Integrable PDE with small dispersion

Stephanos Venakides
 Duke University

Partial Differential Equations in Physics and Material Science Heraklion, Crete 10-16 May 2018

The Korteweg-de Vries Equation (KdV)

$$
q_{t}-6 q q_{x}+\varepsilon^{2} q_{x x x}=0
$$

- Observation of solitary wave, in a canal in Scotland and in lab, Scott Russel, 1834
- Formulation, Korteweg and de-Vries, 1895. Also in earlier paper by Boussinesq.
- Numerical discovery of solitons and their clean interaction and separation by Kruskal and Zabusky, 1965.
- Solution of the KdV through inverse scattering, Gardner, Greene, Kruskal, Miura, 1967.
- The Lax pair and the theory of integrable systems, Lax 1968.

The Lax Pair and the integration of KdV

The infinitely many conserved quantities of KdV are the eigenvalues of a linear operator $L=L(t)$, that depends on the solution $q(x, t)$ of KdV and undergoes a unitary transformation $U=U(t)$ as time evolves.

$$
U^{-1} L U=L_{0}
$$

Differentiating with respect to time obtains

$$
U^{-1} U_{t} U^{-1} L U+U^{-1} L_{t} U+U^{-1} L U_{t}=0
$$

Multiplying on the left by U, on the right by U^{-1},

$$
U_{t} U^{-1} L+L_{t}+L U_{t} U^{-1}=0
$$

Letting $B=U_{t} U^{-1}$, thus, $\left(U_{t}=B U\right.$, and B is the infinitesimal generator of the tansformation U)

$$
L_{t}=-[L, B]
$$

The pair of the operators L, B is the Lax pair.

The Lax pair for KdV and inverse scattering $(\varepsilon=1)$

$$
\left\{\begin{array}{l}
L=-D^{2}+q \\
B=-4 D^{3}+3(D q+q D)
\end{array} \quad D=\frac{d}{d x}, \quad q=q(x, t)\right.
$$

The Lax equation $L_{t}=-[L, B]$ becomes KdV (all D cancel).

Eigenvalue problem of $L . \quad-\psi_{x x}+q(x) \psi=\lambda \psi$

1. extended $\psi(x, k)$ asymptotic ($\lambda=k^{2}$, scattering)

$$
T(k) \overleftarrow{e^{-i k x}} \quad q(x) \quad \overleftrightarrow{e^{-i k x}}+R(k) \overrightarrow{e^{i k x}} \longrightarrow x \text { axis }
$$

2. Bound state asymptotics $\lambda_{j}=-\kappa_{j}^{2}, \quad j=1,2, \cdots, n$

$$
\left\|\psi\left(x, \lambda_{j}\right)\right\|_{L^{2}}=1, \quad \psi\left(x, \lambda_{j}\right) \sim c_{j} e^{-\kappa_{j} x}, \quad x \rightarrow+\infty .
$$

By unitarity, $\lambda_{j}(t)=\lambda_{j}(0)$.

Evolution. $R(k, t)=R(k, 0) e^{8 i k^{3}}, \quad c_{j}(t)=c_{j}(0) e^{4 \kappa_{j}^{3}}$.
Gelfand, Levitan; Marcenko (1950's). Recovery of the potential q through an integral equation.

Dispersive regularization of a KdV

$$
\begin{aligned}
& \text { "shock": Radiation wave. } \\
& q_{t}-6 q q_{x}+\varepsilon^{2} q_{x x x}=0 \quad \varepsilon=.05
\end{aligned}
$$

Decay as $t \rightarrow+\infty$.
Numerics. Bathi Kasturiarachi

Dispersive regularization of a KdV

 "shock": Multisoliton wave $q_{t}-6 q q_{x}+\varepsilon^{2} q_{x x x}=0 \quad \varepsilon=.05$

Soliton separation as $t \rightarrow+\infty$.
Numerics. Bathi Kasturiarachi

Scaling

$$
q_{t}-6 q q_{x}+\varepsilon^{2} q_{x x x}=0
$$

$$
\varepsilon=.025
$$

What if these waveforms were linear? For example $q_{t}+\varepsilon^{2} q_{x x x}=0$

