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Abstract

We consider a variational scheme developed by S. Demoulini, D. M. A.
Stuart and A. E. Tzavaras [Arch. Rat. Mech. Anal. 157 (2001)] that ap-
proximates the equations of three dimensional elastodynamics with poly-
convex stored energy. We establish the convergence of the time-continuous
interpolates constructed in the scheme to a solution of polyconvex elas-
todynamics before shock formation. The proof is based on a relative
entropy estimation for the time-discrete approximants in an environment
of Lp-theory bounds, and provides an error estimate for the approxima-
tion before the formation of shocks.
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1 Introduction

The equations of nonlinear elasticity are the system

ytt = div
∂W

∂F
(∇y) (1)

where y : Ω×R+ → R3 stands for the motion, and we have employed the
constitutive theory of hyperelasticity, i.e. the Piola-Kirchhoff stress tensor
S is expressed as the gradient, S(F ) = ∂W

∂F
(F ), of a stored energy function

W (F ). The equations (1) are often recast as a system of conservation laws,

∂tvi = ∂α
∂W

∂Fiα
(F )

∂tFiα = ∂αvi,

(2)

∗Dept. of Mathematics, University of Maryland, College Park, USA (amiroshn@gmail.com)
†Department of Applied Mathematics, University of Crete, Heraklion, Greece; Institute for

Applied and Computational Mathematics, FORTH, Heraklion, Greece (tzavaras@tem.uoc.gr)

1



for the velocity vi = ∂ty and the deformation gradient F = ∇y. The
differential constraints

∂βFiα − ∂αFiβ = 0 (3)

are propagated from the kinematic equation (2)2 and are an involution,
[7].

The requirement of frame indifference imposes that W (F ) : M3×3
+ →

[0,∞) be invariant under rotations. This renders the assumption of con-
vexity of W too restrictive [15], and convexity has been replaced by vari-
ous weaker conditions familiar from the theory of elastostatics, see [1, 2]
and [3] for a recent survey. A commonly employed assumption is that of
polyconvexity, postulating that

W (F ) = G ◦ Φ(F )

where Φ(F ) := (F, cof F,detF ) is the vector of null-Lagrangians and G =
G(F,Z,w) = G(Ξ) is a convex function of Ξ ∈ R19; this encompasses
certain physically realistic models [4, Sec 4.9, 4.10]. Starting with the
work of Ball [1], substantial progress has been achieved for handling the
lack of convexity of W within the existence theory of elastostatics.

For the elastodynamics system local existence of classical solutions has
been established in [6], [8, Thm 5.4.4] for rank-1 convex stored energies,
and in [8, Thm 5.5.3] for polyconvex stored entropies. The existence of
global weak solutions is an open problem, except in one-space dimen-
sion, see [12]. Construction of entropic measure valued solutions has been
achieved in [9] using a variational approximation method associated to a
time-discretized scheme. Various uniqueness results of smooth solutions
in the class of entropy weak and even dissipative measure valued solutions
are available for the elasticity system [7, 13, 8, 10].

The objective of the present work is to show that the approximation
scheme of [9] converges to the classical solution of the elastodynamics
system before the formation of shocks. To formulate the problem we
outline the scheme in [9] and refer to section 2 for a detailed presentation.
The null-Lagrangians ΦA(F ), A = 1, . . . , 19 satisfy [14] the nonlinear
transport identities

∂tΦ
A(F ) = ∂α

(
∂ΦA

∂Fiα
(F )vi

)
.

This allows to view the system (2) as constrained evolution of the extended
system

∂tvi = ∂α
( ∂G
∂ΞA

(Ξ)
∂ΦA

∂Fiα
(F )
)

∂tΞA = ∂α
( ∂ΦA

∂Fiα
(F ) vi

)
.

(4)

The extension (4) has the properties: if F (·, 0) is a gradient and Ξ(·, 0) =
Φ(F (·, 0)), then F (·, t) remains a gradient and Ξ(·, t) = Φ(F (·, t)), ∀t. The
extended system is endowed with the entropy identity

∂t

(
|v|2

2
+G(Ξ)

)
− ∂α

(
vi

∂G

∂ΞA
(Ξ)

∂ΦA

∂Fiα
(F )

)
= 0 (5)
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the entropy is convex and the system (4) is thus symmetrizable.
For periodic solutions v,Ξ (on the torus T3) a variational approxi-

mation method based on the time-discretization of (4) is proposed in [9]:
Given a time-step h > 0 and initial data (v0,Ξ0) the scheme provides the
sequence of iterates (vj ,Ξj), j > 1, by solving

vji − v
j−1
i

h
= ∂α

( ∂G
∂ΞA

(Ξj)
∂ΦA

∂Fiα

(
F j−1

))
(
Ξj − Ξj−1

)
A

h
= ∂α

( ∂ΦA

∂Fiα

(
F j−1

)
vji

)
.

in D′(T3) (6)

This problem is solvable using variational methods and the iterates (vj ,Ξj)
give rise to a time-continuous approximate solution Θ(h) = (V (h),Ξ(h)). It
is proved in [9] that the approximate solution generates a measure-valued
solution of the equations of polyconvex elastodynamics.

In this work we consider a smooth solution of the elasticity system
Θ̄ = (V̄ , Ξ̄) defined on [0, T ]×T3 and show that the approximate solution
Θ(h) constructed via the iterates (vj ,Ξj) of (6) converges to Θ̄ = (V̄ , Ξ̄)
at a convergence rate O(h). The method of proof is based on the relative
entropy method developed for convex entropies in [5, 11] and adapted
for the system of polyconvex elasticity in [13] using the embedding to the
system (4). The difference between Θ(h) and Θ̄ is controlled by monitoring
the evolution of the relative entropy

ηr =
1

2
|V (h) − V̄ |2 +G(Ξ(h))−G(Ξ̄)−∇G(Ξ̄)(Ξ(h) − Ξ̄) .

We establish control of the function

E(t) :=

∫
T3

(
(1 + |F (h)|p−2 + |F̄ |p−2)|F (h) − F̄ |2 + |Θ(h) − Θ̄|2

)
dx

and prove the estimation

E(t) 6 C
(
E(0) + h

)
, t ∈ [0, T ]

which provides the result. There are two novelties in the present work: (a)
In adapting the relative entropy method to the subject of time-discretized
approximations. (b) In employing the method in an environment where
Lp-theory needs to be used for estimating the relative entropy.

This work is a first step towards implementing a finite element method
based on the variational approximation. To do that, one has to devise
appropriate finite element spaces that preserve the involution structure.
This is the subject of a future work.

The paper is organized as follows. In Section 2 we present the vari-
ational approximation scheme and state the main theorem. In Section
3 we derive the relative entropy identity (27) and, finally, in Section 4
we carry out the cumbersome estimations for the terms in the relative
entropy identity and conclude the proof of Main Theorem via Gronwall’s
inequality.

