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Abstract— Computational models for the solution
of the two-dimensional shallow water equations
(SWEs) are presented. We describe a generalized class
of first and second order in space and time relaxation
schemes for the SWEs in two dimensions. We extend
in 2D classical relaxation models combined with
Runge-Kutta time stepping mechanisms as to include
also a forcing source term. To illustrate and validate
the capabilities of the proposed models, results are
presented for various well known test problems with
or without the source term present.

I. I NTRODUCTION

The mathematical model used here consists of

the 2D SWEs, in their classical form, obtained from

the incompressible flow continuity equation and

the momentum balance Navier-Stokes equations,

written in its physical conservative form as a single

vector equation

Ut+F(U)x+G(U)y = S(U), (x, y) ∈ Ω, (1)

where

U =
(

h, hu1, hu2

)T

=
(

h, q1, q2,
)T

,

S(U) =
(

0,−gh
∂Z

∂x
(x, y),−gh

∂Z

∂y
(x, y),

)T

,

F(U) =
(

q1,
q2
1

h
+

1
2
gh2,

q1q2

h

)T

,

G(U) =
(

q2,
q1q2

h
,
q2
2

h
+

1
2
gh2

)T

.

System (1) describes the flow at timet ≥ 0
at point (x, y) ∈ Ω, whereh(x, y, t) ≥ 0 is the

height of the fluid at point(x, y) at time t,Ω de-

notes the projection of the domain occupied by the

fluid onto thexy plane andZ(x, y) is the bottom

height function. The vector field(u1, u2) is the

average horizontal velocity, andg the gravitational

acceleration. Finally, the conservative variableq

(discharge) is given by(q1, q2) = (hu1, hu2). In

the homogeneous case, the system is equivalent to

that of isentropic Euler system. However due to the

presence of the source term the properties of the

system change substantially. The above system is

quite simple in the sense that only the topography

of the bottom in taken into account, but other terms

could be also added in order to include effects such

as friction on the bottom and on the surface as well

as variations of the channel width.

Substantial effort has been devoted over the past

20 years to the development of computational tech-

niques for fluid flow simulation, in particular in the

field of finite volumes for systems of conservation

laws. More recently many methods were proposed

for the numerical approximation of solutions of

hyperbolic conservations laws with source terms.

There has been a growing trend in favor of Riemann
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or Godunov-type based methods constructed within

the finite volume framework, see for example [11].

Such methods are noted for their good conservation

and shock capturing capabilities. Two dimensional

Riemann solvers do not appear to have matured

enough to be used in the construction of multi-

dimensional schemes. Even if such solvers were

available the resulting schemes are likely to be

too complicated for common use. The purpose of

the present work is to report on the applicability

of recently developed relaxation algorithms for

shallow flows, introduced in [4] in one-dimension,

for computing solutions in two-dimensions. We use

finite volume shock capturing spatial discretizations

that are Riemann solver free, while a Runge–Kutta

method provides the time stepping mechanisms.

The proposed schemes combine simplicity and

high efficiency. Their performance in various test

problems shows that provide a reliable alternative

for shallow water wave computations in one and

two dimensions. Numerical results are presented

for several test problems with or without the source

term present. The presented schemes are verified by

comparing the results with documented ones.

II. RELAXATION SYSTEMS FOR THE2D SWES

Relaxation systems for the 2D SWEs are moti-

vated by the general relaxation systems presented

in [6] and the relaxation systems introduced in [4]

for the 1D SWEs. Following from the above we

write a relaxation system for the SWEs replacing

the conservation law (1) by a larger linear system,

setting

u =




h,

q1,

q2


 , v =




v1,

v2,

v3


 , w =




w1,

w2,

w3


 ,

system (1) can be written as

ut + vx + wy = S(u),

vt + C2ux = −1
ε
(v − F(u))

wt + D2uy = −1
ε
(w −G(u)),

(2)

whereC2,D2 ∈ R3×3 are positive diagonal ma-

trices, e.g.C2 = diag(c2
1, c

2
2, c

2
3). System (2) can

now be further reformulated as,



u
v
w




t

+




0 I 0
C2 0 0
0 0 0







u
v
w




x

+




0 0 I
0 0 0

D2 0 0







u
v
w




y

=

=




S(u)
− 1

ε (v − F(u))
− 1

ε (w −G(u))


 . (3a)

We also consider the following variant, of the

above relaxation system, based on a novel approach

presented in [4] for the 1D case, written in vector

form as



u
v
w




t

+




0 I 0
C2 0 0
0 0 0







u
v
w




x

+




0 0 I
0 0 0

D2 0 0







u
v
w




y

=

=




0
− 1

ε (v − F(u))− 1
ε S̃(u)

− 1
ε (w −G(u))− 1

ε

˜̃S(u)


 .

