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The Korteweg-de Vries Equation (KdV)

qt − 6qqx + ε2qxxx = 0

• Observation of solitary wave, in a canal in Scotland

and in lab, Scott Russel, 1834

• Formulation, Korteweg and de-Vries, 1895. Also in

earlier paper by Boussinesq.

• Numerical discovery of solitons and their clean in-

teraction and separation by Kruskal and Zabusky,

1965.

• Solution of the KdV through inverse scattering,

Gardner, Greene, Kruskal, Miura, 1967.

• The Lax pair and the theory of integrable systems,

Lax 1968.



The Lax Pair and the integration of KdV

The infinitely many conserved quantities of KdV are

the eigenvalues of a linear operator L = L(t), that

depends on the solution q(x, t) of KdV and undergoes

a unitary transformation U = U(t) as time evolves.

U−1LU = L0

Differentiating with respect to time obtains

U−1UtU
−1LU + U−1LtU + U−1LUt = 0

Multiplying on the left by U , on the right by U−1,

UtU
−1L+ Lt + LUtU

−1 = 0

Letting B = UtU
−1, thus, (Ut = BU, and B is the

infinitesimal generator of the tansformation U)

Lt = −[L,B]

The pair of the operators L, B is the Lax pair.



The Lax pair for KdV and inverse
scattering (ε = 1)

L = −D2 + q

B = −4D3 + 3(Dq + qD)
D = d

dx, q = q(x, t)

The Lax equation Lt = −[L,B] becomes KdV
(all D cancel).

Eigenvalue problem of L. −ψxx + q(x)ψ = λψ

1. extended ψ(x, k) asymptotics (λ = k2, scattering )

T (k)
←−−−
e−ikx q(x)

←−−−
e−ikx +R(k)

−−→
eikx −→ x axis

2. Bound state asymptotics λj = −κ2
j , j = 1,2, · · · , n

‖ψ(x, λj)‖L2 = 1, ψ(x, λj) ∼ cje−κjx, x→ +∞.

By unitarity, λj(t) = λj(0).

Evolution. R(k, t) = R(k,0)e8ik3
, cj(t) = cj(0)e

4κ3
j .

Gelfand, Levitan; Marcenko (1950’s). Recovery of the
potential q through an integral equation.



Dispersive regularization of a KdV

”shock”: Radiation wave.
qt − 6qqx + ε2qxxx = 0 ε = .05

Decay as t→ +∞.

Numerics. Bathi Kasturiarachi



Dispersive regularization of a KdV

”shock”: Multisoliton wave
qt − 6qqx + ε2qxxx = 0 ε = .05

Soliton separation as t→ +∞.

Numerics. Bathi Kasturiarachi



Scaling
qt − 6qqx + ε2qxxx = 0

ε = .05

ε = .025



What if these waveforms were linear?
For example qt + ε2qxxx = 0

Solution typically through a Fourier integral of the type

u(x, t, ε) ∼ ε−
1
2

∫ ∞
−∞

A(k, x, t)e
i
εθ(k,x,t)dk.

• The variables x, t are parameters of the integrand.

• The integral is calculated by the (rigorous) asymp-

totic method of stationary phase / steepest de-

scent in the limit ε→ 0.

• At each x, t and due to phase cancellation, the lead-

ing contributions to the integral arise at the critical

(stationary) points of the phase function θ(k, x, t)

with respect to the spectral variable k.

• Any stationary point k = k∗ is a function of x, t.

• Different contributions at the same x, t, coming

from different stationary points, do not interact,

they merely interfere.



The nonlinear calculation

• As in the linear case, (x, t) are parameters.

• The game is played on the complex z plane, where
λ = z2 is the eigenvalue of the Lax operator L.

• At each value of z, a matrix function m is created
with carefully chosen eigenfunctions of L as entries.

• The matrix m is analytic in the complex z plane,
except on an oriented contour. Such a contour is
determined from the initial scattering data.

• Along the contour, a multiplicative jump occurs,
m+ = m−V .

• The square jump matrix V (z) is determined from
the initial scattering data.

• The core of the calculation is: given the above in-
formation, determine the matrix m. This is known
as a Riemann-Hilbert problem (RHP).

• The RHP is a linear problem.



Challenge of small dispersion.
How can analysis make the phenomena

visible?

The Steepest descent method for RHP



Steepest Descent.
Linear vs. Nonlinear problems

Linear PDE Integrable NL PDE

Fourier Integral Matrix RHP
Contour deformation Contour deformation

Jump matrix factoring
Contour splitting

Large exponent Large exponents
Real exponent → −∞ Jump matrix → Identity
Critical points Critical arcs (bridges)
Goal: Solvable integral Goal: Solvable matrix RHP

Strategy (g-function mechanism): Determine an eikonal

function g(z;x, t), for which contour deformation re-

duces the RHP to a solvable one. The function g

is introduced through the change of matrix variable

m 7→ m̃G where G is diagonal with entries e±ig(z)/ε.

