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The experiment (von Klitzing, 1980)
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Width of plateaus increases
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Spectral vs. Mobility Gap
The spectrum of a single-particle Hamiltonian

extended states (continuous spectrum)
localized states (pure point spectrum)

Spectral Gap

Mobility Gap

µ: Fermi energy

I (integrated) density of states n(µ) is constant for µ in a Spectral
Gap, and strictly increasing otherwise

I Hall conductance σH(µ) is constant for µ in a Mobility Gap

σH(n)

n

Plateaus arise because of a Mobility Gap only!
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The role of disorder
The spectrum of a single-particle Hamiltonian

extended states (continuous spectrum)
localized states (pure point spectrum)

Spectral Gap

Mobility Gap

µ: Fermi energy

I For a periodic (crystalline) medium:
I Method of choice: Bloch theory and vector bundles (Thouless et

al.)
I Gap is spectral

I For a disordered medium:
I Method of choice: Non-commutative geometry (Bellissard; Avron

et al.)
I Fermi energy may lie in a mobility gap (better) or just in a spectral

gap



Mobility gap, technically speaking

Hamiltonian H on `2(Zd )
Pµ = E(−∞,µ)(H): Fermi projection

Eµ

Assumption. Fermi projection has strong off-diagonal decay:

sup
x ′

e−ε|x
′|
∑

x

eν|x−x ′||Pµ(x , x ′)| <∞

(some ν > 0, all ε > 0)
I Proven in (virtually) all cases where localization is known.
I Trivially false for extended states at E = µ.
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Topological insulators: Definition stated
I Insulator in the Bulk: Excitation gap

For independent electrons: Spectral gap at Fermi energy µ

Eµ

I Topology: In the space of Hamiltonians, a topological insulator
can not be deformed in an ordinary one, while keeping the gap
open (homotopy equivalence)

I Ordinary insulator: Can be deformed to the limit of well-separated
atoms (or void)

I Topological Hamiltonians may be inequivalent. Thus:
Classification into classes

I Analogy: torus 6= sphere (differ by genus)

I Refinement: The Hamiltonians enjoy a symmetry which is preserved
under deformations. (Classification trivially more restrictive, yet
potentially richer: Hamiltonians along deformation may not enjoy
symmetry even if endpoints do. Thus finer classes.)
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Bulk-edge correspondence

Recall: In the space of Hamiltonians, a topological insulator can not
be deformed in an ordinary one, while keeping the gap open and
respecting symmetries



Bulk-edge correspondence

Deformation as interpolation in physical space:
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I Gap must close somewhere in between. Hence: Interface states
at Fermi energy.

I Ordinary insulator void: Edge states
I Bulk-edge correspondence: Termination of bulk of a topological

insulator implies edge states. (But not conversely!)
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Bulk-edge correspondence

In a nutshell: Termination of bulk of a topological insulator implies
edge states

I Goal: State the (intrinsic) topological property distinguishing
different classes of insulators.

More precisely:
I Express that property as an Index relating to the Bulk, resp. to

the Edge.
I Bulk-edge duality: Can it be shown that the two indices agree?

Can it be shown even in presence of just a mobility gap?
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The periodic table of topological matter

Symmetry d
Class Θ Σ Π 1 2 3 4 5 6 7 8

A 0 0 0 0 Z 0 Z 0 Z 0 Z
AIII 0 0 1 Z 0 Z 0 Z 0 Z 0
AI 1 0 0 0 0 0 Z 0 Z2 Z2 Z

BDI 1 1 1 Z 0 0 0 Z 0 Z2 Z2
D 0 1 0 Z2 Z 0 0 0 Z 0 Z2

DIII -1 1 1 Z2 Z2 Z 0 0 0 Z 0
AII -1 0 0 0 Z2 Z2 Z 0 0 0 Z
CII -1 -1 1 Z 0 Z2 Z2 Z 0 0 0
C 0 -1 0 0 Z 0 Z2 Z2 Z 0 0
CI 1 -1 1 0 0 Z 0 Z2 Z2 Z 0

Notation:

Θ time-reversal Σ charge conjugation Π combined
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Altland-Zirnbauer; based on Bloch theory