(3b)

where

S̃(u) =




0
− ∫ x

gh(s, y)∂Z
∂x (s, y)ds

0



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and

˜̃S(u) =




0
0

− ∫ y
gh(x, s)∂Z

∂y (x, s)ds


 .

The original conservation law, in both formula-

tions, has now been replaced by a linear hyperbolic

system with a relaxation source term which rapidly

drivesv → F(u) andw → G(u) in the relaxation

limit ε → 0. In some cases it can be shown analyt-

ically that solutions of the linear system approach

solutions to the original conservation law.

A general necessary condition for such con-

vergence is that thesubcharacteristic conditionis

satisfied. For systems (3) we require that for the

eigenvaluesλi of F′(u) and eigenvaluesµi of

G′(u) the following condition to be satisfied

λ1

c1
+

λ2

c2
+

λ3

c3
+

µ1

d1
+

µ2

d2
+

µ3

d3
≤ 1. (4)

By doing so we insure that the characteristic speeds

of the hyperbolic part of (3a) or (3b) are at least

as large as the characteristic speeds of the orig-

inal problem. Hence, by choosing the constants

c1, c2, c3 and d1, d2, d3, appropriately, so that the

corresponding subcharacteristic condition hold true,

in the relaxation limit ε → 0 we recover (1),

for both relaxation systems (3a) and (3b). See for

example, [9], [10], [8], [7] for discussions of this

condition and convergence properties.

III. SEMI-DISCRETE RELAXATION SCHEMES

We consider the classical second order MUSCL-

TVD scheme for the spatial discretization. For

brevity we present the semi-discrete schemes for

system (3b). To discretize the system of equations,

a spatially 2D domain of integration, divided into

cells (i, j), is assumed, with a uniform grid widths

in each direction,∆x = xi+ 1
2
− xi− 1

2
, ∆y =

yi+ 1
2
− yi− 1

2
and time step∆t = tn+1− tn, n =

0, 1, 2, . . .. The approximate solution, denoted as

the discrete valueun
ij , is the approximate cell

average of the variableu in the cell(xi+ 1
2
, xi− 1

2
)×

(yi+ 1
2
, yi− 1

2
) at timet = tn. The approximate point

value ofu at (x, y) = (xi+ 1
2
, yj+ 1

2
) at timet = tn

is denoted byun
i+ 1

2 ,j+ 1
2
.

We start by considering the following one-step

conservative system for the homogeneous case

∂

∂t
uij +

1
∆x

(vi+ 1
2 ,j − vi− 1

2 ,j)

+
1

∆y
(wi,j+ 1

2 , −wi,j− 1
2
) = 0, (5a)

∂

∂t
vij +

1
∆x

C2(ui+ 1
2 ,j − ui− 1

2 ,j) =

− 1
ε
(vij − F(uij)), (5b)

∂

∂t
wij +

1
∆y

D2(ui,j+ 1
2
− ui,j− 1

2
) =

− 1
ε
(wij −G(uij)). (5c)

The linear hyperbolic part of the (5) has two

Riemann invariants in each direction,v ± Cu in

the x−direction andw ±Du in the y−direction,

associated with the characteristic fields±C and

±D respectively. To construct a second order accu-

rate in space scheme, the MUSCL piecewise linear

interpolation is applied to thek−th component of

v ±Cu, which gives respectively:

(v + cku)i+ 1
2 ,j = (v + cku)ij +

1
2
∆xsx,+

ij ,

(v − cku)i+ 1
2 ,j = (v − cku)i+1,j − 1

2
∆xsx,−

i+1,j ,

(w + dku)i,j+ 1
2

= (w + dku)ij +
1
2
∆ysy,+

ij ,

(w − dku)i,j+ 1
2

= (v − dku)i,j+1 − 1
2
∆ysy−

i,j+1,

(6)

whereu, v are thek−th (1 ≤ k ≤ 3 for the 2D

SWEs) components ofv,u and w respectively,

with s the slopes in the(i, j)−th cell defined as

sx,±
ij =

1
∆x

(vi+1,j±ckui+1,j−vij∓ckuij)φ(θx,±
ij )



