compare two different constitutive theories that have
the same thermoelastic part but different viscoelastic and heat conduction formulas.
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