3



2 The variational approximation scheme
and statement of the main theorem

We assume that the stored energy W : M3×3
+ → R is polyconvex :

W (F ) = G ◦ Φ(F ) (7)

with

G = G(Ξ) = G(F,Z,w) : M3×3 ×M3×3 × R ∼= R19 → R

uniformly convex and

Φ(F ) = (F, cof F,detF ). (8)

Assumptions. We work with periodic boundary conditions, i.e. the spa-
tial domain Ω is taken to be the three dimensional torus T3. The indices
i, α, . . . generally run over 1, . . . , 3 while A,B, . . . run over 1, . . . , 19. We
use the notation Lp = Lp(T3) and W 1,p = W 1,p(T3). Finally, we impose
the following convexity and growth assumptions on G:

(H1) G ∈ C3(M3×3 ×M3×3 × R; [0,∞)) is of the form

G(Ξ) = H(F ) +R(Ξ) (9)

with H ∈ C3(M3×3; [0,∞)) and R ∈ C3(M3×3 ×M3×3 ×R; [0,∞))
strictly convex satisfying

κ|F |p−2|z|2 6 zT∇2H(F )z 6 κ′|F |p−2|z|2, ∀z ∈ R9

and γI 6 ∇2R 6 γ′I for some fixed γ, γ′, κ, κ′ > 0 and p ∈ [6,∞).

(H2) G(Ξ) > c1|F |p + c2|Z|2 + c3|w|2 − c4.

(H3) G(Ξ) 6 c5(|F |p + |Z|2 + |w|2 + 1).

(H4) |GF |
p
p−1 + |GZ |

p
p−2 + |Gw|

p
p−3 6 c6

(
|F |p + |Z|2 + |w|2 + 1

)
.

(H5)
∣∣∣ ∂3H
∂Fiα∂Fml∂Frs

∣∣∣ 6 c7|F |p−3 and
∣∣∣ ∂3R
∂ΞA∂ΞB∂ΞD

∣∣∣ 6 c8.

Notations. To simplify notation we write

G,A (Ξ) =
∂G

∂ΞA
(Ξ), R,A (Ξ) =

∂R

∂ΞA
(Ξ),

H,iα (F ) =
∂H

∂Fiα
(F ), ΦA,iα (F ) =

∂ΦA

∂Fiα
(F ).

In addition, for each i, α = 1, 2, 3 we set

giα(Ξ, F ∗) =
∂G

∂ΞA
(Ξ)

∂ΦA

∂Fiα
(F ∗), F ∗ ∈ R9, Ξ ∈ R19 (10)

(where we use the summation convention over repeated indices) and de-
note the corresponding fields gi : R19 × R9 → R3 by

gi(Ξ, F
∗) := (gi1, gi2, gi3)(Ξ, F ∗). (11)
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2.1 Time-discrete variational scheme

The equations of elastodynamics (1) for polyconvex stored-energy (7) can
be expressed as a system of conservation laws,

∂tvi = ∂α

(
∂G

∂ΞA
(Φ(F ))

∂ΦA

∂Fiα
(F )

)
∂tFiα = ∂αvi

(12)

which is equivalent to (1) subject to differential constrains

∂βFiα − ∂αFiβ = 0 (13)

that are an involution [7]: if they are satisfied for t = 0 then (12) propa-
gates (13) to satisfy for all times. Thus the system (12) is equivalent to
systems (1) whenever F (·, 0) is a gradient.

The components of Φ(F ) defined by (8) are null-Lagrangians and sat-
isfy

∂α

(
∂ΦA

∂Fiα
(∇u)

)
= 0, A = 1, . . . , 19 (14)

for any smooth u(x) : R3 → R3. Therefore, if (v, F ) are smooth solutions
of (12), the null-Lagrangians ΦA(F ) satisfy the transport identities [9]

∂tΦ
A(F ) = ∂α

(
∂ΦA

∂Fiα
(F )vi

)
, ∀F with ∂βFiα = ∂αFiβ . (15)

Due to the identities (15) the system of polyconvex elastodynamics (12)
can be embedded into the enlarged system [9]

∂tvi = ∂α

(
∂G

∂ΞA
(Ξ)

∂ΦA

∂Fiα
(F )

)
∂tΞA = ∂α

(
∂ΦA

∂Fiα
(F ) vi

)
.

(16)

The extension has the following properties:

(E 1) If F (·, 0) is a gradient then F (·, t) remains a gradient ∀t.
(E 2) If F (·, 0) is a gradient and Ξ(·, 0) = Φ(F (·, 0)), then F (·, t) remains

a gradient and Ξ(·, t) = Φ(F (·, t)), ∀t. In other words, the system of
polyconvex elastodynamics can be viewed as a constrained evolution
of (16).

(E 3) The enlarged system admits a convex entropy

η(v,Ξ) = 1
2
|v|2 +G(Ξ), (v,Ξ) ∈ R22 (17)

and thus is symmetrizable (along the solutions that are gradients).

Based on the time-discretization of the enlarged system (16) S. De-
moulini, D. M. A. Stuart and A. E. Tzavaras [9] developed a variational
approximation scheme which, for the given initial data

Θ0 := (v0,Ξ0) = (v0, F 0, Z0, w0) ∈ L2 × Lp × L2 × L2 (18)
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and fixed h > 0, constructs the sequence of successive iterates

Θj := (vj ,Ξj) = (vj , F j , Zj , wj) ∈ L2 × Lp × L2 × L2, j > 1 (19)

with the following properties (see [9, Lemma 1, Corollary 2]):

(P 1) The iterate (vj ,Ξj) is the unique minimizer of the functional

J (v,Ξ) =

∫
T3

(
1
2
|v − vj−1|2 +G(Ξ)

)
dx

over the weakly closed affine subspace

C =

{
(v,Ξ) ∈ L2 × Lp × L2 × L2 : such that ∀ϕ ∈ C∞(T3)∫

T3

(
ΞA − Ξj−1

A

h

)
ϕdx = −

∫
T3

(
∂ΦA

∂Fiα
(F j−1)vi

)
∂αϕdx

}
.

(P 2) For each j > 1 the iterates satisfy

vji − v
j−1
i

h
= ∂α

(
∂G

∂ΞA
(Ξj)

∂ΦA

∂Fiα
(F j−1)

)
ΞjA − Ξj−1

A

h
= ∂α

(
∂ΦA

∂Fiα
(F j−1) vji

) in D′(T3). (20)

(P 3) If F 0 is a gradient, then so is F j , ∀j > 1.

(P 4) Iterates vj , j > 1 have higher regularity: vj ∈W 1,p(T3), ∀j > 1.