4

with

θx,±
ij =

vij ± ckuij − vi−1,j ∓ ckui−1,j

vi+1,j ± ckui+1,j − vi,j ∓ ckuij
,

and

sy,±
ij =

1
∆y

(wi,j+1±dkui,j+1−wij∓dkuij)φ(θy,±
ij )

with

θy,±
ij =

wij ± dkuij − vi,j−1 ∓ dkui,j−1

wi,j+1 ± dkui,j+1 − vi,j ∓ dkuij
,

where φ is a limiter function. There are several

options on choosing a limiter function. Some of the

most popular ones are, the MinMod (MM) limiter

φ(θ) = max(0,min(1, θ)), the Superbee (SB)

limiter φ(θ) = max(0,min(2θ, 1),min(θ, 2)),
the VanLeer (VL) limiter φ(θ) = |θ|+θ

1+|θ| , and

the Monotonized Central (MC) limiterφ(θ) =
max(0,min((1 + θ)/2, 2, 2θ)).

Following from (6) we get

ui+ 1
2 ,j =

1
2
(uij + ui+1,j)− 1

2ck
(vi+1,j − vij)

+
∆x

4ck
(sx,+

ij + sx,−
i+1,j),

vi+ 1
2 ,j =

1
2
(vij + vi+1,j)− ck

2
(ui+1,j − uij)

+
∆x

4
(sx,+

ij − sx,−
i+1,j),

(7)

ui,j+ 1
2

=
1
2
(uij + ui,j+1)− 1

2ck
(wi,j+1 − wij)

+
∆y

4dk
(sy,+

ij + sy,−
i,j+1),

wi,j+ 1
2

=
1
2
(wij + wi,j+1)− dk

2
(ui,j+1 − uij)

+
∆y

4
(sy,+

ij − sy,−
i,j+1).

(8)

Then the second order (in space) semi-implicit

relaxation scheme is given componentwise by

∂

∂t
uij +

(vi+1,j − vi−1,j)
2∆x

− ck(ui+1,j − 2uij + ui−1,j)
2∆x

− dk(wi,j+1 − 2wij + wi,j−1)
2∆y

+
1
4
(sx,+

ij − sx,−
i+1,j − sx,+

i−1,j + sx,−
ij )

+
1
4
(sy,+

ij − sy,−
i,j+1 − sy,+

i,j−1 + sy,−
ij ) = 0,

∂

∂t
vij +

c2
k(ui+1,j − ui−1,j)

2∆x

− ck(vi+1,j − 2vij + vi−1,j)
2∆x

+
ck

4
(sx,+

ij + sx,−
i+1,j − sx,+

i−1,j − sx,−
ij ) =

− 1
ε
(vij − Fk(uij))− 1

ε
S̃k(uij),

∂

∂t
wij +

d2
k(ui,j+1 − ui,j−1)

2∆y

− dk(wi,j+1 − 2wij + wi,j−1)
2∆y

+
dk

4
(sy,+

ij + sy,−
i+1,j − sy,+

i−1,j − sy,−
ij ) =

− 1
ε
(wij −Gk(uij))− 1

ε
˜̃
Sk(uij),

(9)

with S̃k,
˜̃
Sk, Fk, Gk being thek−th components of

S̃,
˜̃S,F andG respectively. Notice that in the case

the slopes± = 0 or φ = 0, the MUSCL scheme

(9) reduces to a first orderupwind scheme.

IV. FULLY DISCRETE SCHEMES

In this section we present the time discretization

of the semi-discrete relaxation schemes applied to

the SWEs. We apply the implicit Runge-Kutta split-

ting scheme introduced in [6] as the time marching

mechanism to advance the solution by one time

step∆t. The splitting treats, alternatively, the stiff

source terms implicitly in two steps and the convec-

tion terms with two explicit steps. For the source

term application, corresponding to system (3b), and

temporarily dropping the subscript indices, given
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{un,vn wn}, then {un+1,vn+1wn+1} are com-

puted by

un,1 = un,

vn,1 = vn +
∆t

ε
(vn,1 − F(un,1)) +

∆t

ε
S̃(un,1),

wn,1 = wn +
∆t

ε
(wn,1 −G(un,1)) +

∆t

ε
˜̃S(un,1);

u(1) = un,1 −∆t(∆x
+vn,1 + ∆y

+wn,1),

v(1) = vn,1 −∆tC2∆x
+un,1,

w(1) = wn,1 −∆tD2∆y
+un,1;

un,2 = u(1),

vn,2 = v(1) − ∆t

ε
(vn,2 − F(un,2))

− 2∆t

ε
(vn,1 − F(un,1))

− ∆t

ε
S̃(un,2)− 2∆t

ε
S̃(un,1),

wn,2 = w(1) − ∆t

ε
(wn,2 −G(un,2))

− 2∆t

ε
(wn,1 −G(un,1))

