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Abstract

We consider a variational scheme developed by S. Demoulini, D. M. A.
Stuart and A. E. Tzavaras [Arch. Rat. Mech. Anal. 157 (2001)] that ap-
proximates the equations of three dimensional elastodynamics with poly-
convex stored energy. We establish the convergence of the time-continuous
interpolates constructed in the scheme to a solution of polyconvex elas-
todynamics before shock formation. The proof is based on a relative
entropy estimation for the time-discrete approximants in an environment
of LP-theory bounds, and provides an error estimate for the approxima-
tion before the formation of shocks.
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1 Introduction

The equations of nonlinear elasticity are the system

. 0w
yee = div aT(Vy) 1)

where y : @ x R™ — R® stands for the motion, and we have employed the
constitutive theory of hyperelasticity, i.e. the Piola-Kirchhoff stress tensor

S is expressed as the gradient, S(F') = 2% (F), of a stored energy function
W(F). The equations (1) are often recast as a system of conservation laws,
ow
Opv; = Oa=——(F
=0 gp, ) (@)
8tFio¢ = aavi7
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for the velocity v; = O:y and the deformation gradient F' = Vy. The
differential constraints
0gFia — 0aFig =0 (3)

are propagated from the kinematic equation (2)2 and are an involution,
[7].

The requirement of frame indifference imposes that W (F) : M$"® —
[0,00) be invariant under rotations. This renders the assumption of con-
vexity of W too restrictive [15], and convexity has been replaced by vari-
ous weaker conditions familiar from the theory of elastostatics, see [1, 2]
and [3] for a recent survey. A commonly employed assumption is that of
polyconvexity, postulating that

W (F) = G o ®(F)

where ®(F') := (F, cof F,det F) is the vector of null-Lagrangians and G =
G(F,Z,w) = G(Z) is a convex function of & € R'?; this encompasses
certain physically realistic models [4, Sec 4.9, 4.10]. Starting with the
work of Ball [1], substantial progress has been achieved for handling the
lack of convexity of W within the existence theory of elastostatics.

For the elastodynamics system local existence of classical solutions has
been established in [6], [8, Thm 5.4.4] for rank-1 convex stored energies,
and in [8, Thm 5.5.3] for polyconvex stored entropies. The existence of
global weak solutions is an open problem, except in one-space dimen-
sion, see [12]. Construction of entropic measure valued solutions has been
achieved in [9] using a variational approximation method associated to a
time-discretized scheme. Various uniqueness results of smooth solutions
in the class of entropy weak and even dissipative measure valued solutions
are available for the elasticity system [7, 13, 8, 10].

The objective of the present work is to show that the approximation
scheme of [9] converges to the classical solution of the elastodynamics
system before the formation of shocks. To formulate the problem we
outline the scheme in [9] and refer to section 2 for a detailed presentation.
The null-Lagrangians ®*(F), A = 1,...,19 satisfy [14] the nonlinear
transport identities

0.0 (F) = 0, <g§; (F)vz-) .

This allows to view the system (2) as constrained evolution of the extended
system

i = Oa (a%i@ g}?A x) @
_ 0P4
0t=a = Oa (8F—;a ) ’Ui) '

The extension (4) has the properties: if F'(-,0) is a gradient and =(-,0) =
®(F(-,0)), then F(-,t) remains a gradient and Z(-,t) = ®(F(-,t)),Vt. The
extended system is endowed with the entropy identity

o <g + G(E)) — D4 <'vi %(E) gg:: (F)) =0 (5)




the entropy is convex and the system (4) is thus symmetrizable.

For periodic solutions v,Z (on the torus T®) a variational approxi-
mation method based on the time-discretization of (4) is proposed in [9]:
Given a time-step h > 0 and initial data (vo, EO) the scheme provides the

sequence of iterates (v?,Z7), j > 1, by solving

v — ol 7! :(’9&( oG =) P4 (Fj,l))
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This problem is solvable using variational methods and the iterates (vj | EI )
give rise to a time-continuous approximate solution @™ = (V”L)7 EUL)). It
is proved in [9] that the approximate solution generates a measure-valued
solution of the equations of polyconvex elastodynamics.

In this work we consider a smooth solution of the elasticity system
© = (V,E) defined on [0, T] x T* and show that the approximate solution
O™ constructed via the iterates (v’,Z7) of (6) converges to © = (V,2)
at a convergence rate O(h). The method of proof is based on the relative
entropy method developed for convex entropies in [5, 11] and adapted
for the system of polyconvex elasticity in [13] using the embedding to the
system (4). The difference between ©™ and 6 is controlled by monitoring

the evolution of the relative entropy

[1h

7= SV VR +GED) - 6E) - VEE)E™ -
We establish control of the function
() = /T (A +1F®P=2 4 |FP=) F® — FP + 0" - 6]) de
and prove the estimation
£lt) < 0(5(0) + h), te 0,7

which provides the result. There are two novelties in the present work: (a)
In adapting the relative entropy method to the subject of time-discretized
approximations. (b) In employing the method in an environment where
LP-theory needs to be used for estimating the relative entropy.

