
Passive and active array imaging in a waveguide

We consider in this project the problem of passive and active array imaging in a waveg-
uide. For the passive array case the geometry of the problem is depicted in Figure 1. The lin-
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Figure 1: Setup for imaging a point source located at ~y∗ with a passive array of transducers
in a waveguide.

ear array is composed by point transducers located at fixed range ~xr = (xr, zr), r = 1, . . . , Nr.
The aperture of the array is a = (Nr − 1) h, with h the array pitch, that is, the distance
between two consecutive receiver elements.

The data recorded at the array is the acoustic pressure field p̂(~xr, ω) solution of the
Helmholtz equation

1

c20
p̂(~x, ω) + ∆p̂(~x, ω) = f(t)δ(~x− ~y∗), (1)

in a waveguide with constant speed of propagation c0(~x) = c0 = 1500m/s and depth D. At
the boundaries of the waveguide we have the boundary conditions,

p(x = 0, z, t) = 0,
∂

∂x
p(x = D, z, t) = 0. (2)

In (1) we assume that we have a point source located at ~y∗ = (x∗, z∗).
To produce numerically the array data you should solve the wave equation either in the

frequency or in the time domain. Note that when the active array problem is considered
the data is the scattered field computed by taking the difference between the total field and
the incident field. To produce the images, you will use the Kirchhoff migration imaging
functional, which for the passive array imaging problem is
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IKM(~yS) =
Nr∑
r=1

p̂(~xr, ω)GWG(~xr, ~y
S, ω), (3)

where

ĜWG(~xr, ~y
S, ω) =

ı

2

N(ω)∑
j=1

1

βj(ω)
φj(x

s)φj(xr)e
ıβj(ω)(zr−zs), (4)

is the Green’s function in the homogeneous background waveguide. Here

N(ω) = b1
2

+
ωD

πc0
c ; φj(x) =

√
2

D
sin

(√
λj(ω)x

)
; λj =

(
j − 1

2

)2
π2

D2

βj(ω) =

{ √
k2 − λj, j = 1, 2, . . . N(ω),

ı
√
λj − k2 j ≥ N(ω).

(5)

To test your code you can use the following analytical expression for the array data in
the case of one point source located at ~y∗ = (x∗, z∗)

p̂(~xr, ω) =
ı

2
f̂(ω)

N(ω)∑
j=1

1

βj(ω)
φj(x

∗)φj(xr)e
ıβj(ω)(zr−z∗). (6)

In the active array case the KM imaging functional becomes,

IKM(~yS) =
Nr∑
r=1

Ns∑
s=1

p̂(~xr, ~xs, ω)GWG(~xr, ~y
S, ω)GWG(~xs, ~y

S, ω). (7)

To test your code you can use the following analytical expression for the array data in the
case of one point scatterer located at ~y∗ = (x∗, z∗),

p̂(~xr, ~xs, ω) =
−1

4
f̂(ω)

N(ω)∑
j=1

N(ω)∑
i=1

1

βj(ω)

1

βi(ω)
φj(x

∗)φj(xr)φi(x
∗)φi(xs)e

ıβj(ω)(zr−z∗)eıβi(ω)(zr−z
∗).

(8)
Central frequency/Multiple frequencies For the imaging part assume that the array
data are known at the frequency range [f0 − B/2, f0 + B/2], with f0 the central frequency
(recall that ω = 2πf). For the construction of the data you should consider the following
source function,

f̂1(ω) = 1I[ω0−πB,ω0+πB]

or some (smooth) tapered version of f̂1(ω) with support in the same bandwidth.
The length units in the following will be given in terms of the reference wavelength

λ0 = f0/c0. Assume a reference frequency of 75Hz, for c0 = 1500m/s the central wavelength
is λ0 = 20m.
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Questions

1. Full aperture Consider a waveguide of depth D = 10λ0 and a linear array with
Nr = 51 elements that span the entire depth of the waveguide. The location of the
array elements is ~xr = (xr, z) with z = 22λ0 and xr = (r − 1) h, h = D/(Nr − 1).

(a) One point source Consider the case of one point source located at ~y∗ = (6λ0 +
λ0/4, λ0). Construct the KM image using the single frequency f = 73Hz. What
is the resolution in range? in cross-range ? Compare with the theory. Here you
should also do a theoretical analysis of the point spread function for KM imaging.
Explore your algorithm to image one point source at different locations. What
determines the characteristics of the image that you obtain?

(b) Use multiple frequencies, what is the effect of the bandwidth on the resolution of
the image? On the SNR?

(c) Two point sources Design an experiment that exploits the resolution limits to
image two objects: consider two sources at the minimum distance at which they
can be separated.

2. Partial aperture Consider now a smaller array composed by Nr = 26 receivers with
the same inter-element distance h as before. Take first one and then two point sources
and answer the above questions (in blue). How do the results compare with the full
aperture case?

3. Noise Add white noise to the data according to the model described by equations
(1.2)-(1.3) of chapter 3 in the notes. Chose σN so that the SNR of the data takes the
values 10, 0,−10 dB. How does the SNR of the image depends on the SNR of the data?
the number of receivers?

4. Consider an active configuration where the sources become point targets.

(a) Is there a difference between the active and passive case in terms of resolution?

(b) To construct the image use either the full array data or just one column of the
response matrix. Do you observe a difference?(in terms of resolution, SNR?)

(c) Consider the partial array aperture case can you cook up a geometric configuration
where one point target becomes invisible? Do to this use either the full array data
or just one column of the response matrix to construct the image.

5. Consider imaging an extended object in a waveguide (full wave solution)

(a) Construct the KM image with an active array.

(b) The source and the receiver array need not be collocated. Put the receiver array
on one side of the object and the source array on the other side. What do you
observe? Do you get a better image.
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(c) What is the effect of multiple source illuminations.

6. Kirchhoff-Helmholtz identity Use white noise sources on the array and record the
solution of the wave equation p(~y1, t) and p(~y2, t) at two points ~y1 and ~y2. Compute
the empirical cross-correlation between these two recordings

CT (τ, ~y1, ~y2) =
1

T

∫ T

0

p(~y1, t)p(~y2, t+ τ)dt

and compare it with the Green’s function between these two points. Consider different
configurations of ~y1 and ~y2. What do you observe?

All images should be computed on a square of size D ×D with a discretization of λ0/4
and centered at ~y∗.

The report acmac-0232 and references therein should be useful for this project.
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http://preprints.acmac.uoc.gr/232/1/acmac-0232.pdf