Alternative factorizations of the jump matrix generates

two types of contour arcs.

The function h = h(z;x, t) = 2g − f is a “sister” func-

tion of g. The function f = f(z, x, t) encompasses the

scattering data of the original problem.



Semiclassical limit of the focusing NLS

Goal: Asymptotic evaluation of q(x, t, ε) as ε→ 0.

Collaborators. Alex Tovbis, Xin Zhou, Sergey

Belov, Robbie Buckingham, Andreas Aristotelous

Focusing Cubic Schrödinger Equation (NLS)


iεqt + ε2qxx + 2|q|2q = 0

q(x,0) = A(x)eiS(x)/ε.

Initial data decay as |x| → ∞. Our data:

A(x) = −sech x, S′(x) = −µ tanhx

Integrability of NLS: Zakharov, Shabat, 1971



NLS dispersive breaking, ε→ 0

x-axis is x; y-axis is t; z-axis is |q(x, t)|

Numerics: David Cai, Two breaks observed



NLS dispersive breaking, ε→ 0

Numerics: Andreas Aristotelous

µ = 3 and µ = 2

µ = 1.5 and µ = 1



NLS dispersive breaking, ε→ 0

µ = 0.5 and µ = 0

µ = −0.5 and µ = −1



NLS dispersive breaking, ε→ 0

µ = −1.5 and µ = −2

µ = −3



Sketch of the main theorem
The case of µ > 0.

There exists a breaking curve or nonlinear caustic

t = t0(x), x ∈ R,

• When 0 ≤ t < t0(x), the solution is controled by a

point α0 = α0(x, t) in the upper complex half plane.

q0(x, t, ε) = [Im α0(x, t)] e−2 iε
∫ x

0 Re α0(s,t)ds



• When t0(x) < t < t1(x), the solution is controled by

three points in the upper half plane α0, α2, α4 that

depend on x and t (slow dependence) and define

the radical (Riemann surface)

R(z) =
(∏2

j=0(z − α2j)(z − ᾱ2j)
)1/2

which plays a crucial part in the asymptotic solution

q0(x, t, ε) = Θe
2i
ε Ω1Im (α2 − α0 − α4),

Θ = −
θ(− Ŵ

2πε − u∞+ d)θ(u∞+ d)

θ(− Ŵ
2πε + u∞+ d)θ(−u∞+ d)

.

The quantities in the arguments of θ=Riemann θ-

function are explicit functions of α0, α2, α4. Fast

dependence on x, t through Ŵ/2πε and Ω1/ε.



Early Factorization and Contour Splitting

m+ = m−

(
1 + |r|2 r̄

r 1

)
︸ ︷︷ ︸
jump matrix

= m−

(
1 r̄
0 1

)(
1 0
r 1

)

RH contour: Blue, Soliton condensed poles:

Red

Jump matrix in upper blue half-contour

(
1 0
−r 1

)

µ/2 axis

Real

−µ/2

Jump matrix in lower blue half-contour

(
1 r̄
0 1

)



Factorization-triggered contour splits

JUMP MATRIX:

c: constant
d: decay to identity,

BRIDGES: Bold

α 1α 3

α 5

α 0

α 2

α 4

d

d

d

c c

d d

d

c

d

d
c

c

d
c
d

µ/2

branchpoints αj to be determined



MODEL PROBLEM

α 0

α 1α 3

α 5

α 4

α 2

µ/2

α 0α 4

α 2

α 3

α 5 α 1

µ/2

Branchpoints (α0, α2, α4) and their number


Modulation equations (trnscendental not differential),

Sign conditions.



g-Function Mechanism. Conditions on
h(z)

BRIDGES(
ei(h+−h−)/ε 0

−ei(h++h−)/ε e−i(h+−h−)/ε

)
=

(
a 0
−b a−1

)
=(

1 −ab−1

0 1

)
︸ ︷︷ ︸
→Identity

(
0 b−1

−b 0

)
︸ ︷︷ ︸

constant&bdd

(
1 −a−1b−1

0 1

)
︸ ︷︷ ︸
→Identity

Constancy and Decay Conditions:h+ + h− = Real constant, on the contour

Im h < 0, left and right of the contour



g-Function Mechanism : Conditions on
h(z)

LANDPATHS :

(
ei(h+−h−)/ε 0

−ei(h++h−)/ε e−i(h+−h−)/ε

)
=

(
a 0
−b a−1

)

=

(
1 0

−a−1b 1

)
︸ ︷︷ ︸
→Identity

(
a 0
0 a−1

)
or

(
a 0
0 a−1

)(
1 0
−ab 1

)
︸ ︷︷ ︸
→Identity

Constancy and Decay Conditions:
h+ − h− = Real constant, on the contour

Im h > 0, on the contour



Pictorial interpretation of the conditions
on the phase function h(z;x, t)

Im h is ELEV ATION

Im h > 0 ≡ LAND ; Im h < 0 ≡ WATER

ABOVE RULES PICTORIALLY

THE OPTIMAL RH CONTOUR

CANNOT GO THROUGH WATER

IT MUST BE THE UNION OF

• BRIDGES (main arcs, rigid),

Im h = 0 on BRIDGE and Im h < 0 left and right

• LANDPATHS (complementary arcs, deformable),

Im h > 0.