Solution typically through a Fourier integral of the type

$$
u(x, t, \varepsilon) \sim \varepsilon^{-\frac{1}{2}} \int_{-\infty}^{\infty} A(k, x, t) e^{\frac{i}{\theta} \theta(k, x, t)} d k .
$$

- The variables x, t are parameters of the integrand.
- The integral is calculated by the (rigorous) asymptotic method of stationary phase / steepest descent in the limit $\varepsilon \rightarrow 0$.
- At each x, t and due to phase cancellation, the leading contributions to the integral arise at the critical (stationary) points of the phase function $\theta(k, x, t)$ with respect to the spectral variable k.
- Any stationary point $k=k^{*}$ is a function of x, t.
- Different contributions at the same x, t, coming from different stationary points, do not interact, they merely interfere.

The nonlinear calculation

- As in the linear case, (x, t) are parameters.
- The game is played on the complex z plane, where $\lambda=z^{2}$ is the eigenvalue of the Lax operator L.
- At each value of z, a matrix function m is created with carefully chosen eigenfunctions of L as entries.
- The matrix m is analytic in the complex z plane, except on an oriented contour. Such a contour is determined from the initial scattering data.
- Along the contour, a multiplicative jump occurs, $m_{+}=m_{-} V$.
- The square jump matrix $V(z)$ is determined from the initial scattering data.
- The core of the calculation is: given the above information, determine the matrix m. This is known as a Riemann-Hilbert problem (RHP).
- The RHP is a linear problem.

Challenge of small dispersion. How can analysis make the phenomena visible?

The Steepest descent method for RHP

Steepest Descent. Linear vs. Nonlinear problems

Linear PDE	Integrable NL PDE
Fourier Integral	Matrix RHP
Contour deformation	Contour deformation
	Jump matrix factoring
	Contour splitting
Large exponent	Large exponents
Real exponent $\rightarrow-\infty$	Jump matrix \rightarrow Identity
Critical points	Critical arcs (bridges)
Goal: Solvable integral	Goal: Solvable matrix RHP

Strategy (g-function mechanism): Determine an eikonal function $g(z ; x, t)$, for which contour deformation reduces the RHP to a solvable one. The function g is introduced through the change of matrix variable $m \mapsto \tilde{m} G$ where G is diagonal with entries $e^{ \pm i g(z) / \varepsilon}$.

Alternative factorizations of the jump matrix generates two types of contour arcs.

The function $h=h(z ; x, t)=2 g-f$ is a "sister" function of g. The function $f=f(z, x, t)$ encompasses the scattering data of the original problem.

Semiclassical limit of the focusing NLS

Goal: Asymptotic evaluation of $q(x, t, \varepsilon)$ as $\varepsilon \rightarrow 0$.

Collaborators. Alex Tovbis, Xin Zhou, Sergey Belov, Robbie Buckingham, Andreas Aristotelous

Focusing Cubic Schrödinger Equation (NLS)

$$
\left\{\begin{array}{l}
i \varepsilon q_{t}+\varepsilon^{2} q_{x x}+2|q|^{2} q=0 \\
q(x, 0)=A(x) e^{i S(x) / \varepsilon}
\end{array}\right.
$$

Initial data decay as $|x| \rightarrow \infty$. Our data:

$$
A(x)=-\operatorname{sech} x, \quad S^{\prime}(x)=-\mu \tanh x
$$

Integrability of NLS: Zakharov, Shabat, 1971

NLS dispersive breaking, $\varepsilon \rightarrow 0$

$$
\mathrm{x} \text {-axis is } x ; \mathrm{y} \text {-axis is } t ; \quad \mathrm{z} \text {-axis is }|q(x, t)|
$$

Numerics: David Cai,
Two breaks observed

NLS dispersive breaking, $\varepsilon \rightarrow 0$

Numerics: Andreas Aristotelous

NLS dispersive breaking, $\varepsilon \rightarrow 0$

$$
\mu=-0.5 \text { and } \mu=-1
$$

NLS dispersive breaking, $\varepsilon \rightarrow 0$

$$
\mu=-1.5 \text { and } \mu=-2
$$

$$
\mu=-3
$$

Sketch of the main theorem The case of $\mu>0$.

