Department of Mathematics& Applied Mathematics

University of Crete, Heraklion

P.O. Box 2208

GR 710 03 Heraklion, CreteGreece




Institute of Applied and Computational Mathematics (IACM)

Foundation for Research & Technology-Hellas (FORTH)

Nikolaou Plastira 100, Vassilika Vouton,

GR 700 13 Heraklion, Crete


Contact  info:

tel. Dept.Appl. Math., Univ. Crete: +30 2810 393708

tel. IACM-FORTH: +30 2810 391777

fax +30 2810 393701 

e-mail: makrakg@iacm.forth.gr




Curriculum vitae (CV)

Research interests

Wave propagation
 in mechanics, acoustics and geophysics

Inverse scattering

Asymptotic techniques
 for partial differential equations

Selection of publications


1. G.A. Athanassoulis and G.N. Makrakis , 

"A function-theoretic approach to a two-dimensional wave-body interaction problem",

Applicable Analysis, Vol. 54, No. 3-4, pp. 283-303, 1994.


2. T. Katsaounis, G.T. Kossioris and G.N. Makrakis, 

"Computation of high-frequency fields near caustics",

Mathematical Methods and Models in Applied Sciences, Vol. 11, No. 2, pp. 1-30, 2001.


3. M. Ikehata, G.N. Makrakis and G. Nakamura,

"Inverse boundary value problem in ocean acoustics",

Mathematical Methods in Applied Sciences, Vol. 24, pp. 1-8, 2001.


4. S. Filippas and G.N. Makrakis,

"Semiclassical Wigner function and geometrical optics",

SIAM MultiscaleModeling & Simulation, Vol. 1, No.4, pp.674-710, 2004.

5. S. Yu. Dobrokhotov, G. N. Makrakis, V. E. Nazaikinskii and T. Ya. Tudorovskii,

"New formulas for Maslov’s canonical operator in a neighborhood of focal points

and caustics in 2D semiclassical asymptotics",

Theoretical and Mathematical Physics, Vol. 177, No. 3, pp. 1579-1605, 2013.

6. S. Yu. Dobrokhotov, G.N. Makrakis and V.E.Nazaiksinskii,

"Maslov’s Canonical Operator, Hörmander’s Formula,

and Localization of Berry–Balazs’ Solution in the Theory of Wave Beams",

Theoretical and Mathematical Physics, Vol. 180, No. 3, pp. 162-182, 2014.


1. E.K. Kalligiannaki and G.N. Makrakis, Perturbation solutions of the semiclassical Wigner equation

2. P. D. Karageorge and G.N. Makrakis, Asymptotic solutions of the phase space Schrodinger equation: Anisotropic Gaussian approximation

3. G.N. Makrakis, Formal asymptotic expansion of the Faddeev-Green function in unbounded domains


Spring semester 2016: Undergraduate course on Probability theory (Θεωρία Πιθανοτήτων)


Archimedes Center for Modeling, Analysis and Computation (ACMAC)

Institute of Applied and Computational Mathematics (IACM)