
Diffraction d’une onde acoustique par un objet

1 Physical problem and equations

We are interested in the problem of wave scattered by an object in a 2D homogeneous acoustic
medium.
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Figure 1: The geometry of the problem.

We assume that the pressure field u, satisfies the acoustic wave equation in the domain C
(the domain exterior of the object) :











∂2u

∂t2
− c2△u = f in C × IR

u = 0 on Γ0

(1)

with the initial conditions :










u(x, 0) = u0(x) in C

∂u

∂t
(x, 0) = u1(x) in C

(2)

and with boundary conditions on the exterior boundary Γa that we will precise later. In (1),
c is the wave speed, which is here assumed constant, we can chose for example c = 1.

Energy

We define the energy of the system as the sum of kinetic and potential energy :

E(t) =

∫

Ω

(

1

2
| ∂u
∂t

|2 +1

2
| ∇u |2

)

dx(3)
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Question 1.1 Show that, if we consider the space(Ω = R2, and there is no object) and if

there is no external force (f =), the energy is conserved :
dE(t)

dt
= 0

Boundary conditions

We consider now following absorbing boundary conditions on Γa :

∂u

∂t
+

∂u

∂n
= 0 on Γa(4)

where n is the exterior normal.

Question 1.2 Compute the energy again. Show that in this case the energy is decreasing
with time.

We introduce the spaces H = L2(C) and

V =
{

v ∈ H1(C); v = 0 on Γ0

}

Question 1.3 Show that the variational formulation of problem (1), (2) and (4) is :
Find u(x, t) ∈ V such that :

d2

dt2

∫

C
uvdx+

d

dt

∫

Γa

uvdγ +

∫

C
∇u.∇vdx =

∫

C
fvdx(5)

for all v ∈ V .
We admit that we seek the solution of this problem in the space L2(0, T ;V )∩C0(0, T ;H).

2 Plane wave analysis

We are interested here in the problem of wave propagation in (IR2) :











Find u in H1(IR2) such that:

d2u

dt2
− c2△u = 0

(6)

We define the plane wave solutions of (6) in the form :

u = exp(i(ωt− ~k · ~x))(7)

where

• ~k is the wave vector (that indicates the direction of propagation).

• ω is the frequency

Question 2.1 Show that searching plane wave solutions of the form (7) implies that we seek
for ω that satisfies :

ω2 = c2(k21 + k22)(8)
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Write corresponding dispersion relation (that relates the | ~k | to ω. Compute the phase velocity
defined by :

V =
ω

| ~k |
Remark that the phase velocity is independent of frequency. We say that the wave equation is
not dispersive.

3 Approximation

3.1 Semi-discretization in space

In the following, we assume that the union of C and the object is the domain Ω = [0, a]×[0, b].
We consider a mesh of C that takes into account the shape of the object, Ω = ∪Nel

j=1Tj), with
Nel the number of triangles.

Figure 2: An example of mesh

We denote Mi=1..Nt the nodes of the mesh (summits of the elements). We note H1
h the

finite dimensional subspace of H1(C), of P 1 finite elements, , i.e.,

H1
h =

{

v ∈ C0(C̄), v/Tj
∈ P 1(Tj)∀j

}

(wj) a basis of H1
h, defined by :

wj(Mi) = δij 1 ≤ i, j ≤ Nt

and Vh the sub-space of V of dimension Nh = Nt −N0 ≤ Nt, where N0 are the nodes on the
boundary of the object :

Vh =
{

v ∈ H1
h; v = 0 on Γ0

}
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Question 3.1 Write the discrete variational formulation by decomposing the solution uh on
the basis of Vh :

uh(x, t) =

Nh
∑

j=1

uj(t)wj(x)

Show that the problem can be written in the following matrix form :

Mh
d2U

dt2
+BΓ

h

dU

dt
+KhU = Fh(9)

where the matrices Mh (mass), Kh (stiffness) and BΓ
h (matrix associated with the absorbing

boundary conditions) will be precised and U contains all the degrees of freedom :

U = (u1...uNh
)

Question 3.2 Write an algorithm that permits the computation of the elementary mass and
stiffness matrices. The stiffness matrix should be computed exactly. For the mass matrix, we
propose the use of the following quadrature formula :

∫

T
fdxdy ≈ | T |

4
(f1 + f2 + f3)∆x∆y,(10)

where fi is the value of the function on the node i (the summits of the elements), | T | is the
area of T . Remark that the resulting mass matrix Map

h is diagonal.

Question 3.3 Write an algorithm for assembling the mass and stiffness matrices.

Definition of the matrix BΓ
h .

This is a mass matrix on the boundary of the domain. The computation of this matrix
uses only the nodes on the boundary Γa. Remark that the restriction of basis functions φi on
the boundary is a P 1 of one variable.

{

Mi

Tm

Figure 3: Example of mesh on the boundary Γa

The terms

Bm
kl =

∫

Γa

φm
l φm

k dγ

will be computed using the following quadrature formula :
∫

I
f =

| I |
2

(f1 + f2)(11)

where fi=1,2 is the value of f on the points i = 1, 2 and | I | is the length of the interval I.

Question 3.4 Write an algorithm which permits the computation of the matrix BΓ
h . Remark

that the matrix BΓ
ap computed using (11) is diagonal.
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3.2 Discretization in time

Question 3.5 Using a central finite differences scheme for the time discretization we obtain,

Map
h

Un+1 − 2Un + Un−1

∆t2
+BΓ

ap

Un+1 − Un−1

2∆t
+KhU

n = Fn
h(12)

where ∆t is the discretization time and Uk is the solution at time k∆t.