There exists a breaking curve or nonlinear caustic

$$
t=t_{0}(x), x \in \mathbb{R}
$$

- When $0 \leq t<t_{0}(x)$, the solution is controled by a point $\alpha_{0}=\alpha_{0}(x, t)$ in the upper complex half plane.

$$
q_{0}(x, t, \varepsilon)=\left[\operatorname{Im} \alpha_{0}(x, t)\right] e^{-2 \frac{i}{\varepsilon} \int_{0}^{x} \operatorname{Re} \alpha_{0}(s, t) d s}
$$

- When $t_{0}(x)<t<t_{1}(x)$, the solution is controled by three points in the upper half plane $\alpha_{0}, \alpha_{2}, \alpha_{4}$ that depend on x and t (slow dependence) and define the radical (Riemann surface)

$$
R(z)=\left(\Pi_{j=0}^{2}\left(z-\alpha_{2 j}\right)\left(z-\bar{\alpha}_{2 j}\right)\right)^{1 / 2}
$$

which plays a crucial part in the asymptotic solution

$$
\begin{aligned}
& q_{0}(x, t, \varepsilon)=\Theta e^{\frac{2 i}{\varepsilon} \Omega_{1}} \operatorname{Im}\left(\alpha_{2}-\alpha_{0}-\alpha_{4}\right) \\
& \Theta=-\frac{\theta\left(-\frac{\widehat{W}}{2 \pi \varepsilon}-u_{\infty}+d\right) \theta\left(u_{\infty}+d\right)}{\theta\left(-\frac{\tilde{W}}{2 \pi \varepsilon}+u_{\infty}+d\right) \theta\left(-u_{\infty}+d\right)}
\end{aligned}
$$

The quantities in the arguments of $\theta=$ Riemann θ function are explicit functions of $\alpha_{0}, \alpha_{2}, \alpha_{4}$. Fast dependence on x, t through $\hat{W} / 2 \pi \varepsilon$ and Ω_{1} / ε.

Early Factorization and Contour Splitting

$$
m_{+}=m_{-} \underbrace{\left(\begin{array}{cc}
1+|r|^{2} & \bar{r} \\
r & 1
\end{array}\right)}_{\text {jump matrix }}=m_{-}\left(\begin{array}{ll}
1 & \bar{r} \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
r & 1
\end{array}\right)
$$

RH contour: Blue, Soliton condensed poles: Red

Jump matrix in upper blue half-contour $\left(\begin{array}{cc}1 & 0 \\ -r & 1\end{array}\right)$

Jump matrix in lower blue half-contour $\left(\begin{array}{ll}1 & \bar{r} \\ 0 & 1\end{array}\right)$

Factorization-triggered contour splits

$$
\text { JUMP MATRIX: }\left\{\begin{array}{l}
\text { c: constant } \\
\text { d: decay to identity, }
\end{array}\right.
$$

BRIDGES: Bold
branchpoints α_{j} to be determined

MODEL PROBLEM

Branchpoints ($\alpha_{0}, \alpha_{2}, \alpha_{4}$) and their number

Sign conditions.

g-Function Mechanism. Conditions on

$$
h(z)
$$

$$
\begin{gathered}
\text { BRIDGES } \\
\left(\begin{array}{cc}
\mathrm{e}^{i\left(h_{+}-h_{-}\right) / \varepsilon} & 0 \\
-\mathrm{e}^{i\left(h_{+}+h_{-}\right) / \varepsilon} & \mathrm{e}^{-i\left(h_{+}^{-} h_{-}\right) / \varepsilon}
\end{array}\right)=\left(\begin{array}{cc}
a & 0 \\
-b & a^{-1}
\end{array}\right) \\
\underbrace{\left(\begin{array}{cc}
1 & -a b^{-1} \\
0 & 1
\end{array}\right)}_{\rightarrow \text { Identity }} \underbrace{\left(\begin{array}{cc}
0 & b^{-1} \\
-b & 0
\end{array}\right)}_{\text {constant\&bdd }} \underbrace{\left(\begin{array}{cc}
1 & -a^{-1} b^{-1} \\
0 & 1
\end{array}\right)}_{\rightarrow \text { Identity }}
\end{gathered}
$$