This work is a first step towards implementing a finite element method
based on the variational approximation. To do that, one has to devise
appropriate finite element spaces that preserve the involution structure.
This is the subject of a future work.

The paper is organized as follows. In Section 2 we present the vari-
ational approximation scheme and state the main theorem. In Section
3 we derive the relative entropy identity (27) and, finally, in Section 4
we carry out the cumbersome estimations for the terms in the relative
entropy identity and conclude the proof of Main Theorem via Gronwall’s
inequality.



2 The variational approximation scheme
and statement of the main theorem
We assume that the stored energy W : Mix‘o’ — R is polyconvez:
W(F)=Go®(F) (7)
with
G=GE)=G(F Zw): M*** x M*? xR = R"Y 5 R
uniformly convex and

®(F) = (F,cof F,det F). (8)

Assumptions. We work with periodic boundary conditions, i.e. the spa-
tial domain € is taken to be the three dimensional torus T3. The indices
i,a, ... generally run over 1,...,3 while A, B,... run over 1,...,19. We
use the notation LP = LP(T%) and W' = W!P(T?). Finally, we impose
the following convexity and growth assumptions on G:

(H1) G € C3(M3*® x M3*3 x R; [0, 00)) is of the form
G(E) = H(F) + R(Z) ©)

with H € C3(M?3*3;]0,00)) and R € C*(M3*® x M3*® x R; [0, 0))
strictly convex satisfying

k|FIP2|2)° < 2"VPH(F)z < K'|FIP7?|2)?, VzeR’
and vI < V2R < +'I for some fixed v,7', %, %" > 0 and p € [6,00).
(H2) G(E) = ar|F|” + c2|Z|* + es|w]” — ca.
(H3) G(E) < os(IF]" + 12 + [w]* +1).
(H4) [Gr |fl +1G2]772 +(Gul 7 < e (IFPP + 2P +ul* +1).
(H5)

H5 < er|FIP73

%R
‘ < Cs.

6F106F7nlaF7.5 OZ A0Z50=p

Notations. To simplify notation we write

GaE) =423, Ra(®= (@),
A
Hia(F) = 5IE(F), ®% (F) = g7 —(P)

In addition, for each i, = 1,2,3 we set

. 80 _. 094
gia(E, F7) = (:) IF,

(F*), F*eR’EeR™ (10)

(where we use the summation convention over repeated indices) and de-
note the corresponding fields g; : R*® x R® — R? by

Gi(B, F*) := (gi1, giz, 9:3) (E, ™). (11)



2.1 Time-discrete variational scheme

The equations of elastodynamics (1) for polyconvex stored-energy (7) can
be expressed as a system of conservation laws,

00w = 00 ( - 0N S ()

8tFia = aavi
which is equivalent to (1) subject to differential constrains
O Fi0 — 0aFip =0 (13)

that are an involution [7]: if they are satisfied for ¢ = 0 then (12) propa-
gates (13) to satisfy for all times. Thus the system (12) is equivalent to
systems (1) whenever F'(-,0) is a gradient.

The components of ®(F') defined by (8) are null-Lagrangians and sat-
isfy

oot
a“(aFm (Vu)) =0, A=1,...,19 (14)
for any smooth u(z) : R* — R3. Therefore, if (v, F) are smooth solutions
of (12), the null-Lagrangians ®* (F) satisfy the transport identities [9]

P4

0,0 (F) = 0. (OT(F)%), VF with 83Fia = 0 Fig. (15)

Due to the identities (15) the system of polyconvex elastodynamics (12)
can be embedded into the enlarged system [9]

A
Dron — 8a< G _. 0% (F)>

0= %) oF;

- 294
0:Ea = Oa <78Fm (F) vl).

(16)

The extension has the following properties:
(E1) If F(-,0) is a gradient then F(-,t) remains a gradient V¢.

(E2) If F(-,0) is a gradient and Z(-,0) = ®(F(+,0)), then F(-,¢) remains
a gradient and Z(-,t) = ®(F(-,t)), Vt. In other words, the system of
polyconvex elastodynamics can be viewed as a constrained evolution
of (16).

(E3) The enlarged system admits a convex entropy
nw,E) = L]’ + GE), (v,5) € R? (17)
and thus is symmetrizable (along the solutions that are gradients).

Based on the time-discretization of the enlarged system (16) S. De-
moulini, D. M. A. Stuart and A. E. Tzavaras [9] developed a variational
approximation scheme which, for the given initial data

0% := (1,2% = (°, F°, 2% w’) € L* x L” x L* x L? (18)



and fixed h > 0, constructs the sequence of successive iterates
0 =, 2=, F, 2w e I’ x P x > x L*, j>1 (19)
with the following properties (see [9, Lemma 1, Corollary 2]):

(P1) The iterate (v?,=7) is the unique minimizer of the functional

J(,E) = /TS <§|v A G(E)) dx

over the weakly closed affine subspace

C= {(U,E) € L? x L” x L? x L* : such that Yo € C™(T?)

