1. An one dimensional eigenvalue problem

We consider the following eigenvalue problem,

Find $\lambda \in \mathbb{R}$ and $u \neq 0$ such that:

$$\begin{aligned}
& (-u''(x) = \lambda u(x), \quad x \in]0, 1[\\
& u(0) = 0 \\
& u(1) = -u'(1)
\end{aligned}$$
(1)

- (α') Write the variational formulation of problem (1).
- (β') Conclude that there is a sequence of strictly positive eigenvalues $\lambda_n \to +\infty$ and that the associated eigenfunctions u_n form a Hilbert basis of $L^2(]0,1[)$.
- (γ') Compute explicitly λ_n and u_n . Compute the limit $\lim_{n \to +\infty} \frac{\lambda_n}{n^2}$.

(
$$\delta'$$
) Let $u \in L^2(]0,1[)$ and $a_n = \int_0^1 u(x)u_n(x)$. Show that $\sum_{n\geq 1} a_n^2$ converges. To what?

(ε) Discuss as a function of α and f the existence and uniqueness of the solution of the following problem:

$$\begin{cases} -u''(x) + \alpha u(x) = f(x), & x \in]0, 1[\\ u(0) = 0\\ u(1) = -u'(1) \end{cases}$$

2. Characterization of the first eigenvalue Let Ω be a bounded sub-domain of \mathbb{R}^n . We consider the following eigenvalue problem :

Find
$$u \in H, u \neq 0$$
, s.t. $a(u, v) = \lambda(u, v), \forall v \in H$

We suppose that H is a closed subspace of $H^1(\Omega)$ dense in $L^2(\Omega)$ and a(u, v) is a symmetric, coercive, bi-linear form on H. The L^2 inner product is denoted by (u, v) and we set $|u| = \sqrt{(u, u)}$. Let $(\lambda_m)_{m \ge 1}$ be the sequence of eigenvalues and $(u_m)_{m \ge 1}$ the corresponding eigenfunctions that form a Hilbert basis of $L^2(\Omega)$. For all $u \in H$, $u \ne 0$ we define :

$$\mathcal{R}(u) = \frac{a(u, u)}{|u|^2}$$

(α) Show that for all $u \in H$, $u \neq 0$ we have,

$$\mathcal{R}(u) = \frac{\sum_{n=1}^{+\infty} \lambda_n(u, u_n)^2}{\sum_{n=1}^{+\infty} (u, u_n)^2}$$

 (β') Show that :

$$\lambda_1 = \min_{u \in H, u \neq 0} \mathcal{R}(u)$$

3. Ω being an open bounded set of \mathbb{R}^n and k(x) a continuous, strictly positive function on $\overline{\Omega}$, we denote $(\lambda_m(k,\Omega))_{m\geq 1}$ the eigenvalues of the following Dirichlet problem:

$$-\operatorname{div}(k(x)\nabla u) = \lambda u, \quad x \in \Omega, u = 0, \qquad \qquad x \in \partial\Omega$$

- (α') Show that, if $\Omega_1 \subset \Omega_2$ then $\lambda_1(k, \Omega_1) \ge \lambda_1(k, \Omega_2)$.
- (β) Show that, if $k_1(x) \leq k_2(x)$ then $\lambda_1(k_1, \Omega) \leq \lambda_1(k_2, \Omega)$.