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Bose-Einstein condensates

» Ultra-cold BEC well described by nonlinear Gross-Pitaevskii equation

Au

(-A+ V(x)+w*\u|2) =4
t

Left: Experimental pictures of fast rotating Bose-Einstein condensates. Ketterle et al at MIT in 2001.
Right: Simulation of Gross-Pitaevskii equation with software GPELab (X. Antoine & R. Duboscq)

Here: associated nonlinear Gibbs measure and their derivation
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Classical Gibbs measures
» Classical Hamiltonian H(x,p) = [p|*> + V/(x)

Gibbs (probability) measure

w(x,p) = Z texp (—H();’p)) with 7 = //exp (—H(’fr’p)) dx dp J

invariant under Hamiltonian flow (Newton's equations)

x = V,H(x, p)
p= _VXH(X’p)

unique solution to Gibb's variational problem

rfn>|51 {/Hf—l— T/flogf}——Tlog</eH/T> =—TlogZ

[f=1
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Infinite-dimensional Gibbs measures

S(U):/Q(|Vu(x)\2—|—V(x)\ ) e = // ‘y

CPluly )|2dxdy}

@ Q = bounded domain C RY, boundary conditions
@ V=external potential, here often V =&

@ w >0, eg w=J ~ defocusing NLS

Nonlinear Gibbs measure

du(u) = “Z7t e=€W dy”

formally invariant under Hamiltonian flow (R(v) & (u))

iOu=(—A+V+uf+w)u

» Difficulty: 1 singular object, £(u) = oo and often [, |ul> = oo, p-a.s.
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e SPDE to construct solutions of rough equations (with noise)
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@ Euclidean Quantum Field Theory through a Feyman-Kac type formula
Glimm-Jaffe '70s, ...

» Derivation of Hartree from the many-particle (bosonic) Hamiltonian

n

Hno = Z( D)y +V(x)+ A Z — Xk) acting on L2(Q")

j=1 1<j<k<n

o Time-Dependent Hartree from W = H, AV
Hepp '77, Ginibre-Velo '79, Spohn '80, Erdos-Schlein- Yau '00s, ...

o Hartree minimizers from 1st eigenvalue of H,
Benguria-Lieb '83, Lieb-Yau '87, Petz-Raggio-Verbeure-Werner '90s, Lieb-Seiringer-Yngvason '00s,
Lewin-Nam-Rougerie '14, ...

o Gibbs measures from quantum Gibbs states of H,
Lewin-Nam-Rougerie '15-18, Frohlich-Knowles-Schlein-Sohinger '16-17...

Canonical | Grand-canonical
Mean-field limit: n — oo average over n, then (n) — oo
A~1/n A~ 1/(n)
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it as an absolutely continuous measure w.r.t. 1

Nonlinear term

7w)i= 5 [ [ 1GIPlul)Pwlx = y) dxdy

» start with w = 0 and define i relatively to the free measure pg

e Jo IVulP+VIu*~I(v) 4,
[e Jo IVuP+VI[uP=Z(u) 4,
e Jo IVulP+Vial? g,

[ e Jo IVuP+VIuP—Z(u) 4,

du(u) =

e Jo IVulP+Viu? 4,

(U)
x e 1) » :
fe Jo IVulP+Viuf? du

(z)71 =dpo(u)
Gaussian (Wiener) measure

>z — /e—I(u> dpuo(u) € [0,1] since w >0

> z > 0 iff Z(u) is finite on a set of positive po-measure
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Gaussian measures in infinite dimensions

A > 0 self-adjoint with compact resolvent on Hilbert space §), Av; = Ajv;

Theorem (Gaussian measures)

. ef(uAAu> , /\j 7/\."_"‘2
dI/(U): m :§ ?e Iy dUJ 5 Uj:<\/j,u> G(C
1
is a well-defined probability measure on $) <= tr(A Z )\—
jz1

A\

Theorem (Zero-one law for Gaussian measures)
Let B > 0 be another self-adj. operator on $). Then we have
o either [ "5 du(u) < o for some e > 0;

@ or (u, Bu) = +o00 v-a.s.

4

The two alternatives can be detected by looking at / (u, Bu) dv(u) = tr(BA™Y)

9
Examples: » B=1, » B=A= (u,Au) = +00 v-as.

Bogachev, Gaussian measures, no. 62, Amer. Math. Soc., 1998
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Gaussian measures: application to A = —A

For simplicity, we take V/(x) = x chosen such that — A+ V > 0 on Q
Periodic BC

1
-1 E
trLz(Q)(*A+H) = m
ke2r/|Q|/dzd

finite only for d = 1 ~» g well-defined on $ = L?(Q)

» For d > 2, change ambient Hilbert space (u, (—A + k)u) =
(FA+R)" 20, (A + R) (=D + R) 2 u) = (u, (A + K&)' ),

Theorem (Free Gibbs measure)

For any self-adjoint boundary condition, the Gaussian measure pig of A= —A + k
is well defined on H® for all s <1 —d/2 and all Kk > —X\1(—A). We have
|ul ys = 400 po—almost surely for all s > 1 — d /2.

> / lu(x)[? dx = +o0 for d > 2, / |Vu(x)|? dx = 400 for d > 1
Q Q
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Nonlinear Gibbs measures: 1D case

Nonlinear term

1) i= 5 [ [ 1uGIPlul)Pwlx — y) dedy

> 1D case: p concentrated on H® for all s < 1/2, hence on LP forall 1 < p < 0o

Theorem (1D case)

1= (z)"te " 1o well defined in 1D for all 0 < w € M* + L>°.