_ =it A )
/1‘3(;14 hHA )apdx:—/’ﬂ‘s(g;{; (Fj_l)vi)aaapdx}.

(P2) For each j > 1 the iterates satisfy

’Uf 7’[),?_1 oG —j 8®A j—1
o 8“(85A =) g F ))

=) _ =i—1 8¢A ) )
—A T =A J—=1y .7
h Oe (6Fm (F) “l)

in D'(T*). (20)

(P3) If F° is a gradient, then so is F7, Vj > 1
(P4) Iterates v?, j > 1 have higher regularity: v/ € WP(T?), Vj > 1
(P 5) There exists Fp > 0 determined by the initial data such that

sup(I07l, + [ GE)de) + 10 =& < Fo (1)
Jz j=1

Given the sequence of spatial iterates (v/,Z7), j > 1 we define (fol-

lowing [9]) the time-continuous, piecewise linear interpolates om .=
(V0 =) by

VOm =3 @+ R o)
j=1
E(h>(t) _ (F(h), Z<h), w(h))(t) (22)
o 1 t—h(—1) _; _;_
=S wp(E+ D@ gy,
j=1
and the piecewise constant interpolates oM = (v(h>,§<h)) and f(h) by
(h> Zxﬂ
f(h)(t) — (f(h)7 Z(h (h) ZXJ (23)

(h> Z XJ FJ 1



where A7(t) is the characteristic function of the interval I; := [(j —
1)h, jh). Notice that £ is the time-shifted version of " and it is used
later in defining a relative entropy flux, as well as the time-continuous
equations (32).

Our main objective is to prove convergence of the interpolates (V(h)7 F(h))
obtained via the variational scheme to the solution of polyconvex elasto-
dynamics as long as the limit solution remains smooth. This is achieved by
employing the extended system (16) and proving convergence of the time-
continuous approximates ") = (V" 2"y to the solution © = (V,E)
of the extension (16) as long as © remains smooth.

Main Theorem. Let W be defined by (7) with G satisfying (H1)-(H5).
Let ) = (V<h),E(h)), o) = (v(h),§<h)) and f™ be the interpolates
defined via (22)-(23) and induced by the sequence of spatial iterates

O =, 2=, F,Z7 w)e L’ xLP x > x L*, j>0 (24)

which satisfy (P1)-(P5). Let © = (V,2) = (V,F,Z,w) be the smooth
solution of (16) defined on T x [0, 7] and emanate from the data e’ =
(VO,F° Z° @%). Assume also that F°, F° are gradients. Then:
(a) The relative entropy 1" = n" (0", ©) defined by (25) satisfies (27).
Furthermore, there exist constants u, i’ > 0 such that

R < [ 0@ nde <@, te o
11‘3
where

S(t) = / ((]_ + |F(h)|z772 + |F|p72)|F(h) _ F‘Z + ‘@(h) _ é|2) d
T3

b) There exists € > 0 and C = C(T, 0, Eo, i, ', €) > 0 such that Yh €
1 o

(0,¢)
E(r) < C(E(0)+h), T€l0,T].

Moreover, if the data satisfy 8(h>(0) —0as h 0, then

sup / (18" =8 +|F™ — FP(1+ [P [P~ 4 |FP=)) do 0
te[0,7] JT3

as h ] 0.

Corollary. Let ©" = (VW =M be s in the main theorem. Let ( LF)
be a smooth solution of (12) with F(-,0) a gradient and © = (V,®(F)).
Assume that initial data satisfy ©™ (-,0) = ©(-,0). Then

2 (IV = Vo) + 18" = Py + IF™ = Fly ) = O
<0,

Remark 1. The smooth solution © = (V,Z) to the extended system
(4) is provided beforehand. A natural question arises whether such a
solution exists. We briefly discuss the existence theory for (2) on the
torus T®. In [6] energy methods are used to establish local (in time)
existence of smooth solutions to certain initial-boundary value problem



that apply to the system of nonlinear elastodynamics (1) with rank-1
convex stored energy. More precisely, for a bounded domain 2 C R™ with
the smooth boundary 92 the authors establish ([6, Theorem 5.2]) the
existence of the unique motion y(-, t) satisfying (1) in Q x [0, T] together
with boundary conditions y(z,¢) = 0 on 9 x [0, 7] and initial conditions
y(-,0) = yo and y¢(-,0) = y1 whenever T' > 0 is small enough and the
initial data lie in a compact set. One may get a counterpart of this
result for solutions on T? since the methods in [6] are developed in the
abstract framework: a quasi-linear partial differential equation is viewed
as an abstract differential equation with initial value problem set on an
interpolated scale of separable Hilbert spaces {H~}. ¢ ,,) Withm > 2. To
be precise, the spaces satisfy H, = [Ho, Hm],/m and the desired solution
u(t) of an abstract differential equation is assumed to be taking values in
H,, NV, where V, a closed subspace of Hi, is designated to accommodate
the boundary conditions (cf. [6, Sec.2]). By choosing appropriate spaces,
namely

Hy = [L*(T%), W™ *(T%)] | and V = H, = W"(T?),

/m
and requiring strong ellipticity (¢f. [6, Sec.5]) for the stored energy one
may apply [6, Thm 4.1] to conclude the local existence of smooth solutions
on the torus T? to the system of elastodynamics (1) and hence to (2). Since
strong polyconvexity implies strong ellipticity [1], the same conclusion
holds for the case of polyconvex energy which is used here.