Constancy and Decay Conditions:
$\left\{h_{+}+h_{-}=\right.$Real constant, on the contour $\operatorname{Im} h<0$, left and right of the contour
g-Function Mechanism : Conditions on $h(z)$

> LANDPATHS :
> $\left(\begin{array}{cc}\mathrm{e}^{i\left(h_{+}-h_{-}\right) / \varepsilon} & 0 \\ -\mathrm{e}^{i\left(h_{+}+h_{-}\right) / \varepsilon} & \mathrm{e}^{-i\left(h_{+}-h_{-}\right) / \varepsilon}\end{array}\right)=\left(\begin{array}{cc}a & 0 \\ -b & a^{-1}\end{array}\right)$
> $=\underbrace{\left(\begin{array}{cc}1 & 0 \\ -a^{-1} b & 1\end{array}\right)}_{\rightarrow \text { Identity }}\left(\begin{array}{cc}a & 0 \\ 0 & a^{-1}\end{array}\right)$ or $\left(\begin{array}{cc}a & 0 \\ 0 & a^{-1}\end{array}\right) \underbrace{\left(\begin{array}{cc}1 & 0 \\ -a b & 1\end{array}\right)}_{\rightarrow \text { Identity }}$

Constancy and Decay Conditions:
$\left\{\begin{array}{l}h_{+}-h_{-}=\text {Real constant, on the contour } \\ \operatorname{Im} h>0, \text { on the contour }\end{array}\right.$

Pictorial interpretation of the conditions on the phase function $h(z ; x, t)$

Im h is $E L E V A T I O N$

$$
\operatorname{Im} h>0 \equiv L A N D ; \quad \operatorname{Im} h<0 \equiv W A T E R
$$

ABOVE RULES PICTORIALLY

$$
\begin{gathered}
\text { THE OPTIMAL RH CONTOUR } \\
\text { CANNOT GO THROUGH WATER } \\
\text { IT MUST BE THE UNION OF }
\end{gathered}
$$

- BRIDGES (main arcs, rigid), Im $h=0$ on $B R I D G E$ and Im $h<0$ left and right
- LANDPATHS (complementary arcs, deformable), $\operatorname{Im} h>0$.

The scalar Riemann-Hilbert problem and its solution

BRIDGES $\left\{\begin{array}{l}h_{+}+h_{-}=\text {Real constant, on the contour } \\ \operatorname{Im} h<0, \text { left and right of the contour }\end{array}\right.$
$\operatorname{LAND}\left\{\begin{array}{l}h_{+}-h_{-}=\text {Real constant, on the contour } \\ \operatorname{Im} h>0, \text { on the contour }\end{array}\right.$

- The above real constants are evaluated from the condition that the function $g=(h+f) / 2$ must be analytic at infinity
- The above equalities suffice to derive an integral formula for $h^{\prime}(z)$ and $h(z)$ given the endpoints and sequence of bridges.
- The formulae involve the radical

$$
\sqrt{\left(z-\alpha_{0}\right)\left(z-\bar{\alpha}_{0}\right)\left(z-\alpha_{2}\right)\left(z-\bar{\alpha}_{2}\right)\left(z-\alpha_{4}\right)\left(z-\bar{\alpha}_{4}\right)}
$$

Derivation of the branchpoints α_{j}

- Transcendental equations determine the branchpoints $\alpha_{0}, \alpha_{2}, \alpha_{4}$ from the condition that near a branch point α :

$$
h(z)=c_{1}+c_{2}(z-\alpha)^{\frac{3}{2}}+\cdots,
$$

(the coefficient of $(z-\alpha)^{\frac{1}{2}}$ equals zero), where $c_{1} \in$ \mathbb{R} and c_{2}, \cdots are constants. Alternatively, from moment and integral conditions that apply. There are multiple solutions, involving different numbers of endpoints.

