Disorder and topology. The cases of Floquet and of chiral systems

Gian Michele Graf
ETH Zurich

Partial Differential Equations in Physics and Materials Science Heraklion
May 10-16, 2018

Disorder and topology. The cases of Floquet and of chiral systems

Gian Michele Graf ETH Zurich

Partial Differential Equations in Physics and Materials Science Heraklion
May 10-16, 2018

Outline

Some physics background first
How it all began: Quantum Hall systems Topological insulators
Bulk-edge correspondence
The periodic table of topological matter
The case of the Quantum Hall Effect
Chiral systems
An experiment
A chiral Hamiltonian and its indices
Time periodic systems
Definitions and results
Some numerics

Some physics background first
How it all began: Quantum Hall systems Topological insulators
Bulk-edge correspondence
The periodic table of topological matter

The case of the Quantum Hall Effect

Chiral systems
An experiment
A chiral Hamiltonian and its indices

Time periodic systems
Definitions and results
Some numerics

Some physics background first
How it all began: Quantum Hall systems
Topological insulators
Bulk-edge correspondence
The periodic table of topological matter

The case of the Quantum Hall Effect

Chiral systems
An experiment
A chiral Hamiltonian and its indices

Time periodic systems
Definitions and results
Some numerics

The experiment (von Klitzing, 1980)

Hall-Ohm law

$$
\vec{\jmath}=\underline{\sigma} \vec{E}, \quad \underline{\sigma}=\left(\begin{array}{cc}
\sigma_{\mathrm{D}} & \sigma_{\mathrm{H}} \\
-\sigma_{\mathrm{H}} & \sigma_{\mathrm{D}}
\end{array}\right)
$$

σ_{H} : Hall conductance
$\sigma_{\mathrm{D}}:$ dissipative conductance, ideally $=0$

The experiment (von Klitzing, 1980)

 Hall-Ohm law$$
\vec{\jmath}=\underline{\sigma} \vec{E}, \quad \underline{\sigma}=\left(\begin{array}{cc}
\sigma_{\mathrm{D}} & \sigma_{\mathrm{H}} \\
-\sigma_{\mathrm{H}} & \sigma_{\mathrm{D}}
\end{array}\right)
$$

σ_{H} : Hall conductance $\sigma_{\mathrm{D}}:$ dissipative conductance, ideally $=0$

The experiment (von Klitzing, 1980)

 Hall-Ohm law$$
\vec{\jmath}=\underline{\sigma} \vec{E}, \quad \underline{\sigma}=\left(\begin{array}{cc}
\sigma_{\mathrm{D}} & \sigma_{\mathrm{H}} \\
-\sigma_{\mathrm{H}} & \sigma_{\mathrm{D}}
\end{array}\right)
$$

σ_{H} : Hall conductance $\sigma_{\mathrm{D}}:$ dissipative conductance, ideally $=0$

Width of plateaus increases with disorder

Spectral vs. Mobility Gap

The spectrum of a single-particle Hamiltonian

Spectral vs. Mobility Gap

The spectrum of a single-particle Hamiltonian

- (integrated) density of states $n(\mu)$ is constant for μ in a Spectral Gap, and strictly increasing otherwise

Spectral vs. Mobility Gap

The spectrum of a single-particle Hamiltonian

- (integrated) density of states $n(\mu)$ is constant for μ in a Spectral Gap, and strictly increasing otherwise
- Hall conductance $\sigma_{\mathrm{H}}(\mu)$ is constant for μ in a Mobility Gap

Spectral vs. Mobility Gap

The spectrum of a single-particle Hamiltonian

μ : Fermi energy

- (integrated) density of states $n(\mu)$ is constant for μ in a Spectral Gap, and strictly increasing otherwise
- Hall conductance $\sigma_{\mathrm{H}}(\mu)$ is constant for μ in a Mobility Gap

Plateaus arise because of a Mobility Gap only!

The role of disorder

The spectrum of a single-particle Hamiltonian

μ : Fermi energy

- For a periodic (crystalline) medium:
- Method of choice: Bloch theory and vector bundles (Thouless et al.)
- Gap is spectral
- For a disordered medium:
- Method of choice: Non-commutative geometry (Bellissard; Avron et al.)
- Fermi energy may lie in a mobility gap (better) or just in a spectral gap

Mobility gap, technically speaking

Hamiltonian H on $\ell^{2}\left(\mathbb{Z}^{d}\right)$
$P_{\mu}=E_{(-\infty, \mu)}(H)$: Fermi projection

Mobility gap, technically speaking

Hamiltonian H on $\ell^{2}\left(\mathbb{Z}^{d}\right)$
$P_{\mu}=E_{(-\infty, \mu)}(H)$: Fermi projection
μ

Assumption. Fermi projection has strong off-diagonal decay:

$$
\sup _{x^{\prime}} \mathrm{e}^{-\varepsilon\left|x^{\prime}\right|} \sum_{x} \mathrm{e}^{\nu\left|x-x^{\prime}\right|}\left|P_{\mu}\left(x, x^{\prime}\right)\right|<\infty
$$

(some $\nu>0$, all $\varepsilon>0$)

Mobility gap, technically speaking

Hamiltonian H on $\ell^{2}\left(\mathbb{Z}^{d}\right)$
$P_{\mu}=E_{(-\infty, \mu)}(H)$: Fermi projection
μ

Assumption. Fermi projection has strong off-diagonal decay:

$$
\sup _{x^{\prime}} \mathrm{e}^{-\varepsilon\left|x^{\prime}\right|} \sum_{x} \mathrm{e}^{\nu\left|x-x^{\prime}\right|}\left|P_{\mu}\left(x, x^{\prime}\right)\right|<\infty
$$

(some $\nu>0$, all $\varepsilon>0$)

- Proven in (virtually) all cases where localization is known.
- Trivially false for extended states at $E=\mu$.