Remark 2. The framework for existence of measure-valued solutions
for the polyconvex elasticity system (see (H1)-(H4) of [9]) and that of
uniqueness of classical within the class of measure-valued solutions (see
[10]) is more general than the framework used in the Main Theorem. This
discrepancy is due to the relative entropy being best adapted to an L>
setting and technical difficulties connected to the estimations of the time-
step approximants of (20). Our approach, based on using the ”distance”
function in (43) as a substitute for the relative entropy, simplifies the
estimations but limits applicability to stored energies (7), (9) with LP-
growth for F but only L2-growth in cof F and det F.

3 Relative entropy identity

For the rest of the sequel, we suppress the dependence on h to simplify
notations and, c¢f. Main Theorem, assume:

(1) ® =(V,5), 6 = (v,§), f are the approximates defined by (22) and
23).

(2) 6 = (V,8) = (V,F,Z,w) is a smooth solution of (16) defined on
T? x [0, T] where T > 0 is finite.

The goal of this section is to derive an identity for a relative energy
among the two solutions. To this end, we define the relative entropy

1'(©,0) :=n(8) —n(6) — Vn(©)(® - 6) (25)



and the associated relative flux which will turn out to be
35(0,0, f) := (vi = Vi) (G,a(§) = G,a(B)) ®ial(f), @=1,2,3. (26)

We now state two elementary lemmas used in our further computa-
tions. The first one extends the null-Lagrangian properties while the
second one provides the rule for the divergence of the product in the
non-smooth case.

Lemma 1 (null-Lagrangian properties). Assume ¢ > 2 and r > q%z‘
Then, if u € WH(T%,R?), 2 € WHT(T?), we have

o4
Oa (TFW (Vu)) =0

994 994
Oa (aFm (Vu)z) = 9F. (Vu) Oaz

foreachi=1,...,3 and A=1,...,19.

in D'(T?)

Lemma 2 (product rule). Let g € (1,00) and ¢' = 75 Assume
fewbh(T?), he LY (T*R%) and divh € LY (T?).
Then fh € L*(T3;R?), div (fh) € L*(T?) and
div (fh) = fdivh 4+ Vfh in D'(T?).
Lemma 3 (relative entropy identity). For almost all t € [0,T]
P 1, ; ,
o —divg” =Q - 5 ;XJ (D’ +S in D'(T?) (27)
where
Q := 0a(G.A(E) (®lia(F) — 5a(F)) (Vi - Vi)
+ 0aVi(G,4(E) = G.a(D) (8lia(F) = 2a(F)) (28)
+0aVi(Ga(B) = Ga(E) = GaB(3)(E ~ B)5) ®la(F)
estimates the difference between the two solutions,
D’ := (Vn(0) — Vn(©))se’, (29)
where 607 := ©7 — @71 are the dissipative terms, and
$ 1= 0a(G.4(2)) | @7(F) (v — V1)
+ (3a (F) = @50 (F)) (vi — Vi)

+ (@4a () — @1 (F)) (v: — Vi)
+ (@4 (f) — @ () (Vi = i)
. i (30)
+ 0.V [(Ga(€) — G.a(2)Bha(F)



is the error term.

Proof. Notice that by (22) for almost all ¢ > 0

Sl J . ) .
OV ()= X 02 s = i

j=1 R
R (31)
_ s i el
AWE(t) = ZXJ(t)T’ 0= =2 - =T
j=1
Hence by (10), (20) and (31) we obtain for almost all ¢ > 0
7t = K
Vi(-,t) = div(g; (E ) DT, (32)
875_‘14( 7t) = ( (f) vi)
Since (V, Z) is the smooth solution of (16), using (10) we also have
0:V; =div(gi(2, F )
' (@EF) [0, 7). (33)

0Za = 0a (P71, (F) Vi)

Further in the proof we will perform a series of calculations that
hold for smooth functions. A technical difficulty arises, since the iter-
ates (v?,2%), j > 1 satisfying (20) are, in general, not smooth. To bypass
this we employ Lemmas 1 and 2 that provide the null-Lagrangian property
and product rule in the smoothness class appropriate for the approximates
O =(V,5), 0= (v,9), f.