(P 5) There exists E0 > 0 determined by the initial data such that

sup
j> 0

(
‖vj‖2L2

dx
+

∫
T3

G(Ξj) dx
)

+

∞∑
j=1

‖Θj −Θj−1‖2L2
dx

6 E0. (21)

Given the sequence of spatial iterates (vj ,Ξj), j > 1 we define (fol-
lowing [9]) the time-continuous, piecewise linear interpolates Θ(h) :=
(V (h),Ξ(h)) by

V (h)(t) =

∞∑
j=1

X j(t)
(
vj−1 +

t− h(j − 1)

h
(vj − vj−1)

)
Ξ(h)(t) =

(
F (h), Z(h), w(h))(t)

=
∞∑
j=1

X j(t)
(

Ξj−1 +
t− h(j − 1)

h
(Ξj − Ξj−1)

)
,

(22)

and the piecewise constant interpolates θ(h) := (v(h), ξ(h)) and f̃ (h) by

v(h)(t) =

∞∑
j=1

X j(t)vj

ξ(h)(t) = (f (h), z(h), ω(h))(t) =

∞∑
j=1

X j(t)Ξj

f̃ (h)(t) =

∞∑
j=1

X j(t)F j−1,

(23)
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where X j(t) is the characteristic function of the interval Ij := [(j −
1)h, jh). Notice that f̃ (h) is the time-shifted version of f (h) and it is used
later in defining a relative entropy flux, as well as the time-continuous
equations (32).

Our main objective is to prove convergence of the interpolates (V (h), F (h))
obtained via the variational scheme to the solution of polyconvex elasto-
dynamics as long as the limit solution remains smooth. This is achieved by
employing the extended system (16) and proving convergence of the time-
continuous approximates Θ(h) = (V (h),Ξ(h)) to the solution Θ̄ = (V̄ , Ξ̄)
of the extension (16) as long as Θ̄ remains smooth.

Main Theorem. Let W be defined by (7) with G satisfying (H1)-(H5).
Let Θ(h) = (V (h),Ξ(h)), θ(h) = (v(h), ξ(h)) and f̃ (h) be the interpolates
defined via (22)-(23) and induced by the sequence of spatial iterates

Θj = (vj ,Ξj) = (vj , F j , Zj , wj) ∈ L2 × Lp × L2 × L2, j > 0 (24)

which satisfy (P1)-(P5). Let Θ̄ = (V̄ , Ξ̄) = (V̄ , F̄ , Z̄, w̄) be the smooth
solution of (16) defined on T3 × [0, T ] and emanate from the data Θ̄0 =
(V̄ 0, F̄ 0, Z̄0, w̄0). Assume also that F 0, F̄ 0 are gradients. Then:

(a) The relative entropy ηr = ηr(Θ(h), Θ̄) defined by (25) satisfies (27).
Furthermore, there exist constants µ, µ′ > 0 such that

µ E(t) 6
∫
T3

ηr(x, t) dx 6 µ′E(t), t ∈ [0, T ]

where

E(t) :=

∫
T3

(
(1 + |F (h)|p−2 + |F̄ |p−2)|F (h) − F̄ |2 + |Θ(h) − Θ̄|2

)
dx.

(b) There exists ε > 0 and C = C(T, Θ̄, E0, µ, µ
′, ε) > 0 such that ∀h ∈

(0, ε)
E(τ) 6 C

(
E(0) + h

)
, τ ∈ [0, T ] .

Moreover, if the data satisfy E(h)(0)→ 0 as h ↓ 0, then

sup
t∈[0,T ]

∫
T3

(
|Θ(h) − Θ̄|2 + |F (h) − F̄ |2(1 + |F (h)|p−2 + |F̄ |p−2)

)
dx→ 0

as h ↓ 0.

Corollary. Let Θ(h) = (V (h),Ξ(h)) be as in the main theorem. Let (V̄ , F̄ )
be a smooth solution of (12) with F̄ (·, 0) a gradient and Θ̄ = (V̄ ,Φ(F̄ )).
Assume that initial data satisfy Θ(h)(·, 0) = Θ̄(·, 0). Then

sup
t∈[0,T ]

(
‖V − V̄ ‖2L2(T3) + ‖Ξ(h) − Φ(F̄ )‖2L2(T3) + ‖F (h) − F̄‖p

Lp(T3)

)
= O(h).

Remark 1. The smooth solution Θ̄ = (V̄ , Ξ̄) to the extended system
(4) is provided beforehand. A natural question arises whether such a
solution exists. We briefly discuss the existence theory for (2) on the
torus T3. In [6] energy methods are used to establish local (in time)
existence of smooth solutions to certain initial-boundary value problem
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that apply to the system of nonlinear elastodynamics (1) with rank-1
convex stored energy. More precisely, for a bounded domain Ω ⊂ Rn with
the smooth boundary ∂Ω the authors establish ([6, Theorem 5.2]) the
existence of the unique motion y(·, t) satisfying (1) in Ω× [0, T ] together
with boundary conditions y(x, t) = 0 on ∂Ω× [0, T ] and initial conditions
y(·, 0) = y0 and yt(·, 0) = y1 whenever T > 0 is small enough and the
initial data lie in a compact set. One may get a counterpart of this
result for solutions on T3 since the methods in [6] are developed in the
abstract framework: a quasi-linear partial differential equation is viewed
as an abstract differential equation with initial value problem set on an
interpolated scale of separable Hilbert spaces {Hγ}γ∈[0,m] with m > 2. To
be precise, the spaces satisfy Hγ = [H0, Hm]γ/m and the desired solution
u(t) of an abstract differential equation is assumed to be taking values in
Hm

⋂
V , where V , a closed subspace of H1, is designated to accommodate

the boundary conditions (cf. [6, Sec.2]). By choosing appropriate spaces,
namely

Hγ =
[
L2(T3),Wm,2(T3)

]
γ/m

and V = H1 = W 1,2(T3),

and requiring strong ellipticity (cf. [6, Sec.5]) for the stored energy one
may apply [6, Thm 4.1] to conclude the local existence of smooth solutions
on the torus T3 to the system of elastodynamics (1) and hence to (2). Since
strong polyconvexity implies strong ellipticity [1], the same conclusion
holds for the case of polyconvex energy which is used here.

Remark 2. The framework for existence of measure-valued solutions
for the polyconvex elasticity system (see (H1)-(H4) of [9]) and that of
uniqueness of classical within the class of measure-valued solutions (see
[10]) is more general than the framework used in the Main Theorem. This
discrepancy is due to the relative entropy being best adapted to an L2

setting and technical difficulties connected to the estimations of the time-
step approximants of (20). Our approach, based on using the ”distance”
function in (43) as a substitute for the relative entropy, simplifies the
estimations but limits applicability to stored energies (7), (9) with Lp-
growth for F but only L2-growth in cof F and detF .

3 Relative entropy identity

For the rest of the sequel, we suppress the dependence on h to simplify
notations and, cf. Main Theorem, assume:

(1) Θ = (V,Ξ), θ = (v, ξ), f̃ are the approximates defined by (22) and
(23).