3.3 Numerical dispersion analysis

To study the dispersion of the numerical scheme using P 1 finite elements we are interested
in plane waves that propagate in the whole space for f = 0. We consider a regular mesh
composed by triangles of size h :

��
Mij

x

y

yj = (j − 1)h

(0, 0)

xi = (i− 1)h

Figure 4: Example of a regular mesh

Consider the summit Mij of the mesh.

Question 3.6 Write the equations obtained on the pressure field (u) on this point (we enu-
merate from 0 to 6 the nodes Mij , see figure 5)).
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Figure 5: Numeration of nodes

Show that the equations can be written in the form :

un+1
i,j − 2uni,j + un−1

i,j

∆t2
+Khu

n
h = 0(13)

where Bhu
n
h is

{

Khu
n
h =

1

h2
{

4uni,j −
(

uni+1,j + uni−1,j + uni,j+1 + uni,j−1

)}

(14)

We obtained in this way an equivalent finite difference scheme. To obtain the numerical
dispersion relation we seek solutions of the form :

uh = exp[i(ωn∆t− ik1h− jk2h)](15)

Question 3.7 Show that the numerical dispersion relation is :

1

∆t2
sin2

(

ω∆t

2

)

− 1

h2

(

sin2
(

k1h

2

)

+ sin2
(

k2h

2

))

= 0(16)

We can show that a necessary condition for the scheme to be stable is that ω is real.

Question 3.8 Write the condition ω ∈ R (ie, sin2(ω∆t/2) ∈ [0, 1]) in the form f(β1, β2) ∈
[0, 1]2, ∀k1, k2 with β1 = sin2(k1h/2) and β2 = sin2(k2h/2). Studying the variations of
this function f on the square [0, 1]2, deduce that this condition implies the following CFL
condition :

∆t

h
≤

√
2

2
(17)

4 Numerical study of dispersion

We study here the dispersion of the numerical scheme. We show that for the continuous

problem we have V =
ω

| ~k |
= c = 1. The phase velocity for the discrete scheme is determined

by

V num =
ωnum

| ~k |
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where ωnum(| ~k |) is the solution of the numerical dispersion relation :

2

∆t2
(1− cosωnum∆t) = K̂h(k) = sh(~k)(18)

Lets define

q(~k) =
ωnum(~k)

| ~k | V
and

• the wavelength : l =
2π

ω
.

• the number of points per wavelength : G =
l

h
=

2π

| ~k | h
• the inverse of G : H = 1/G.

Question 4.1 For a given direction of propagation ~k =| ~k | (cosθ, sinθ), we replace in sh :

k1 = 2π
H

h
cos(θ), k2 = 2π

H

h
sin(θ), we have | ~k |= 2π

H

h

We can take h = 1. Write a program that computes the numerical phase velocity. Plot qh as

a function of H(for H ∈ [0., 0.5]) for different values of θ θ = 0,
π

12
,
π

6
and

π

4
.

5 Simulation

Choice of the la source
To simulate a point source located at (xs, ys), we can take,



























































































































F (x, y, t) = f(r)g(t)

where f(r) is a radial function : f(r) = (1− r2

a2
)31Ba

r =
√

(x− xs)2 + (y − ys)2, a = 5∆xmin

where ∆xmin is the smallest distance between two nodes in the mesh

1Ba is the indicator function of the ball centered at (xs, ys) with radius a

g(t) =







−2(πf0)
2(t− t0) exp (−πf0(t− t0))

2 t ∈ [0, t1]

0 elsewhere

with f0 =
1

G
the frequency of the source

t0 =
1

f0
, t1 =

2

f0

(19)

and zero initial conditions,
{

u0(x, y) = 0
u1(x, y) = 0

(20)
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To compute Fh we decompose f(r) on the basis of P 1 finite elements,

fh(x, t) =

Nh
∑

j=1

fjwj(x)

where fj is the value of the function f(r) on the point Mi and we use the quadrature formula
(10) to compute Fh. Remark that we obtain:

Fh = Mh [f ]

with Mh the diagonal mass matrix and [f ] = (f1, f2, .., fNh
) the vector that contains the

values of the function f(r) on the nodes of the mesh Mi=1,..,Nh
. Therefore, we have,

Fn
h = Fhg(n∆t), ∆t = α∆xmin

Question 5.1 Write a numerical code that permits to compute the wave equation with Dirich-
let and absorbing boundary conditions. Use your code to do the following simulations :

Question 5.2 Simplified case

Figure 6: The case without object

a/ Solve the problem without object and with homogeneous Dirichlet conditions on the bound-
ary of the domain.

b/ Show the solution at different times on the whole domain. Also plot the solution as a
function of time at a few points in the domain.

c/ Observe the influence of the value of G and α
∆t

∆x
on the solution. Do you observe insta-

bilities for some values of α, is this the same as the value suggested by the theory?

d/ Observe the numerical anisotropy: what is the shape of the wavefront? When h goes to
0, are the wavefront circles?
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Absorbing boundary conditions

move the boundary

Initial domain

Figure 7: Domain with absorbing boundary

Question 5.3 Solve the problem with ABC. Move the boundary further away. What do you
observe?

Smooth object

aΓΓ

C

0

Figure 8: An object with smooth boundary

Question 5.4 Solve the scattering problem for an object with smooth boundary. Show the
solution at different times on the whole domain. Also plot the solution as a function of time
at a few points in the domain.

Non-smooth object
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C

Figure 9: Object with non-smooth boundary

Question 5.5 Solve the scattering problem for an object with non-smooth boundary. Show
the solution at different times on the whole domain. Also plot the solution as a function of
time at a few points in the domain.
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