By assumption F° and F° are gradients. Hence using (P 3) we con-
clude that F7, j > 1 are gradients. Furthermore, from (E1) it follows that
F remains a gradient Vt. Thus, recalling (22)-(23), we have

F, f, f and F are gradients V¢ € [0, T]. (34)

We also notice that by (8), (10), and (H4) we have for all F* € RY,
€ R

|gia (E°, F7)|”

oG 2| 9G |55 22 8£ 72T
<Cﬁ’( OFa HF | 071 ) ;
5
<op(1prp 4 | 2 | 09 |7 8—Gm) o
OFia 0Z ow
Cy(IF*1P + 1P +12°F + |w®” + 1)
where p € [6,00) and p’ = . Hence (H2), (P4)-(P5), (23): and Lemmas
1,2 along with (32); 1mply
div(vigi(€, f)) = vi0 Vi + Vvigi(&, f)
div(Vigi(&, f)) = VidiVi + VVigi (€, f) (36)
div (0ig:(Z, F)) = 0:02%0(F) 02(G.4(E) + Vorgi B, f)
div(Vigi(Z, f)) = Vi®la(f) 0a(G.a() + VVigi(E, f).

10



Similarly, by (P4), Lemma 1, (32)2 and (34) we have the identity
DEa(t) = D10 () Bavi. (37)
Thus, using (17), (36): and (37), we compute
9t (n(©)) = VidiVi + G A(E)0:Ea
= (Vi = 0)0Vi + (G,a() — G, a(€))0iZa + div(vigi(&, F))

= 1AW (V) — V()6 + div (vigi(e, ).

Furthermore, by (36)2 we have
O (Vi(Vi = Vi) = 0Vi(Vi = Vi) + VidVi — Vi 0,V
= 0Vi(Vi = Vi) + div(Vigi(€, /) — VVigs(€, f) — 30,V
while using (37) we obtain
(G AE)NE—-E)a) = (G AE)NE -Z)a + G .a(2)0:Ea — 0:(G(2))
= 0:(G.a(E)(E-E)a+ Vuigi(E, f) — 0(G(E)).
Next, notice that by (10) and (26) we have
¢ =vigi(&, f) = Vigi(6, f) —vigi (B, /) + Vis G ). (39)
Hence by (17), (25), (29), (36) and the last four identities we obtain
o —divq" = —% ]il X (t)D? 4 J (39)

where

J == div(Vigi(E. f)) + VVigi(&, f)
+div(vigi(E, f)) — Vuigi(E, f)
— 0 Vi(Vi = Vi) — (G a(E))(E—ZD)a.
Consider now the term J. From (33)-(34) and Lemma 1 it follows that
0Vi = @40 (F)0a(G,4(2))
9:(G,4(2)) = G.ap(E) 0 (F)DaVi.

Then, (36)3,4 along with the last two identities and the fact that G ap =
G,Ba implies

J = 0.Vi(9ia(& ) — 9ia (5. )
+ 0a(G.aE) (¥ (F)(0s = V) = 02 () (Vi = Th))
—GaB(E)(E — £)a®l(F) 0V,
= 0.Vi(910 (6, ) = 9a(E, ) = 9ia(E, F) + gia(E, F)) (40)
+04(G.4(E) (Phal P(i = Vo) = BL(F)(Vi = Vo)
+0.Vi(Ga(E) — G.a®) — Gan(B)(E — B) ) B ha(F)
= Ji+ 2+ J3.

11



Using (10) we rearrange the term J; as follows:
1= 0.Vi[(G.(6) ~Ca(®)

= 0.Vi[(G.a(6) G

,mm (GA<E> G.A(®) ¥ (F)]

- cbj?oc(F))
(<I>? (F) = @5a(F))

A}e*

>’
(/e () = 2fa(F))
(@ia(

o(F) = @, ()]
(41)
We also modify the term J> writing it in the following way:

(42)

By (40)-(42) we have J = J1 + J2 + J3 = Q + S. Hence by (39) we get
(27). O

4 Proof of the main theorem

The identity (27) is central to our paper. In this section, we estimate each
of its terms and complete the proof via Gronwall’s inequality.

4.1 A function d(-,-) equivalent to the relative en-
tropy
Definition. Let ©, = (V1,E51), 02 = (V3,52) € R?2. We set

d(©1,02) = (1 + [F1[P 2+ |RP7?) |[FL — Bo|* + 01 — 62> (43)
where (F1721,w1) = 517 (FQ,ZQ,H)Q) =5 € ng.

The goal of this section is to show that the relative entropy 1" can be
equivalently represented by the function d(-,-). Before we establish this
relation, we prove an elementary lemma used in our further calculations:

Lemma 4. Assume q > 1. Then for all u,v € R™ and 8 € [0, 1]

B i _
/0/O(1—6)\u+a(1—ﬁ)(v—U)\qdadﬂ>c’ﬁ(lu|q+|v\q) (44)

with constant ¢’ > 0 depending only on q and n.