The periodic table of topological matter

Symmetry d
Class Θ Σ Π 1 2 3 4 5 6 7 8

A 0 0 0 0 Z 0 Z 0 Z 0 Z
AIII 0 0 1 Z 0 Z 0 Z 0 Z 0
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CII -1 -1 1 Z 0 Z2 Z2 Z 0 0 0
C 0 -1 0 0 Z 0 Z2 Z2 Z 0 0
CI 1 -1 1 0 0 Z 0 Z2 Z2 Z 0

By now: Non-commutative (bulk) index formulae have been found in
many cases (Prodan, Schulz-Baldes)



Special cases to be considered

Symmetry d
Class Θ Σ Π 1 2 3 4 5 6 7 8

A 0 0 0 0 Z 0 Z 0 Z 0 Z
AIII 0 0 1 Z 0 Z 0 Z 0 Z 0
AI 1 0 0 0 0 0 Z 0 Z2 Z2 Z

BDI 1 1 1 Z 0 0 0 Z 0 Z2 Z2
D 0 1 0 Z2 Z 0 0 0 Z 0 Z2

DIII -1 1 1 Z2 Z2 Z 0 0 0 Z 0
AII -1 0 0 0 Z2 Z2 Z 0 0 0 Z
CII -1 -1 1 Z 0 Z2 Z2 Z 0 0 0
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. . . and one more
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IQHE as a Bulk effect

Paradigm: Cyclotron orbit drifting under a electric field ~E

B B

~E

~
� �

Hamiltonian HB in the plane. Kubo formula (linear response to ~E)

σB = i tr Pµ
[
[Pµ,Λ1], [Pµ,Λ2]

]
where

Pµ: Fermi projection
Λi = Λ(xi), (i = 1,2) switches

1
Λ(x)

x



IQHE as a Bulk effect (remarks)
Kubo formula (Bellissard et al., Avron et al.)

σB = i tr Pµ
[
[Pµ,Λ1], [Pµ,Λ2]

]
extends the formula for the periodic case (Thouless et al., Avron)

σB = − i
(2π)2

∫
T

d2k tr(P(k)[∂1P(k), ∂2P(k)])

where T: Brillouin zone (torus); P(k) Fermi projection on the space of
states of quasi-momentum k = (k1, k2); ∂i = ∂/∂ki

Remarks.
2πσB = ch(P)

the Chern number of the vector bundle over T and fiber range P(k)

Alternative treatment of disorder (Thouless): Large, but finite system
(square); (k1, k2) (ϕ1, ϕ2) phase slips in boundary conditions
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Aside: What is the Chern number?

A (real) vector bundle over the circle (actually, a line bundle)

The line bundle is trivial, because it allows for a nowhere vanishing
global section.
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Complex bundles (E ,T) on the 2-torus

ϕ2

T
ϕ

(π,−π)

ϕ1

(−π,−π)

(−π, π) (π, π)

I T 3 ϕ = (ϕ1, ϕ2)

I Fibers Eϕ
I Frame bundle F (E) has fibers F (E)ϕ 3 v = (v1, . . . vN)

consisting of bases v of Eϕ.
I Does F (E) admit a global section?
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Classification by a Chern number
cu

t

ϕ1

ϕ2

Lemma. On the cut torus the frame
bundle admits a section
ϕ 7→ v(ϕ) ∈ F (E)ϕ

I Boundary values v+(ϕ2) and v−(ϕ2) at the point
(π, ϕ2) ≡ (−π, ϕ2) of the cut

I Transition matrix T (ϕ2) ∈ GL(N)

v+(ϕ2) = v−(ϕ2)T (ϕ2) , (ϕ2 ∈ S1)

I Definition. The Chern number Ch(E) is the winding number of
det T (ϕ2) along ϕ2 ∈ S1
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The winding number visualized
Proposition. The Chern number Ch(E) is the winding number of det T (ϕ2)
along ϕ2 ∈ S1

Eigenvalues of T (ϕ2) for a single ϕ2 ∈ [−π, π] ≡ S1

Eigenvalues of T (ϕ2) for a all ϕ2 ∈ [−π, π] ≡ S1 as a whole

winding number=
signed number of crossings of fiducial line

N = −2
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Hall conductance (bulk)

Definition: Bulk Index is the Chern number ch(P) of the Bloch bundle
P defined by the Fermi projection

Physical meaning: The Hall conductance in the bulk interpretation is

σH = (2π)−1ch(P)

End of aside. Back to the disordered case
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IQHE as a Bulk effect (remarks)

σB = i trPµ
[
[Pµ,Λ1], [Pµ,Λ2]

]
where Λi = Λ(xi), (i = 1,2) switches. Supports of ~∇Λi :

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

���������������� x1

x2

Remark. The trace is well-defined. Roughly: An operator has a
well-defined trace if it acts non-trivially on finitely many states only.
Here the intersection contains only finitely many sites.