The scalar Riemann-Hilbert problem and
its solution

BRIDGES

h+ + h− = Real constant, on the contour

Im h < 0, left and right of the contour

LAND

h+ − h− = Real constant, on the contour

Im h > 0, on the contour

• The above real constants are evaluated from the

condition that the function g = (h + f)/2 must be

analytic at infinity

• The above equalities suffice to derive an integral

formula for h′(z) and h(z) given the endpoints and

sequence of bridges.

• The formulae involve the radical√
(z − α0)(z − ᾱ0)(z − α2)(z − ᾱ2)(z − α4)(z − ᾱ4)



Derivation of the branchpoints αj

• Transcendental equations determine the branchpoints

α0, α2, α4 from the condition that near a branch

point α:

h(z) = c1 + c2(z − α)
3
2 + · · ·,

(the coefficient of (z − α)
1
2 equals zero), where c1 ∈

R and c2, · · · are constants. Alternatively, from mo-

ment and integral conditions that apply. There are

multiple solutions, involving different numbers of

endpoints.

• Uniqueness is obtained through sign structures im-

posed by the inequalities.



Cartoon of Prebreak (only α0)

0

T

−µ/2 µ/2

0α

Blue: RH contour,

Full= BRIDGE; Dashed = LANDPATH

Green: Im h = 0



Cartoon of Break

T

0

0

42
α =α

−µ/2 µ/2

α

Blue: RH contour,

Full= BRIDGE; Dashed = LANDPATH

Green: Im h = 0



Cartoon of Postbreak

T

0

α

α

−µ/2 µ/2

α 0

2

4

Blue: RH contour,

Full= BRIDGE; Dashed = LANDPATH

Green: Im h = 0



Cartoon of postbreak continued

0

T

α α α
4

2 0

µ/2−µ/2
Blue: RH

contour,

Full= BRIDGE; Dashed = LANDPATH

Green and brown: Im h = 0



Cartoon of breakdown of method

0

T

α
α

−µ/2 µ/2

0

2

4

α

Blue: RH

contour,

Full= BRIDGE; Dashed = LANDPATH

Green and brown: Im h = 0

Singular breaking curve in space-time: Im h(T ;x, t) = 0

Result: If x > ln 2 and t is large, then Im h(T ) > 0

and the breakown does not happen.



Radicals and Riemann theta functions:

Behavior of sign of Im h at bridge endpoints leads to

radicals R(z):

√
(z − α0)(z − α0) (prebreak)

√
(z − α0)(z − α0)(z − α2)(z − α2)(z − α4)(z − α4)

(postbreak)

Equation for h′ (z is inside Γ which must surround RH

contour).

h′(z) =
R(z)

2πi

∮
Γ

f ′(ζ)

(ζ − z)R(ζ)
dζ,

0

T

α
α

−µ/2 µ/2

0

2

4

α

The part of contour Γ in the upper half-plane.



Long-time branchpoint behavior
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Initial time: 0.4
Final time: 4.0 
Time step: 0.01

α0, α4 approach the real axis at ±µ2 exponentially fast.

The distance of α2 from the real axis goes like t−1/2



Breakdown of method in space time
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Semiclassical Focusing NLS limit on the
line, IVP

• Zakharov, Shabhat: Integration of NLS through a

Lax Pair, 1971

• Satsuma, Yajima: Scattering data for µ = 0, 1975

• Deift, Zhou: Steepest descent for RHPs 1990

• Deift, V., Zhou: g-function mechanism for steepest

descent RHPs

• Miller, Kamvissis: Numerics reveal structure, 1998

• Tovbis, V.: Scattering data for µ > 0, 2000

• Ceniseros, Tian: Numerics, 2002



• Kamvissis, Ken McLaughlin, Miller, Steepest de-
scent analysis of pure soliton case, 2003

• Tovbis, V. , Zhou, Proof of solvability and construc-
tion of the semiclassical focusing NLS limit (global
in time in pure radiation data, past first break for
mixed radiation/soliton data), 2004

• Tovbis, V., Zhou, Long time semiclassical focusing
NLS asymptotics, 2006

• Buckingham, V, Shock problem

• Tovbis, V., Determinant form of modulation equa-
tions, 2008

• Lyng, Miller, Mechanism for higher break (µ = 0),
2007

• Bertola, Tovbis, Analysis of first break, 2013

• Belov, V., Long time behaviour of the second break-
ing curve



Directions/ Connections

• Connection with Orthogonal Polynomials and

Random matrices

• Fundamental role of theta/ tau functions

• Higher NLS Breaks

• Nearly integrable systems

THANK YOU