(2) Θ̄ = (V̄ , Ξ̄) = (V̄ , F̄ , Z̄, w̄) is a smooth solution of (16) defined on
T3 × [0, T ] where T > 0 is finite.

The goal of this section is to derive an identity for a relative energy
among the two solutions. To this end, we define the relative entropy

ηr(Θ, Θ̄) := η(Θ)− η(Θ̄)−∇η(Θ̄)(Θ− Θ̄) (25)
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and the associated relative flux which will turn out to be

qrα(θ, Θ̄, f̃) := (vi − V̄i)
(
G,A(ξ)−G,A(Ξ̄)

)
ΦA,iα(f̃), α = 1, 2, 3. (26)

We now state two elementary lemmas used in our further computa-
tions. The first one extends the null-Lagrangian properties while the
second one provides the rule for the divergence of the product in the
non-smooth case.

Lemma 1 (null-Lagrangian properties). Assume q > 2 and r > q
q−2

.

Then, if u ∈W 1,q(T3;R3), z ∈W 1,r(T3), we have

∂α

(
∂ΦA

∂Fiα
(∇u)

)
= 0

∂α

(
∂ΦA

∂Fiα
(∇u)z

)
=
∂ΦA

∂Fiα
(∇u) ∂αz

in D′(T3)

for each i = 1, . . . , 3 and A = 1, . . . , 19.

Lemma 2 (product rule). Let q ∈ (1,∞) and q′ = q
q−1

. Assume

f ∈W 1,q(T3), h ∈ Lq
′
(T3;R3) and div h ∈ Lq

′
(T3).

Then fh ∈ L1(T3;R3), div (fh) ∈ L1(T3) and

div (fh) = fdiv h+∇fh in D′(T3).

Lemma 3 (relative entropy identity). For almost all t ∈ [0, T ]

∂tη
r − div qr = Q− 1

h

∞∑
j=1

X j(t)Dj + S in D′(T3) (27)

where

Q := ∂α(G,A(Ξ̄))
(
ΦA,iα(F )− ΦA,iα(F̄ )

)(
Vi − V̄i

)
+ ∂αV̄i

(
G,A(Ξ)−G,A(Ξ̄)

)(
ΦA,iα(F )− ΦA,iα(F̄ )

)
+ ∂αV̄i

(
G,A(Ξ)−G,A(Ξ̄)−G,AB(Ξ̄)(Ξ− Ξ̄)B

)
ΦA,iα(F̄ )

(28)

estimates the difference between the two solutions,

Dj :=
(
∇η(θ)−∇η(Θ)

)
δΘj , (29)

where δΘj := Θj −Θj−1, are the dissipative terms, and

S := ∂α(G,A(Ξ̄))
[

ΦA,iα(F̄ )
(
vi − Vi

)
+
(
ΦA,iα(F )− ΦA,iα(F̄ )

)(
vi − Vi

)
+
(
ΦA,iα(f̃)− ΦA,iα(F )

)(
vi − Vi

)
+
(
ΦA,iα(f̃)− ΦA,iα(F )

)(
Vi − V̄i

)]
+ ∂αV̄i

[(
G,A(ξ)−G,A(Ξ)

)
ΦA,iα(F̄ )

+
(
G,A(ξ)−G,A(Ξ)

)(
ΦA,iα(f̃)− ΦA,iα(F )

)
+
(
G,A(ξ)−G,A(Ξ)

)(
ΦA,iα(F )− ΦA,iα(F̄ )

)
+
(
G,A(Ξ)−G,A(Ξ̄)

)(
ΦA,iα(f̃)− ΦA,iα(F )

)]

(30)
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is the error term.

Proof. Notice that by (22) for almost all t > 0

∂tV (·, t) =

∞∑
j=1

X j(t)δv
j

h
, δvj := vj − vj−1

∂tΞ(·, t) =

∞∑
j=1

X j(t)δΞ
j

h
, δΞj := Ξj − Ξj−1.

(31)

Hence by (10), (20) and (31) we obtain for almost all t > 0

∂tVi(·, t) = div
(
gi(ξ, f̃)

)
∂tΞA(·, t) = ∂α

(
ΦA,iα(f̃) vi

) in D′(T3). (32)

Since (V̄ , Ξ̄) is the smooth solution of (16), using (10) we also have

∂tV̄i = div
(
gi(Ξ̄, F̄ )

)
∂tΞ̄A = ∂α

(
ΦA,iα(F̄ ) V̄i

) in T3 × [0, T ]. (33)

Further in the proof we will perform a series of calculations that
hold for smooth functions. A technical difficulty arises, since the iter-
ates (vj ,Ξj), j > 1 satisfying (20) are, in general, not smooth. To bypass
this we employ Lemmas 1 and 2 that provide the null-Lagrangian property
and product rule in the smoothness class appropriate for the approximates
Θ = (V,Ξ), θ = (v, ξ), f̃ .

By assumption F 0 and F̄ 0 are gradients. Hence using (P 3) we con-
clude that F j , j > 1 are gradients. Furthermore, from (E1) it follows that
F̄ remains a gradient ∀t. Thus, recalling (22)-(23), we have

F , f , f̃ and F̄ are gradients ∀t ∈ [0, T ]. (34)

We also notice that by (8), (10), and (H4) we have for all F ∗ ∈ R9,
Ξ◦ ∈ R19∣∣giα(Ξ◦, F ∗)∣∣p′

6 Cg
( ∣∣∣ ∂G
∂Fiα

∣∣∣ p
p−1

+
∣∣F ∗∣∣ p

p−1

∣∣∣ ∂G
∂Zkγ

∣∣∣ p
p−1

+
∣∣F ∗∣∣ 2p

p−1

∣∣∣∂G
∂w

∣∣∣ p
p−1
)

6 C′g

(
|F ∗|p +

∣∣∣ ∂G
∂Fiα

∣∣∣ p
p−1

+
∣∣∣ ∂G
∂Zkγ

∣∣∣ p
p−2

+
∣∣∣∂G
∂w

∣∣∣ p
p−3
)

6 C′′g

(
|F ∗|p + |F ◦|p + |Z◦|2 + |w◦|2 + 1

)
(35)

where p ∈ [6,∞) and p′ = p
p−1

. Hence (H2), (P4)-(P5), (23)1 and Lemmas
1,2 along with (32)1 imply

div
(
vigi(ξ, f̃)

)
= vi∂tVi +∇vigi(ξ, f̃)

div
(
V̄igi(ξ, f̃)

)
= V̄i∂tVi +∇V̄igi (ξ, f̃)

div
(
vigi(Ξ̄, f̃)

)
= viΦ

A
,iα(f̃) ∂α(G,A(Ξ̄)) +∇vigi(Ξ̄, f̃)

div
(
V̄igi(Ξ̄, f̃)

)
= V̄iΦ

A
,iα(f̃) ∂α(G,A(Ξ̄)) +∇V̄igi(Ξ̄, f̃).