If w=M\§ with A\ < X\, then 11 = (z,) te*Z g is also well-defined.

Lebowitz-Rose-Speer, Statistical mechanics of the nonlinear Schrédinger equation, J. Statist. Phys., 1988

» Dimensions d > 2: 7 never well defined for w # 0
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Renormalized mass for d = 2,3

N N = lui)? N
A 1Y 1 _
/ 1Pl dpo(u) = / (D 1ulP) [T —du =Y 5 =tr(PvA ™) = +oc
Pn$ * =1 ™ n=1 "

j=t

Definition (Renormalized=Wick-ordered mass)

N
1
Mu(w) = | Pu? = [ 1Puuldpa(u) = > [usft = 5
j=t !

Theorem (Renormalized mass)

If tr(A=2) < oo, then My converges strongly in L?(H®, djig) to M,e, called the
renormalized mass. We have [ e=#Mwen(4) dpug(u) < oo for every 8 > —X1(A).

» tr(—A + k)72 < oo in dimensions d = 1,2,3 on Q
» Can similarly renormalize any (u, Bu) for tr(B*A~'BA™!) < oo
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Renormalized interaction for d = 2,3

Theorem (Renormalized interaction)

We assume that w > 0 and w € LP(R?) for 1 < p < oo ifd =2 and 3 < p < o
ifd =3. Then

[Pu(x)[2 = (IPnu(x)P),, ) X
=2 oo

x (IPuu) = (IPuu(y)2),,, ) wlx — y) dx dy > 0

converges strongly to a limit Zyen(u) > 0 in LY(H*, dug), with

/ Tren() diof //M x = ¥)|Gu(x, ) dx dy

where G, is the Green’s function of —A\ + k on Q.

» In 2D one can also handle w = § with slightly different coefficients

» There is a “renormalized” time-dep G-P equation which is well-posed in H® and
for which p is invariant. Bourgain '94-99
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Quantum model and the mean-field limit

» Many-particle Hamiltonian:
n

Hpx = Z(—A +K)y + A Z w(x; —xx)  acting on L2(Q")
j=1 1<j<k<n
» Grand-canonical quantum partition function

Hhn
Z)\(T) = Ztl’l_g(g) exp (— 7—7)\>

n>0

Theorem (Derivation of 4 in 1D)
Assume that 0 < w € M' + L and d = 1. Then
Z:\(T)

(7 lim =7 = / e W dyp(u)
T=oe Zo(T) 12(Q)

1 n! Hx.n '
(i) lim trer1,.n|€ 7 :/ k) (u® | dpa(u)
e T4(T) Zz; (n— it { } @)

reduced density matrix

strongly in the trace class, for every k > 1.

M.L., Nam, Rougerie, Derivation of nonlinear Gibbs measures from many-body quantum mechanics, J. Ec.

polytech. Math., 2015
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» Many-particle renormalized Hamiltonian:

W=D (- A+ 2mn(FO) +4 D wly k) +ao( TV Ax(0)
j=1 1<j<k<n
) o1 1 R
where po(T) := e Z T <= renormalization of &
keanzz € T —1

Theorem (Derivation of 1 in 2D)

Periodic boundary conditions, Q =unit cube. Assume that 0 < (1 + |k|)w(k) € /*
and d = 2. Then

Zren T
() |mgiil:L:/em“mm)

Trsg %(T)

1 n! ”rf"
. DKy ( Bk
(if) Tll_>moo ThZE(T) E (nik)!trk+1,.m,N /|U | dp(u)
AT n>k

reduced density matrix

strongly in Schatten spaces p > 1, for every k > 1.

Frohlich-Knowles-Schlein-Sohinger '17: similar for d = 2,3 but with modified quantum Gibbs measure
M.L., Nam, Rougerie, in preparation, 2018
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Strategy: variational, based on entropy

—A
_ A _ | = —e
logtre " = min {tr(A/Vl) + tr(M log /\/I)} ~ My = gy
tr M=1
tre—A—B . e A-B
~log ="~ = min { H(M, Mo) +tr(BM)} M=

trM=1 M(log M—log My)
relative entropy

—logz, = — log (/ eI'e"(”)duo(u)>

= o {0 Halip) 4 [Ta@aa] s

v probability
(duo) log(duo) dro

measure
classical relative entropy

4

» Fock space F := CO @, L2(Q"), Hamiltonian Hy = @, Hax = Ho + AW

ZA(T) = ZtrLg(Qn) exp <—HLT7A> =trr [e—HA/T]

n>0
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Main steps in 1D

> oo-dim. semi-classical analysis = quantum Hewitt-Savage/de Finetti

A priori bounds on density matrices = Jv such that

rcn

wiaTk lim Teren T)Z trk+1 /|U®k (u® | dv(u)

reduced density matrix

» lower bound

Z(T) .
_ ZO(T) = mrm {'H(l_, |_0,T) + tr(WF)}
Ti Ha(v, o) + /I(U)dV(U) > min {Hcl(’/: o) + /I(V)d’/(“)} = —logz

» Upper bound: construction of appropriate trial state
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Conclusion

@ nonlinear Gibbs measures play important role in (S)PDE, QFT, etc
@ concentrated on distribution spaces
@ renormalization necessary in dimensions d = 2,3

@ can be derived from many-body quantum mechanics in mean-field limit
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