12



Proof. Observe first that
1
/ lu+a(v—u)|da > c(Jul + |v]), Vu,veR” (45)
0

with ¢ = ﬁ. Then, applying Jensen’s inequality and using (45), we get

// 1-p |u+a1— U—u’qdadﬁ

2/0(1— </ lu+ o 1—5)v+5u—u)|da>qdﬁ
> cq/o(1—ﬂ)(u|+|(1—ﬂ)v+5u)qdﬁ
> Sl ) [0

Since ¢ > 1 and (1 — j3) € [0,1], we have

g _ q+1 _1_(1_B)q+2 B
/0(1 pyrip = 1208 5 B

Combining the last two inequalities we obtain (44). O

Lemma 5 (n” equivalence). There erist constants u, ' > 0 such that
1d(©1,0) < 7" (01,0:) < 1/d(O1,02) (46)
for every ©1 = (V1,21), 02 = (V2,E2) € R?2,
Proof. Notice that
N (01,02) =n(01) —n(O2) — Vn(02)(O1 — O2)
1

1 . 47
:/0 5(01 — ©2)T (V21(©))(©1 — ©5) ds dr. (47)

o

where

6= (V,8)=(V,F,Z,0) =02 +75(01 — ), 7,5€]0,1].
Observe next that
V=G =[VrH 0 0]+V=R (48)
and therefore by (17)
(01— )" V?(6) (61 — ©3)
=Vi —=Val? + (B1 — E2)"V?R(E)(E1 — B2)  (49)
+ (F — B) 'V’ H(F)(Fy — F).

~
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Then (H1), (47) and (49) imply
1 1 .
Vi - WP + 2|81 — Eaf* + K |FL — F2|2/ / s|F|P2ds dr
0 0
< 1'(01,02) < (50)
1 1
Vi - Vel + % |21 — EafP + K |F1 — Fﬁ/ / s|F|P~%ds dr.
0 0

We now consider the integral term in (50). Recall that F' = Fb + 7s(F) —
F,). Then, estimating from above, we get

11
/ / s|F|P 2dsdr <2070 (|[Fu P2 + | |77 %)
o Jo

while for the estimate from below we use Lemma 4 (with s = 1 — 8 and
B =1) and obtain

11
/ / s|FP2dsdr > ¢ (JF)P2 + |F2‘p72) .
o Jo
Combining (50) with the two last inequalities we obtain (46). O
Observe that the smoothness of © implies that IM = M (T) > 0 such
that

M > 0] +|V:0[+18:0], (z,t) € T x [0,T]. (51)

Lemma 6 (£ equivalence). 1" (0,0), d(©,0) € L™ ([0, T]; L")

w&(t) < /11‘3 n" (O(x,t),0(x, t)) de < p'E(t), Vtel[0,T)

where

£(t) = /W d(6/(x,1), O, 1)) d.

Proof. Fix t € [0,T]. Then 35 > 1 s.t. ¢t € I;. Hence (22), (43), (51) and
(H2) imply for p € [6,00)

A(O(,1),6(,1) < C(1+ FP + 2" + [w* + |VI*)
. . . . (52)

<C(1+GEY+GE) + P +10P)
with C = C(M) > 0 independent of h, j and ¢t. Hence (21) and (52) imply

(O(-,1),0(-,t))dr < C'(1+ Eo), Vte€0,T] (53)

T3

for some C' = C'(M) > 0. Then (46) and (53) imply the lemma. O
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4.2 Estimate for the term Q on t € [0, 7]
Lemma 7 (Q bound). There exists A = A\(M) > 0 such that

|Q(z, )| < Xd(©,0), (z,t) € T x [0,T] (54)
where the term Q is defined by (28).

Proof. Let C = C(M) > 0 be a generic constant. Notice that VF1, F> €
M3><3

0, A=1,...,9
|50 (F1) — @0 (F2)| < 3 |F1 — Fal, A=10,...,18
3(|Fu| + |Fe])|[Fy — Fa|, A=19
(55)
and hence
|05, (F) — @4, (F)| < C(L+|F))|F-F|, A=1...19. (56)
Then, using (51) and (56) we estimate the first term of Q:
|0a(G.A(2) (@0 (F) = ®fia(F) (Vi — Vi) (57)

SC(A+I|FP)F - F*+|V =V]?).

Observe now that (48) and (55); imply for all E1,Z» € R*?, F3, Fy €
RQ
(G,a(E1) = G a(E2)) (250 (F5) — /10 (F1))

= (RA(E1) = Ra(E2))(®lia(Fs) — ®lia (F4)).
(58)
Thus, by (H1), (56) and (58) we obtain the estimate for the second term:

|0aVi(GA(Z) — G.a(E)(]a(F) — e (F))]

—_ =2 2 |2 (59)
SC(E-EF+ QA+ |F[)F - F").
Finally, we define for each A =1,...,19
Ja:=G a(E) -G .aE) -G .as(E) (E - E)B
(60)

1 1
= / / s(2—-2)"V?G A(E)(E - E)dsdr
0 0

where
E=(F,Z,%)=24+7s(E-Z2), 7,5€]0,1].
By (9) and (H5) we have for each A=1,...,19
(E-E)TV?GAE)E-E)|<C(F-FPIFP?+|2-E%). (61)
Then by (51) and (60)-(61) we obtain the estimate for the third term:

|0 Vi @40 (F) Jal
— — 1 1 — —
< C’(|E—E|2+ |F7F|2/ / |F+TS(F7F)|p73dsdT) (62)
0 0
< C(E-2P +IF - FP+|FP™).
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Thus by (43), (57), (59) and (62) we conclude for p € [6, 00)
Q.0 < (10 = B + (1L+ [FP"?)|F — F’) < Cd(6,8).