(36)
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Similarly, by (P4), Lemma 1, (32)2 and (34) we have the identity

∂tΞA(t) = ΦA,iα(f̃) ∂αvi. (37)

Thus, using (17), (36)1 and (37), we compute

∂t
(
η(Θ)

)
= Vi∂tVi +G,A(Ξ)∂tΞA

= (Vi − vi)∂tVi + (G,A(Ξ)−G,A(ξ))∂tΞA + div
(
vigi(ξ, f̃)

)
=

1

h

∞∑
j=1

X j(t)
(
∇η(Θ)−∇η(θ)

)
δΘj + div

(
vigi(ξ, f̃)

)
.

Furthermore, by (36)2 we have

∂t
(
V̄i(Vi − V̄i)

)
= ∂tV̄i(Vi − V̄i) + V̄i∂tVi − V̄i ∂tV̄i
= ∂tV̄i(Vi − V̄i) + div

(
V̄igi(ξ, f̃)

)
−∇V̄igi(ξ, f̃)− 1

2
∂tV̄

2

while using (37) we obtain

∂t(G,A(Ξ̄)(Ξ− Ξ̄)A) = ∂t(G,A(Ξ̄))(Ξ− Ξ̄)A +G,A(Ξ̄)∂tΞA − ∂t(G(Ξ̄))

= ∂t(G,A(Ξ̄))(Ξ− Ξ̄)A +∇vigi(Ξ̄, f̃)− ∂t(G(Ξ̄)).

Next, notice that by (10) and (26) we have

qr = vigi(ξ, f̃)− V̄igi(ξ, f̃)− vigi(Ξ̄, f̃) + V̄igi(Ξ̄, f̃). (38)

Hence by (17), (25), (29), (36) and the last four identities we obtain

∂ηr − div qr = − 1

h

∞∑
j=1

X j(t)Dj + J (39)

where
J :=− div

(
V̄igi(Ξ̄, f̃)

)
+∇V̄igi(ξ, f̃)

+ div
(
vigi(Ξ̄, f̃)

)
−∇vigi(Ξ̄, f̃)

− ∂tV̄i(Vi − V̄i)− ∂t(G,A(Ξ̄))(Ξ− Ξ̄)A.

Consider now the term J . From (33)-(34) and Lemma 1 it follows that

∂tV̄i = ΦA,iα(F̄ )∂α(G,A(Ξ̄))

∂t(G,A(Ξ̄)) = G,AB(Ξ̄)ΦB,iα(F̄ )∂αV̄i.

Then, (36)3,4 along with the last two identities and the fact that G,AB =
G,BA implies

J = ∂αV̄i
(
giα(ξ, f̃)− giα(Ξ̄, f̃)

)
+ ∂α(G,A(Ξ̄))

(
ΦA,iα(f̃)(vi − V̄i)− ΦA,iα(F̄ )(Vi − V̄i)

)
−G,AB(Ξ̄)(Ξ− Ξ̄)AΦB,iα(F̄ ) ∂αV̄i

= ∂αV̄i
(
giα(ξ, f̃)− giα(Ξ̄, f̃)− giα(Ξ, F̄ ) + giα(Ξ̄, F̄ )

)
+ ∂α(G,A(Ξ̄))

(
ΦA,iα(f̃)(vi − V̄i)− ΦA,iα(F̄ )(Vi − V̄i)

)
+ ∂αV̄i

(
G,A(Ξ)−G,A(Ξ̄)−G,AB(Ξ̄)(Ξ− Ξ̄)B

)
ΦA,iα(F̄ )

=: J1 + J2 + J3.

(40)
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Using (10) we rearrange the term J1 as follows:

J1 = ∂αV̄i
[(
G,A(ξ)−G,A(Ξ̄)

)
ΦA,iα(f̃)−

(
G,A(Ξ)−G,A(Ξ̄)

)
ΦA,iα(F̄ )

]
= ∂αV̄i

[(
G,A(ξ)−G,A(Ξ)

)(
ΦA,iα(f̃)− ΦA,iα(F )

)
+
(
G,A(ξ)−G,A(Ξ)

)(
ΦA,iα(F )− ΦA,iα(F̄ )

)
+
(
G,A(ξ)−G,A(Ξ)

)
ΦA,iα(F̄ )

+
(
G,A(Ξ)−G,A(Ξ̄)

)(
ΦA,iα(f̃)− ΦA,iα(F )

)
+
(
G,A(Ξ)−G,A(Ξ̄)

)(
ΦA,iα(F )− ΦA,iα(F̄ )

)]
.

(41)
We also modify the term J2 writing it in the following way:

J2 = ∂α(G,A(Ξ̄))
[
ΦA,iα(f̃)(vi − V̄i)− ΦA,iα(F̄ )(Vi − V̄i)

]
= ∂α(G,A(Ξ̄))

[(
ΦA,iα(F )− ΦA,iα(F̄ )

)(
Vi − V̄i

)
+
(
ΦA,iα(f̃)− ΦA,iα(F )

)(
Vi − V̄i

)
+
(
ΦA,iα(f̃)− ΦA,iα(F )

)(
vi − Vi

)
+
(
ΦA,iα(F )− ΦA,iα(F̄ )

)(
vi − Vi

)
+ ΦA,iα(F̄ )

(
vi − Vi

)]
.

(42)

By (40)-(42) we have J = J1 + J2 + J3 = Q + S. Hence by (39) we get
(27).

4 Proof of the main theorem

The identity (27) is central to our paper. In this section, we estimate each
of its terms and complete the proof via Gronwall’s inequality.

4.1 A function d(·, ·) equivalent to the relative en-
tropy

Definition. Let Θ1 = (V1,Ξ1),Θ2 = (V2,Ξ2) ∈ R22. We set

d(Θ1,Θ2) =
(
1 + |F1|p−2 + |F2|p−2) |F1 − F2|2 + |Θ1 −Θ2|2 (43)

where (F1, Z1, w1) = Ξ1, (F2, Z2, w2) = Ξ2 ∈ R19.

The goal of this section is to show that the relative entropy ηr can be
equivalently represented by the function d(·, ·). Before we establish this
relation, we prove an elementary lemma used in our further calculations:

Lemma 4. Assume q > 1. Then for all u, v ∈ Rn and β̄ ∈ [0, 1]∫ β̄

0

∫ 1

0

(1− β) |u+ α(1− β)(v − u)|q dα dβ > c′β̄
(
|u|q + |v|q

)
(44)

with constant c′ > 0 depending only on q and n.
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Proof. Observe first that∫ 1

0

|u+ α(v − u)| dα > c̄ (|u|+ |v|) , ∀u, v ∈ Rn (45)

with c̄ = 1
4
√
n

. Then, applying Jensen’s inequality and using (45), we get∫ β̄

0

∫ 1

0

(1− β)
∣∣u+ α(1− β)(v − u)

∣∣qdα dβ
>
∫ β̄

0

(1− β)

(∫ 1

0

∣∣u+ α
(
(1− β)v + βu− u

)∣∣ dα)qdβ
> c̄q

∫ β̄

0

(1− β)
(
|u|+ |(1− β)v + βu|

)q
dβ

>
c̄q

2

(
|u|q + |v|q

) ∫ β̄

0

(1− β)q+1 dβ.