Equality of conductances

There is a definition of the Edge Hall conductanceσE for the case of a
spectral gap, which needs to be amended in the case of a mobility
gap.

Theorem (Schulz-Baldes, Kellendonk, Richter). Ergodic setting. If the
Fermi energy µ lies in a spectral gap of HB, then

σE = σB.

In particular, σE does not depend on boundary conditions.

Theorem (Elgart, G., Schenker). Ergodic setting not assumed. Same
is true in the case of a mobility gap.
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An experiment: Amo et al.

Figure: Zigzag chain of coupled micropillars and lasing modes



An experiment: Amo et al.

Figure: Lasing modes: bulk and edge
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The Su-Schrieffer-Heeger model (1 dimensional)
Alternating chain with nearest neighbor hopping

ψ+
n−1 ψ+

n ψ+
n+1

ψ−n+1ψ−n
An Bn

Hilbert space: sites arranged in dimers

H = `2(Z,CN)⊗ C2 3 ψ =

(
ψ+

n
ψ−n

)
n∈Z

Hamiltonian

H =

(
0 S∗

S 0

)
with S, S∗ acting on `2(Z,CN) as

(Sψ+)n = Anψ
+
n−1 + Bnψ

+
n , (S∗ψ−)n = A∗n+1ψ

−
n+1 + B∗nψ

−
n

(An,Bn ∈ GL(N) almost surely)
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Chiral symmetry

Π =

(
1 0
0 −1

)
{H,Π} ≡ HΠ + ΠH = 0

hence
Hψ = λψ =⇒ H(Πψ) = −λ(Πψ)

Energy λ = 0 is special:
I Eigenspace of λ = 0 invariant under Π

HH �� HH �� HH �� HH ��
.............j .............�

ψ+
n−1 ψ+

n ψ+
n+1

ψ−
n+1ψ−

n
An Bn

I Eigenvalue equation Hψ = λψ is Sψ+ = λψ−, S∗ψ− = λψ+, i.e.

Anψ
+
n−1 + Bnψ

+
n = λψ−n , A∗n+1ψ

−
n+1 + B∗nψ

−
n = λψ+

n

is one 2nd order difference equation, but two 1st order for λ = 0
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Bulk index

Let
Σ = sgn H

Definition. The Bulk index is

N =
1
2

tr(ΠΣ[Λ,Σ])

with Λ = Λ(n) a switch function (cf. Prodan et al.)

1
Λ(x)

x



Edge Hamiltonian and index

ψ+
a−1 ψ+

a

ψ−a+1 = 0ψ−a

Edge Hamiltonian Ha defined by restriction to n ≤ a (Dirichlet
boundary condition ψ−a+1 = 0). Chiral symmetry preserved.

Eigenspace of λ = 0 still invariant under Π.

N±a := dim{ψ | Haψ = 0,Πψ = ±ψ}

Definition. The Edge index is

N ]
a := N+

a −N−a

and can be shown to be independent of a. Call it N ].
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N = N ]
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Theorem (G., Shapiro). Assume λ = 0 lies in a mobility gap. Then

N = N ]

Remark. Consider the dynamical system Anψ
+
n−1 + Bnψ

+
n = 0 with

Lyaponov exponents
γ1 ≥ . . . ≥ γN

The assumption is satisfied if γi 6= 0; then N ] = ]{i | γi > 0}.

Phase
boundaries correspond to γi = 0 (cf. Prodan et al.)