O

4.3 Estimates for the terms D’ and S on t € IJ’~ C
[0, 7]

In this section, we consider j > 1 such that (j — 1)h < T and estimate the
dissipative and error terms for ¢ € I where

I o= 1;()10,T) = [(j = Dh,jh) [ [0, T].
Lemma 8 (D7 bound). Let D’ be the term defined by (29). Then
D’ € L™ (I;; L'(T?)) (63)
and 3Cp > 0 independent of b, j such that ¥t € I := [(j—1)h, jh] ([0, T]

/ /(lDf)dmdt
(j—1)h JT3 h

> a(T)CD/ 1607 > + (|F7 P72 + |[FP72)|6F7 | da > 0
T3
(64)
with .
a(r) == T_) €0,1], Telj. (65)

Proof. By (H1), (17) and the definition of D7 we have for ¢t € I

D’ = (v—V)6v' + (VH(f) — VH(F))§F’ + (VR(§) — VR(Z))§=".
(66)
Consider each of the three terms in (66). Notice that, by (22)-(23), we
have

; (67)
E(,t) —E(, 1) = (1 —a(t)) 6=7.
Using (67) we compute
(v —V)ov’ = (1 — a(t)) |607 2
(VR(¢) — VR(E))6=7 = (1 —alt)) /O (629)'V2R(E) (627) ds (68)

(VH(f) — VH(F))0F’ = (1 - a(t))/o (6F)T?H(F) (6F7) ds

where

[

= (P, Z,0) = s&(-,t) + (1 — (-, 1), s €[0,1].
Then (H1), (66) and (68) together with the fact that (1 —a(t)) € [0, 1]
imply

. . . . 1 N
’Dﬂ(.,t)‘ < (IW\Q +16=7)? +H/|5F7|2/ |F(s,t)\p_2ds). (69)
0
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Consider now the two latter terms in (69). Recalling that F' = sf—(1—s)F
and using (H2) together with (22)-(23) we obtain

1
v 16271 + K,‘6F]|2/ |F(s,t)|P2ds
0
<SC A+ IFTP PP 127+ 2P + o7 + o))

for some C' > 0 independent of h, j and ¢. Thus, combining the last
inequality with (H2), the growth estimate (21) and (69), we conclude

J.

for some v’ > 0 independent of h, j and ¢t. This proves (63).
Let us now estimate D’ from below. By (66), (68) and (H1) we obtain

Df(x,t)( dr < V' (1+ Eo), Vtell (70)

. . . 1 A
D’(t) > v(1—a(t) (\6®]|2 + \5F]|2/ |F(s,t)\p_2ds) >0 (71)
0
for v = min(1,~, ) > 0. Notice that
F(s,t) =sf(t) + (1 —s)F(t) = FI + (1 — s)(1 — a(t))(F'~" — F7).
Then, by making use of Lemma 4 we obtain for 7 € I_j

/( ((1 —a(t)) |5Fj\2/0 |F(S,t)|p72ds) dt

j—1)h
) a(T) 1 . ] .
= h\6F3|2/ / (1= B)|F +a(l —B)(F' ' — F)[P2dadB
0 0

> ha(r) (|[F77HP72 + |[FP72)0F7

where we used the change of variables « =1 — s and 8 = a(¢). Similarly,
we get

ha(r)

12
51071

T . . a(T)
/ (1 a(t)) 607 dt = h\56]|2/ (1-B)ds >
( 0

i—=1h

Then (71) and the last two estimates imply (64) for Cp = min(vc’, §) >
0. O

Lemma 9 (S bound). Let S be the term defined by (30). Then
S e L>®(1;; L'(T?) (72)
and 3Cs > 0 independent of h, j such that for any e > 0 and all T € I

/ |S(z,t)| dzdt
(j—1)h JT3

<Cs[atnre) [ 1507 4 (PP 1P P (7
’]I*B

a(t)h?

€

+ (3+2E0)+/ / d(@,@)dmdt}
(G=1h J13

with a(7) defined by (65).
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Proof. As before, we let C' = C(M) > 0 be a generic constant and remind
the reader that all estimates are done for ¢ € I}.

Observe that (22)2, (23)3 and (65) imply
F(,t) = f(-,t) = a(t) 6F.