− ∆t

ε
˜̃S(un,2)− 2∆t

ε
˜̃S(un,1);

u(2) = un,2 −∆t(∆x
+vn,2 + ∆y

+wn,2),

v(2) = vn,2 −∆tC2∆x
+un,2

w(2) = wn,2 −∆tD2∆y
+un,2;

un+1 =
1
2
(un + u(2)),

vn+1 =
1
2
(vn + v(2)),

wn+1 =
1
2
(wn + w(2)),

where the discretization operators∆ are defined as

∆x
+pij =

1
∆x

(pi+ 1
2 ,j − pi− 1

2 ,j),

∆y
+pij =

1
∆y

(pi,j+ 1
2
− pi,j− 1

2
).

Note that, using the above schemes neither linear

algebraic equation nor nonlinear source terms arise

and the space time discretizations are treated sep-

arately. In addition both first and second order re-

laxation schemes are stable under aCFL condition

max
(

(max
i

ci)
∆t

∆x
, (max

i
di)

∆t

∆y

)
≤ 1

2
(12)

V. NUMERICAL TESTS AND RESULTS

In this section we present some classical numer-

ical tests and results that demonstrate the perfor-

mance of the relaxation schemes presented for the

2D SWEs. First two typical examples of 2D dam-

break problems are solved and discussed.

We choose the initial conditions for all the re-

laxation systems presented above asu(x, y, 0) =
u0(x, y), v(x, y, 0) = v0(x, y) ≡ F(u0(x, y)),
w(x, y, 0) = w0(x, y) ≡ G(u0(x, y)). In the

small relaxation limit (ε → 0) the relaxation

systems presented here satisfy the so calledlocal

equilibrium (v = F(u) and w = G(u), see

[6], and by choosing the above forv and w we

avoid the introduction of an initial layer through

the relaxation system. For the boundary conditions

given the physical boundary conditions,ub, that

should imposed for each problem (transmisive or

reflective in the following test problems), then we

setvb = F(ub) andwb = G(ub) as to avoid the

introduction of artificial boundary layers.

The choices ofci, di, i = 1, 2, 3 in all the

numerical tests are based on rough estimates of

the eigenvalues of the original SWEs, as to satisfy

the subcharacteristic condition (4). Other choices

can be made as long as numerical stability is

maintained. It should be noted here that larger

values for theci, di, usually add more numerical

viscosity, so for accuracy reasons it is desirable to

have theci, di as small as possible.

The relaxation parameterε should be small with

respect to the time step and space mesh length,

that is ∆t À ε ∆y, ∆x À ε. Again here,ε plays

the role of viscosity coefficient so more numerical

diffusion will be added for relatively larger values

of ε.
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A. 2D Partial Dam-Break

The first two-dimensional hypothetical problem

is the one presented in [5]. For this problem a

dam, located in the center of the region, is assumed

to partially fail instantaneously. The water depth

upstream of the dam ishu = 10m and downstream

is assumed to be eitherhd = 5, 0.1, 0m (dry). The

computational domain is a200m × 200m region

which has been subdivided into41 × 41 square

grid. The breach is75m in length, which has

distances of 30m from the left bank and 95m from

the right. At the instant of breaking of the dam,

water is released through the breach, forming a

positive wave (bore) propagating downstream and

a negative wave (rarefaction) spreading upstream.

The results forhd = 5m and aftert = 0.72s
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Fig. 1. Water depth for the partial dam-break flow (hd = 5m)
at t = 0.72s computed with the upwind relaxation scheme.

are shown in Figs 1, 2, and 3 in terms of water

depth, contour of depth and velocity field. The

computational parameters used wereε = 1.E − 6
and c1 = 10, c2 = 6, c3 = 11, d1 = 10, d2 =
5, d3 = 11. The difference between the first order

upwind scheme and the MUSCL can be clearly

seen. The SB limiter has been shown (see Fig. 3) to

exhibit sharper resolution of discontinuities, since
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Fig. 2. Water depth and Depth contours with velocity field for
the partial dam-break flow (hd = 5m) at t = 0.72s computed
with the MUSCL relaxation scheme (MM limiter).

it does not reduce the slope as severely as MM near

a discontinuity.