Since q > 1 and (1− β̄) ∈ [0, 1], we have∫ β̄

0

(1− β)q+1dβ =
1− (1− β̄)q+2

q + 2
>

β̄

q + 2
.

Combining the last two inequalities we obtain (44).

Lemma 5 (ηr equivalence). There exist constants µ, µ′ > 0 such that

µd(Θ1,Θ2) 6 ηr(Θ1,Θ2) 6 µ′d(Θ1,Θ2) (46)

for every Θ1 = (V1,Ξ1),Θ2 = (V2,Ξ2) ∈ R22.

Proof. Notice that

ηr(Θ1,Θ2) = η(Θ1)− η(Θ2)−∇η(Θ2)(Θ1 −Θ2)

=

∫ 1

0

∫ 1

0

s(Θ1 −Θ2)T
(
∇2η(Θ̂)

)
(Θ1 −Θ2) ds dτ.

(47)

where

Θ̂ = (V̂ , Ξ̂) = (V̂ , F̂ , Ẑ, ŵ) := Θ2 + τs(Θ1 −Θ2), τ, s ∈ [0, 1].

Observe next that

∇ΞG =
[
∇FH 0 0

]
+∇ΞR (48)

and therefore by (17)

(Θ1 −Θ2)T∇2η(Θ̂)(Θ1 −Θ2)

= |V1 − V2|2 + (Ξ1 − Ξ2)T∇2R(Ξ̂)(Ξ1 − Ξ2)

+ (F1 − F2)T∇2H(F̂ )(F1 − F2).

(49)
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Then (H1), (47) and (49) imply

1
2
|V1 − V2|2 + γ

2
|Ξ1 − Ξ2|2 + κ |F1 − F2|2

∫ 1

0

∫ 1

0

s|F̂ |p−2ds dτ

6 ηr(Θ1,Θ2) 6

1
2
|V1 − V2|2 + γ′

2
|Ξ1 − Ξ2|2 + κ′ |F1 − F2|2

∫ 1

0

∫ 1

0

s|F̂ |p−2ds dτ.

(50)

We now consider the integral term in (50). Recall that F̂ = F2 + τs(F1−
F2). Then, estimating from above, we get∫ 1

0

∫ 1

0

s|F̂ |p−2ds dτ 6 2p−3 (|F1|p−2 + |F2|p−2)
while for the estimate from below we use Lemma 4 (with s = 1 − β and
β̄ = 1) and obtain∫ 1

0

∫ 1

0

s|F̂ |p−2ds dτ > c′
(
|F1|p−2 + |F2|p−2) .

Combining (50) with the two last inequalities we obtain (46).

Observe that the smoothness of Θ̄ implies that ∃M = M(T ) > 0 such
that

M > |Θ̄|+ |∇xΘ̄|+ |∂tΘ̄|, (x, t) ∈ T3 × [0, T ]. (51)

Lemma 6 (E equivalence). ηr(Θ, Θ̄), d(Θ, Θ̄) ∈ L∞
(
[0, T ];L1

)
µ E(t) 6

∫
T3

ηr
(
Θ(x, t), Θ̄(x, t)

)
dx 6 µ′E(t), ∀t ∈ [0, T ]

where

E(t) :=

∫
T3

d
(
Θ(x, t), Θ̄(x, t)

)
dx.

Proof. Fix t ∈ [0, T ]. Then ∃j > 1 s.t. t ∈ Ij . Hence (22), (43), (51) and
(H2) imply for p ∈ [6,∞)

d(Θ(·, t), Θ̄(·, t)) 6 C
(

1 + |F |p + |Z|2 + |w|2 + |V |2
)

6 C
(

1 +G(Ξj−1) +G(Ξj) + |vj−1|2 + |vj |2
) (52)

with C = C(M) > 0 independent of h, j and t. Hence (21) and (52) imply∫
T3

d(Θ(·, t), Θ̄(·, t)) dx 6 C′(1 + E0), ∀t ∈ [0, T ] (53)

for some C′ = C′(M) > 0. Then (46) and (53) imply the lemma.
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4.2 Estimate for the term Q on t ∈ [0, T ]

Lemma 7 (Q bound). There exists λ = λ(M) > 0 such that

|Q(x, t)| 6 λ d(Θ, Θ̄), (x, t) ∈ T3 × [0, T ] (54)

where the term Q is defined by (28).

Proof. Let C = C(M) > 0 be a generic constant. Notice that ∀F1, F2 ∈
M3×3

∣∣ΦA,iα(F1)− ΦA,iα(F2)
∣∣ 6


0, A = 1, . . . , 9

|F1 − F2|, A = 10, . . . , 18

3
(
|F1|+ |F2|

)
|F1 − F2|, A = 19

(55)
and hence

|ΦA,iα(F )− ΦA,iα(F̄ )| 6 C (1 + |F |)
∣∣F − F̄ ∣∣ , A = 1 . . . 19. (56)

Then, using (51) and (56) we estimate the first term of Q:∣∣∂α(G,A(Ξ̄))(ΦA,iα(F )− ΦA,iα(F̄ ))(Vi − V̄i)
∣∣

6 C
(
(1 + |F |2)|F − F̄ |2 + |V − V̄ |2

)
.

(57)

Observe now that (48) and (55)1 imply for all Ξ1,Ξ2 ∈ R22, F3, F4 ∈
R9

(G,A(Ξ1)−G,A(Ξ2))(ΦA,iα(F3)− ΦA,iα(F4))

= (R,A(Ξ1)−R,A(Ξ2))(ΦA,iα(F3)− ΦA,iα(F4)).
(58)

Thus, by (H1), (56) and (58) we obtain the estimate for the second term:∣∣∂αV̄i(G,A(Ξ)−G,A(Ξ̄))(ΦA,iα(F )− ΦA,iα(F̄ ))
∣∣

6 C
(
|Ξ− Ξ̄|2 + (1 + |F |2)|F − F̄ |2

)
.

(59)

Finally, we define for each A = 1, . . . , 19

JA := G,A(Ξ)−G,A(Ξ̄)−G,AB(Ξ̄)
(
Ξ− Ξ̄

)
B

=

∫ 1

0

∫ 1

0

s(Ξ− Ξ̄)T∇2G,A(Ξ̂)(Ξ− Ξ̄) ds dτ
(60)

where

Ξ̂ = (F̂ , Ẑ, ŵ) := Ξ̄ + τs(Ξ− Ξ̄), τ, s ∈ [0, 1].