Hence by (22)2, (23)s, (55), (65) and the identity above we get the esti-
mate

|05 (f) — 5. (F)| < C(1+ |f| + |F|)|F — fl

<C(1+|Fj‘1|+|Ff|) |6F7]. ()
Thus (56), (65), (67)1, (74) and the Young’s inequality imply
|70 (F) (v — Vi)
+ [(@4.(F) — 4, (F)) (v — V)|
+ (@ () = @ (F)) (v = Vi)
+|(@%a(f) = 2 (B)) (Vi = Vi) (75)

iiJ
< C(10v1+ (1 + [FP)F = PP + 6"
+ (14 [F P+ [PPSR + [V = V).
We also notice that for all Fy, F» € M3*3
1 aQH
0 8anaﬂm
Hence (H1), (H5), (65), (67)2 and the identity above imply
|75 (F) (G.a(§) - G A(E))|
< C(|VH(f) — VH(F)| + |VR() — VR(Z)))
76
C(\f F|/ [sf+(1—s)F|°~ 2ds+|§—5\) (76)

SO((FHP72 4+ |F/ P28 F | + [62)).

H’ia(Fl) - HJ'Q(FQ) = (8F1 + (1 - 5)F2)(F1 - Fg)lm dS.

Next, by (H1), (56), (58), (65), (67)2 and (74) we obtain
[(G.a(€) = G.a(@)(®lia(f) — Bl (F))]
+](G.4(6) = G.a(@)) (@1 (F) — ®/a(F))]
+(G.a 5) G.a(E)(@%a(f) — ha(F))]
<C

[

OF [+ (L+ |F77H P+ |[F )0 F |2
+(L+|FP)|F = F* + |2 - EP).
Finally, (30), (51), and the estimates (75)-(77) imply for p € [6, c0)

S(,8)] < Cs [(IFHI”‘Q LI PR)SEP (500
(78)
PP PR SE (607 + d(&é)]
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for some Cs > 0 independent of h, j and ¢t. Then, by (21) and (52)
we conclude that the right hand side of (78) is in L (I}; L"'(T%)) which
proves (72).

We now pick any € > 0. Then, employing the Young’s inequality, we
obtain

(FP2 4 [FIP 2R < 2 (IR 4 |Fp?)
g

T

(17 P2 4 72 ) JoF7

and, similarly, [667| < £+ £]667|?. Thus (78) and the last two estimates
imply

ISC1 < Cs[(14 £) (18077 + (B2 [P or )
| | (79)
+ 2(1 FIFTIP | FI ) 4 d(0,6)].

To this end, we integrate (78) and use (H2) along with (21) to get (72). [

4.4 Conclusion of the proof via the Gronwall’s
inequality
We now estimate the left hand side of the relative entropy identity (27):

Lemma 10 (LHS estimate). Let n", ¢" be the relative entropy and
relative entropy fluz, respectively, defined by (25) and (26). Then

(am" —_ div qT) e L™ (0,7}, L' (T*)) (80)

and 3 > 0 such that for all h € (0,&) and T € [0,T]

/ / (0" —divg") dedt < Cr (Th + / d(©,0)dx dt). (81)
o JT3 o Jr3

for some constant Cr = C1(M, Eo,&) > 0.

Proof. Lemma 5, (54), (63), and (72) imply that the right hand side of
the relative entropy identity (27) is in L*® ([O,T];LI(TS)). This proves
(80).

Notice that the constants Cp and Cs (that appear in Lemmas 8 and
9, respectively) are independent of h, j. Then set & := Cp/(2Cs). Take
now h € (0,) and 7 € [0,7]. Using Lemmas 7, 8 and 9 (with £ = £) along
with the fact that —Cp + Cs(h + &) < 0 we get

/O/T (_iixa‘(t)pj 151+ 1Q| )dwdt < ¢y (rh+/0T/TS d(6, 6)dudr )

with Cr := 3max(Cs(1 + FEo)/&,Cs + A) > 0. Hence by (27) and the
estimate above we obtain (81). O
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Observe that (P4)-(P5), (26), (31), (35)-(36) and (38) imply
divg" € L™ ([0, T]; L' (T?)) (82)

and hence by (80)
dm" € L= ([0,T); L' (T%)) . (83)

Take now arbitrary h € (0,€) and 7 € [0, T]. Due to periodic boundary
conditions (by the density argument) we have [ (div¢"(z,s)) dz = 0 for
a.e. s € [0,T] and hence

/ divq" dzdt = 0.
o J18

Finally, by construction for each fixed Z € T® the function 7" (Z,t) :
[0,7] — R is absolutely continuous with the weak derivative d:n"(Z,t).
Then, by (83) and the Fubini’s theorem we have

/OT s Buy’ da dt = /1T3 [/OT 9" (z, 1) dT:| dr = /1I3 (’I’]r(il?,T)—nT(:[’ 0))d1:.

Thus by Lemma 6, (80)-(83) and the two identities above we obtain
&) < 0(5(0) + / S(t)dt + h) (84)
0

with C := T max(Cy, ') independent of 7, h. Since 7 € [0, T] is arbitrary,
by (84) and the Gronwall’s inequality we conclude

E(r) < C(E(0) +h)eST, vre[0,T].

In this case, if £ (0) — 0 as h | 0, then SUP.¢[0,7] (M (1)) = 0, as
h ] 0.
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