In Fig. 4 the results forhd = 0.1m are presented

using the VL limiter. When there is a finite water

depth downstream, a shock front always exists. This

is not the case for the dry bed case. In the dry

bed case the bore propagates much faster and at

time t = 7.2s has reached the boundary of the

computational domain boundary. There is also a

significant difference in the velocity vector field

in the two cases. In the wet bed cases although

there is a finite water depth downstream the flow
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Fig. 3. Water depth and Depth contours with velocity field for
the partial dam-break flow (hd = 5m) at t = 0.72s computed
with the MUSCL relaxation scheme (SB limiter).

velocity vanishes. In the dry case, the water depth

is extremely small. In the numerical scheme,h and

q are the calculated variables. Machine precision

will produce finite values for the dependent variable

u, calculated asu = q/h, even though to machine

precisionh is considered as zero. These results can

be seen in Fig. 5 for a81 × 81 square grid. All

the results presented here are very similar to others

found in the literature, see for example [1],[12]

B. Circular 2D Dam-Break

Another typical example is based on the hypo-

thetical test case presented in [1]. It involves the
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Fig. 4. Water depth and Depth contours with velocity field
for the partial dam-break flo w (hd = 0.1m) at t = 0.72s

compute ed with the MUSCL relaxation scheme (VL limiter
andc1 = c2 = 12, c3 = 15, d1 = d3 = 12, d2 = 6).

breaking of a circular dam, and it is an important

test example for the analysis and performance of

the presented algorithms when solving complex

shallow flow problems. Initially, the physical model

is that of two regions of still water separated by

a cylindrical wall (with radius 11m) centered in a

50 × 50m square domain. The water depth within

the cylinder is10m and 1m outside. The wall is

then assumed to be removed completely and no

slope or friction is considered, then the circular

dam-break waves (rarefaction waves) will spread

and propagate radially and symmetrically as the
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Fig. 5. Depth contours and velocity field for the partial dam-
break flow (hd = 0m) at t = 0.72s computed with the MUSCL
relaxation scheme ( VL limiter andc1 = c2 = 12, c3 =

15, d1 = d3 = 12, d2 = 10).

water drains from the deepest region and there is

a transition from subcritical to supercritical flow.

The results aftert = 0.69s are shown in Figs 6,

7, again in terms of water depth, contour of depth

and velocity field. The computational parameters

used wereε = 1.E − 6 and c1 = c3 = 12, c2 =
7, d1 = d3 = 12, d2 = 7. It can be clearly seen

that the waves spread uniformly and symmetrically,

with the radial symmetry slightly distorted by the

effects of the grid due to the inability to represent

a circle on a square grid, but otherwise the solution

is very accurate and agrees quite well with those

presented in [1], [12] and other works.

The case of an initially dry bed outside the

cylinder is also considered here and the results are

presented in Fig. 8 It can be seen that no bore

forms, instead a rarefaction wave extends into the

dry region. The scheme is capable of handling the

dry bed problem. The computational parameters

used for this case wereε = 1.E − 6 and c1 =
c3 = 12.5, c2 = 10, d1 = d3 = 12.5, d2 = 10.
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C. Steady flow over a hump

As a problem with a source term present we
consider the academic test case of a 1m× 1m
square pool with a symmetric bump situated at
the center presented in [2]. The pool is assume
totally closed by solid vertical walls. The bump is
mathematically defined by

Z = max

"
0,

1

4
− 5

 �
x− 1

2

�2

+

�
y − 1

2

�2
!#

.

Initial conditions covering totally the bump are

h + Z = 0.5m,u1 = u2 = 0m/s. The flow

evolves during 60s and the initial steady state
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Fig. 8. Depth contours and velocity field att = 0.69s for the
dry bed circular dam-break flow computed with the MUSCL
relaxation scheme and the VL limiter

must be preserved. The results for scheme (3b)

(that was proven in [4] more accurate for similar

1D problems when compared to scheme (3a)) are

presented in Fig. 9. A uniform51×51grid was used

and the computational parameters wereε = 1.E−8
and c1 = c3 = 2.5, c2 = 0.5, d1 = d3 = 2.5, d2 =
0.5. The steady state is correctly maintained, with

a small distortion at the point where the bump

geometry is discontinuous my construction. The

overall equilibrium is conserved with no unphysical

velocities appearing in the results that would alter

the steady state.
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velocity field, for a steady flow over a bump

VI. CONCLUSIONS

In the present work a generalization of relaxation

schemes have been presented in order to compute

shallow water flows in 2D with and without a

topography source term present. The main feature

of the schemes is their simplicity and robustness.

Finite volume shock capturing spatial discretiza-

tions, that are Riemann solver free, have been used

providing accurate shock resolution. A new way to

incorporate the topography source term in 2D was

applied with the relaxation model and only small

errors were introduced while preserving steady

states. The results also demonstrate that relaxation

schemes are accurate, simple, efficient and robust

and can be of practical consideration.
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