By (9) and (H5) we have for each A = 1, . . . , 19∣∣(Ξ− Ξ̄)T∇2G,A(Ξ̂)(Ξ− Ξ̄)
∣∣ 6 C

(
|F − F̄ |2|F̂ |p−3 + |Ξ− Ξ̄|2

)
. (61)

Then by (51) and (60)-(61) we obtain the estimate for the third term:

|∂αV̄i ΦA,iα(F̄ ) JA|

6 C
(
|Ξ− Ξ̄|2 + |F − F̄ |2

∫ 1

0

∫ 1

0

|F̄ + τs(F − F̄ )|p−3ds dτ
)

6 C
(
|Ξ− Ξ̄|2 + |F − F̄ |2(1 + |F |p−3)

)
.

(62)
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Thus by (43), (57), (59) and (62) we conclude for p ∈ [6,∞)

|Q(x, t)| 6 C
(
|Θ− Θ̄|2 + (1 + |F |p−2)|F − F̄ |2

)
6 C d(Θ, Θ̄).

4.3 Estimates for the terms Dj and S on t ∈ I ′j ⊂
[0, T ]

In this section, we consider j > 1 such that (j−1)h < T and estimate the
dissipative and error terms for t ∈ I ′j where

I ′j := Ij
⋂

[0, T ] = [(j − 1)h, jh)
⋂

[0, T ].

Lemma 8 (Dj bound). Let Dj be the term defined by (29). Then

Dj ∈ L∞
(
I ′j ;L1(T3)

)
(63)

and ∃CD > 0 independent of h, j such that ∀τ ∈ Ī ′j := [(j−1)h, jh]
⋂

[0, T ]∫ τ

(j−1)h

∫
T3

(
1

h
Dj

)
dx dt

> a(τ)CD

∫
T3

|δΘj |2 +
(
|F j−1|p−2 + |F j |p−2)|δF j |2 dx > 0

(64)
with

a(τ) :=
τ − h(j − 1)

h
∈ [0, 1], τ ∈ Ī ′j . (65)

Proof. By (H1), (17) and the definition of Dj we have for t ∈ I ′j

Dj = (v − V ) δvj +
(
∇H(f)−∇H(F )

)
δF j +

(
∇R(ξ)−∇R(Ξ)

)
δΞj .

(66)
Consider each of the three terms in (66). Notice that, by (22)-(23), we
have

v(·, t)− V (·, t) = (1− a(t)) δvj

ξ(·, t)− Ξ(·, t) = (1− a(t)) δΞj .
(67)

Using (67) we compute(
v − V

)
δvj = (1− a(t)) |δvj |2(

∇R(ξ)−∇R(Ξ)
)
δΞj = (1− a(t))

∫ 1

0

(δΞj)T∇2R(Ξ̂) (δΞj) ds

(
∇H(f)−∇H(F )

)
δF j = (1− a(t))

∫ 1

0

(δF j)T∇2H(F̂ ) (δF j) ds

(68)

where
Ξ̂ = (F̂ , Ẑ, ŵ) := sξ(·, t) + (1− s)Ξ(·, t), s ∈ [0, 1].

Then (H1), (66) and (68) together with the fact that (1− a(t)) ∈ [0, 1]
imply∣∣∣Dj(·, t)

∣∣∣ 6 (|δvj |2 + γ′|δΞj |2 + κ′|δF j |2
∫ 1

0

|F̂ (s, t)|p−2ds

)
. (69)
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Consider now the two latter terms in (69). Recalling that F̂ = sf−(1−s)F
and using (H2) together with (22)-(23) we obtain

γ′|δΞj |2 + κ′|δF j |2
∫ 1

0

|F̂ (s, t)|p−2ds

6 C
(

1 + |F j−1|p + |F j |p + |Zj−1|2 + |Zj |2 + |wj−1|2 + |wj |
)

for some C > 0 independent of h, j and t. Thus, combining the last
inequality with (H2), the growth estimate (21) and (69), we conclude∫

T3

∣∣∣Dj(x, t)
∣∣∣ dx 6 ν′

(
1 + E0

)
, ∀t ∈ I ′j (70)

for some ν′ > 0 independent of h, j and t. This proves (63).

Let us now estimate Dj from below. By (66), (68) and (H1) we obtain

Dj(·, t) > ν (1− a(t))
(
|δΘj |2 + |δF j |2

∫ 1

0

|F̂ (s, t)|p−2ds
)
> 0 (71)

for ν = min(1, γ, κ) > 0. Notice that

F̂ (s, t) = sf(t) + (1− s)F (t) = F j + (1− s)(1− a(t))(F j−1 − F j).

Then, by making use of Lemma 4 we obtain for τ ∈ Ī ′j∫ τ

(j−1)h

(
(1− a(t)) |δF j |2

∫ 1

0

|F̂ (s, t)|p−2ds
)
dt

= h|δF j |2
∫ a(τ)

0

∫ 1

0

(1− β)|F j + α(1− β)(F j−1 − F j)|p−2dα dβ

> h a(τ) c′
(
|F j−1|p−2 + |F j |p−2)|δF j |2

where we used the change of variables α = 1− s and β = a(t). Similarly,
we get∫ τ

(j−1)h

(1− a(t)) |δΘj |2 dt = h |δΘj |2
∫ a(τ)

0

(1− β) dβ >
h a(τ)

2
|δΘj |2.

Then (71) and the last two estimates imply (64) for CD = min(νc′, ν
2
) >

0.

Lemma 9 (S bound). Let S be the term defined by (30). Then

S ∈ L∞
(
I ′j ;L1(T3)

)
(72)

and ∃CS > 0 independent of h, j such that for any ε > 0 and all τ ∈ Ī ′j∫ τ

(j−1)h

∫
T3

|S(x, t)| dx dt

6 CS

[
a(τ)(h+ ε)

∫
T3

|δΘj |2 + (|F j−1|p−2 + |F j |p−2)|δF j |2 dx

+
a(τ)h2

ε
(3 + 2E0) +

∫ τ

(j−1)h

∫
T3

d(Θ, Θ̄) dx dt

] (73)

with a(τ) defined by (65).
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Proof. As before, we let C = C(M) > 0 be a generic constant and remind
the reader that all estimates are done for t ∈ I ′j .

Observe that (22)2, (23)3 and (65) imply

F (·, t)− f̃(·, t) = a(t)δF j .

Hence by (22)2, (23)3, (55), (65) and the identity above we get the esti-
mate ∣∣ΦA,iα(f̃)− ΦA,iα(F )

∣∣ 6 C
(
1 + |f̃ |+ |F |

)
|F − f̃ |

6 C
(

1 + |F j−1|+ |F j |
)
|δF j |.