Lyapunov spectrum of the full chain has 2N exponents, spectrum is
even (Example: N = 4)
I at energy λ 6= 0 (simple spectrum)
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I of the upper (+) and lower (−) chains, at energy λ = 0
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Floquet topological insulators

H = H(t) (bulk) Hamiltonian in the plane with period T

H(t + T ) = H(t)

(disorder allowed, no adiabatic setting)

U(t) propagator for the interval (0, t)
Û = U(T ) fundamental propagator

Assumption: Spectrum of Û has gaps:

spec Û ⊂ S1
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Bulk index

Special case first: U(t) periodic, i.e.

Û = 1

Bulk index

NB =
1
2

∫ T

0
dt tr(U∗∂tU

[
U∗[Λ1,U],U∗[Λ2,U]

]
)

with U = U(t) and switches Λi = Λ(xi), (i = 1,2)

Remark. Extends the formula for the periodic case (Rudner et al.)

NB =
1

8π2

∫ T

0
dt
∫
T

d2k tr(U∗∂tU[U∗∂1U,U∗∂2U])

with U = U(t , k) acting on the space of states of quasi-momentum
k = (k1, k2)
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Edge index
HE(t) restriction of H(t) to right half-space x1 > 0

ÛE corresponding fundamental propagator

In general: ÛE 6= 1

Edge index

NE = tr(Û∗E[Λ2, ÛE]) = tr(Û∗EΛ2ÛE − Λ2)

Remarks.
I The trace is well-defined

�������
�������
�������
�������

x1

ed
ge

x2

I NE is charge that crossed the line x2 = 0 during a period.
I NE is independent of Λ2 and an integer.
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General case: Pair of Hamiltonians

Û 6= 1

Pair of periodic Hamiltonians Hi(t), (i = 1,2) with

Û1 = Û2

Define Hamiltonian H(t) with period 2T by

H(t) =

{
H1(t) (0 < t < T )

−H2(2T − t) (T < t < 2T )

Then

U(t) =

{
U1(t) (0 < t < T )

U2(2T − t) (T < t < 2T )

has Û = 1. Define N ,NE (for the pair) as before.

Theorem (G., Tauber) N = NE
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has Û = 1.

Define N ,NE (for the pair) as before.

Theorem (G., Tauber) N = NE



General case: Pair of Hamiltonians
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Duality in time and space
Let the interface Hamiltonian HI(t) be a bulk Hamiltonian with

HI(t) =

{
H1(t)
H2(t)

on states supported on large ±x1

(still assuming Û1 = Û2 =: Û•)

Interface index
NI = tr(Û∗• ÛI[Λ2, Û∗• ÛI])

x1

t

H2,B(t)←

x1

t

−H2,E(−t)

H1,E(t)

ed
ge

→ H1,B(t)
T

−T

T

Theorem (G., Tauber) The indices for the two diagrams agree:

(N =)NE = NI
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Back to single Hamiltonian

Û 6= 1 spec Û ⊂ S1

Let α ∈ R and ω = eiα. For z /∈ ωR+ (ray) define the branch

logα z = log |z|+ i argα z

by α− 2π < argα z < α.

Comparison Hamiltonian Hα: For ω /∈ specÛ set

−iHαT := logα Û

Theorem (Rudner et al.; G., Tauber) For ω, ω′ in gaps

Nω′ −Nω = i tr P
[
[P,Λ1], [P,Λ2]

]
where P = Pω,ω′ is the spectral projection associated with specÛ
between ω, ω′ (counter-clockwise)
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Nω′ −Nω = i tr P
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[P,Λ1], [P,Λ2]

]
where P = Pω,ω′ is the spectral projection associated with specÛ
between ω, ω′ (counter-clockwise)
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Bulk and Edge spectrum
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Computing the edge index
Edge index based NE,α based on the pair (H,Hα) (with α = π)

NE,α = tr A A = Û∗EΛ2ÛE − Û∗α,EΛ2Ûα,E

The diagonal integral kernel A(x , x) as log |A(x , x)|
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Boundary conditions:
I Vertical edges: Dirichlet
I Horizontal edges: Periodic
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The transition
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Summary

I Quantum Hall Effect as the first type of topological insulator
I Essential role of disorder (spectral vs. mobility gap)
I Symmetry as a new twist
I Bulk-edge duality
I Chiral symmetry
I Floquet topological insulator

Thank you for your attention!
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