- Uniqueness is obtained through sign structures imposed by the inequalities.

Cartoon of Prebreak (only α_{0})

Blue: RH contour,
Full $=$ BRIDGE; Dashed $=$ LANDPATH Green: $\operatorname{Im} h=0$

Cartoon of Break

Blue: RH contour,
Full = BRIDGE; Dashed $=$ LANDPATH Green: Im $h=0$

Cartoon of Postbreak

Blue: RH contour,
 Full = BRIDGE; Dashed $=$ LANDPATH Green: $\operatorname{Im} h=0$

Cartoon of postbreak continued

Blue: RH
contour,
Full $=$ BRIDGE; Dashed $=$ LANDPATH Green and brown: Im $h=0$

Cartoon of breakdown of method

Blue: RH

$$
\begin{aligned}
& \text { contour, } \\
& \text { Full }= \text { BRIDGE; Dashed }=\text { LANDPATH } \\
& \text { Green and brown: } \operatorname{Im} h=0
\end{aligned}
$$

Singular breaking curve in space-time: $\operatorname{Im} h(T ; x, t)=0$

Result: If $x>\ln 2$ and t is large, then $\operatorname{Im} h(T)>0$ and the breakown does not happen.

Radicals and Riemann theta functions:

Behavior of sign of $\operatorname{Im} h$ at bridge endpoints leads to radicals $R(z)$:

$$
\begin{gathered}
\sqrt{\left(z-\alpha_{0}\right)\left(z-\bar{\alpha}_{0}\right)} \quad \text { (prebreak) } \\
\sqrt{\left(z-\alpha_{0}\right)\left(z-\bar{\alpha}_{0}\right)\left(z-\alpha_{2}\right)\left(z-\bar{\alpha}_{2}\right)\left(z-\alpha_{4}\right)\left(z-\bar{\alpha}_{4}\right)} \\
\text { (postbreak) }
\end{gathered}
$$

Equation for h^{\prime} (z is inside \ulcorner which must surround RH contour).

$$
h^{\prime}(z)=\frac{R(z)}{2 \pi i} \oint_{\Gamma} \frac{f^{\prime}(\zeta)}{(\zeta-z) R(\zeta)} d \zeta,
$$

The part of contour Γ in the upper half-plane.

Long-time branchpoint behavior

α_{0}, α_{4} approach the real axis at $\pm \frac{\mu}{2}$ exponentially fast. The distance of α_{2} from the real axis goes like $t^{-1 / 2}$

Breakdown of method in space time

$\mu=1$

What happens beyond? What about previously?

Semiclassical Focusing NLS limit on the line, IVP

- Zakharov, Shabhat: Integration of NLS through a Lax Pair, 1971
- Satsuma, Yajima: Scattering data for $\mu=0,1975$
- Deift, Zhou: Steepest descent for RHPs 1990
- Deift, V., Zhou: g-function mechanism for steepest descent RHPs
- Miller, Kamvissis: Numerics reveal structure, 1998
- Tovbis, V.: Scattering data for $\mu>0,2000$
- Ceniseros, Tian: Numerics, 2002
- Kamvissis, Ken McLaughlin, Miller, Steepest descent analysis of pure soliton case, 2003
- Tovbis, V., Zhou, Proof of solvability and construction of the semiclassical focusing NLS limit (global in time in pure radiation data, past first break for mixed radiation/soliton data), 2004
- Tovbis, V., Zhou, Long time semiclassical focusing NLS asymptotics, 2006
- Buckingham, V, Shock problem
- Tovbis, V., Determinant form of modulation equations, 2008
- Lyng, Miller, Mechanism for higher break ($\mu=0$), 2007
- Bertola, Tovbis, Analysis of first break, 2013
- Belov, V., Long time behaviour of the second breaking curve

Directions/ Connections

- Connection with Orthogonal Polynomials and Random matrices
- Fundamental role of theta/ tau functions
- Higher NLS Breaks
- Nearly integrable systems

THANK YOU