(74)

Thus (56), (65), (67)1, (74) and the Young’s inequality imply∣∣ΦA,iα(F̄ )(vi − Vi)
∣∣

+
∣∣(ΦA,iα(F )− ΦA,iα(F̄ ))(vi − Vi)

∣∣
+
∣∣(ΦA,iα(f̃)− ΦA,iα(F ))(vi − Vi)

∣∣
+
∣∣(ΦA,iα(f̃)− ΦA,iα(F ))(Vi − V̄i)

∣∣
6 C

(
|δvj |+ (1 + |F |2)|F − F̄ |2 + |δvj |2

+ (1 + |F j−1|2 + |F j |2)|δF j |2 + |V − V̄ |2
)
.

(75)

We also notice that for all F1, F2 ∈M3×3

H,iα(F1)−H,iα(F2) =

∫ 1

0

∂2H

∂Fiα∂Flm

(
sF1 + (1− s)F2

)
(F1 − F2)lm ds.

Hence (H1), (H5), (65), (67)2 and the identity above imply∣∣ΦA,iα(F̄ ) (G,A(ξ)−G,A(Ξ))
∣∣

6 C
(
|∇H(f)−∇H(F )|+ |∇R(ξ)−∇R(Ξ)|

)
6 C

(
|f − F |

∫ 1

0

|sf + (1− s)F |p−2ds+ |ξ − Ξ|
)

6 C
(
(|F j−1|p−2 + |F j |p−2)|δF j |+ |δΞj |

)
.

(76)

Next, by (H1), (56), (58), (65), (67)2 and (74) we obtain∣∣(G,A(ξ)−G,A(Ξ))(ΦA,iα(f̃)− ΦA,iα(F ))
∣∣

+
∣∣(G,A(ξ)−G,A(Ξ))(ΦA,iα(F )− ΦA,iα(F̄ ))

∣∣
+
∣∣(G,A(Ξ)−G,A(Ξ̄))(ΦA,iα(f̃)− ΦA,iα(F ))

∣∣
6 C

(
|δΞj |2 + (1 + |F j−1|2 + |F j |2)|δF j |2

+ (1 + |F |2)|F − F̄ |2 + |Ξ− Ξ̄|2
)
.

(77)

Finally, (30), (51), and the estimates (75)-(77) imply for p ∈ [6,∞)

|S(·, t)| 6 CS

[
(|F j−1|p−2 + |F j |p−2)|δF j |2 + |δΘj |2

+ (|F j−1|p−2 + |F j |p−2)|δF j |+ |δΘj |+ d(Θ, Θ̄)

] (78)
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for some CS > 0 independent of h, j and t. Then, by (21) and (52)
we conclude that the right hand side of (78) is in L∞

(
I ′j ;L1(T3)

)
which

proves (72).

We now pick any ε > 0. Then, employing the Young’s inequality, we
obtain

(|F j−1|p−2 + |F j |p−2)|δF j | 6 h

ε

(
|F j−1|p−2 + |F j |p−2

)
+
ε

h

(
|F j−1|p−2 + |F j |p−2

)
|δF j |2

and, similarly, |δΘj | 6 h
ε

+ ε
h
|δΘj |2. Thus (78) and the last two estimates

imply

|S(·, t)| 6 CS
[(

1 +
ε

h

)(
|δΘj |2 + (|F j−1|p−2 + |F j |p−2)|δF j |2

)
+
h

ε

(
1 + |F j−1|p−2 + |F j |p−2)+ d(Θ, Θ̄)

]
.

(79)

To this end, we integrate (78) and use (H2) along with (21) to get (72).

4.4 Conclusion of the proof via the Gronwall’s
inequality

We now estimate the left hand side of the relative entropy identity (27):

Lemma 10 (LHS estimate). Let ηr, qr be the relative entropy and
relative entropy flux, respectively, defined by (25) and (26). Then(

∂tη
r − div qr

)
∈ L∞

(
[0, T ], L1(T3)

)
(80)

and ∃ε̄ > 0 such that for all h ∈ (0, ε̄) and τ ∈ [0, T ]∫ τ

0

∫
T3

(
∂t η

r − div qr
)
dx dt 6 CI

(
τh+

∫ τ

0

∫
T3

d(Θ, Θ̄) dx dt
)
. (81)

for some constant CI = CI(M,E0, ε̄) > 0.

Proof. Lemma 5, (54), (63), and (72) imply that the right hand side of
the relative entropy identity (27) is in L∞

(
[0, T ];L1(T3)

)
. This proves

(80).

Notice that the constants CD and CS (that appear in Lemmas 8 and
9, respectively) are independent of h, j. Then set ε̄ := CD/(2CS). Take
now h ∈ (0, ε̄) and τ ∈ [0, T ]. Using Lemmas 7, 8 and 9 (with ε = ε̄) along
with the fact that −CD + CS(h+ ε̄) 6 0 we get∫ τ

0

∫
T3

(
− 1

h

∞∑
j=1

X j(t)Dj + |S|+ |Q|
)
dxdt 6 CI

(
τh+

∫ τ

0

∫
T3

d(Θ, Θ̄)dxdt
)

with CI := 3 max(CS(1 + E0)/ε̄, CS + λ) > 0. Hence by (27) and the
estimate above we obtain (81).
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Observe that (P4)-(P5), (26), (31), (35)-(36) and (38) imply

div qr ∈ L∞
(
[0, T ];L1(T3)

)
(82)

and hence by (80)
∂tη

r ∈ L∞
(
[0, T ];L1(T3)

)
. (83)

Take now arbitrary h ∈ (0, ε̄) and τ ∈ [0, T ]. Due to periodic boundary
conditions (by the density argument) we have

∫
T3

(
div qr(x, s)

)
dx = 0 for

a.e. s ∈ [0, T ] and hence ∫ τ

0

∫
T3

div qr dx dt = 0.

Finally, by construction for each fixed x̄ ∈ T3 the function ηr(x̄, t) :
[0, T ] → R is absolutely continuous with the weak derivative ∂tη

r(x̄, t).
Then, by (83) and the Fubini’s theorem we have∫ τ

0

∫
T3

∂tη
rdx dt =

∫
T3

[∫ τ

0

∂tη
r(x, t) dτ

]
dx =

∫
T3

(
ηr(x, τ)−ηr(x, 0)

)
dx.

Thus by Lemma 6, (80)-(83) and the two identities above we obtain

E(τ) 6 C̄
(
E(0) +

∫ τ

0

E(t) dt+ h
)

(84)

with C̄ := T
µ

max(CI , µ
′) independent of τ , h. Since τ ∈ [0, T ] is arbitrary,

by (84) and the Gronwall’s inequality we conclude

E(τ) 6 C̄
(
E(0) + h

)
eC̄T , ∀τ ∈ [0, T ].

In this case, if E(h)(0) → 0 as h ↓ 0, then supτ∈[0,T ]

(
E(h)(τ)

)
→ 0, as

h ↓ 0.
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