Some physics background first
How it all began: Quantum Hall systems

Topological insulators

Bulk-edge correspondence
The periodic table of topological matter

The case of the Quantum Hall Effect

Chiral systems
An experiment
A chiral Hamiltonian and its indices

Time periodic systems
Definitions and results
Some numerics

Topological insulators: Definition stated

- Insulator in the Bulk: Excitation gap

For independent electrons: Spectral gap at Fermi energy μ

Topological insulators: Definition stated

- Insulator in the Bulk: Excitation gap

For independent electrons: Spectral gap at Fermi energy μ

- Topology: In the space of Hamiltonians, a topological insulator can not be deformed in an ordinary one, while keeping the gap open (homotopy equivalence)

Topological insulators: Definition stated

- Insulator in the Bulk: Excitation gap

For independent electrons: Spectral gap at Fermi energy μ

- Topology: In the space of Hamiltonians, a topological insulator can not be deformed in an ordinary one, while keeping the gap open (homotopy equivalence)
- Ordinary insulator: Can be deformed to the limit of well-separated atoms (or void)

Topological insulators: Definition stated

- Insulator in the Bulk: Excitation gap

For independent electrons: Spectral gap at Fermi energy μ

- Topology: In the space of Hamiltonians, a topological insulator can not be deformed in an ordinary one, while keeping the gap open (homotopy equivalence)
- Ordinary insulator: Can be deformed to the limit of well-separated atoms (or void)
- Topological Hamiltonians may be inequivalent. Thus: Classification into classes

Topological insulators: Definition stated

- Insulator in the Bulk: Excitation gap

For independent electrons: Spectral gap at Fermi energy μ

- Topology: In the space of Hamiltonians, a topological insulator can not be deformed in an ordinary one, while keeping the gap open (homotopy equivalence)
- Ordinary insulator: Can be deformed to the limit of well-separated atoms (or void)
- Topological Hamiltonians may be inequivalent. Thus: Classification into classes
- Analogy: torus \neq sphere (differ by genus)

Topological insulators: Definition stated

- Insulator in the Bulk: Excitation gap

For independent electrons: Spectral gap at Fermi energy μ

- Topology: In the space of Hamiltonians, a topological insulator can not be deformed in an ordinary one, while keeping the gap open (homotopy equivalence)
- Ordinary insulator: Can be deformed to the limit of well-separated atoms (or void)
- Topological Hamiltonians may be inequivalent. Thus: Classification into classes
- Analogy: torus \neq sphere (differ by genus)
- Refinement: The Hamiltonians enjoy a symmetry which is preserved under deformations.

Topological insulators: Definition stated

- Insulator in the Bulk: Excitation gap

For independent electrons: Spectral gap at Fermi energy μ

- Topology: In the space of Hamiltonians, a topological insulator can not be deformed in an ordinary one, while keeping the gap open (homotopy equivalence)
- Ordinary insulator: Can be deformed to the limit of well-separated atoms (or void)
- Topological Hamiltonians may be inequivalent. Thus: Classification into classes
- Analogy: torus \neq sphere (differ by genus)
- Refinement: The Hamiltonians enjoy a symmetry which is preserved under deformations. (Classification trivially more restrictive, yet potentially richer: Hamiltonians along deformation may not enjoy symmetry even if endpoints do. Thus finer classes.)

Some physics background first
How it all began: Quantum Hall systems
Topological insulators
Bulk-edge correspondence
The periodic table of topological matter

The case of the Quantum Hall Effect

Chiral systems
An experiment
A chiral Hamiltonian and its indices

Time periodic systems
Definitions and results
Some numerics

Bulk-edge correspondence

Recall: In the space of Hamiltonians, a topological insulator can not be deformed in an ordinary one, while keeping the gap open and respecting symmetries

Bulk-edge correspondence

Deformation as interpolation in physical space:

- Gap must close somewhere in between. Hence: Interface states at Fermi energy.

Bulk-edge correspondence

Deformation as interpolation in physical space:

- Gap must close somewhere in between. Hence: Interface states at Fermi energy.
- Ordinary insulator \rightsquigarrow void: Edge states

Bulk-edge correspondence

Deformation as interpolation in physical space:

- Gap must close somewhere in between. Hence: Interface states at Fermi energy.
- Ordinary insulator \rightsquigarrow void: Edge states
- Bulk-edge correspondence: Termination of bulk of a topological insulator implies edge states.

Bulk-edge correspondence

Deformation as interpolation in physical space:

- Gap must close somewhere in between. Hence: Interface states at Fermi energy.
- Ordinary insulator \rightsquigarrow void: Edge states
- Bulk-edge correspondence: Termination of bulk of a topological insulator implies edge states. (But not conversely!)

Bulk-edge correspondence

In a nutshell: Termination of bulk of a topological insulator implies edge states

Bulk-edge correspondence

In a nutshell: Termination of bulk of a topological insulator implies edge states

- Goal: State the (intrinsic) topological property distinguishing different classes of insulators.
More precisely:

Bulk-edge correspondence

In a nutshell: Termination of bulk of a topological insulator implies edge states

- Goal: State the (intrinsic) topological property distinguishing different classes of insulators.
More precisely:
- Express that property as an Index relating to the Bulk, resp. to the Edge.

Bulk-edge correspondence

In a nutshell: Termination of bulk of a topological insulator implies edge states

- Goal: State the (intrinsic) topological property distinguishing different classes of insulators.
More precisely:
- Express that property as an Index relating to the Bulk, resp. to the Edge.
- Bulk-edge duality: Can it be shown that the two indices agree? Can it be shown even in presence of just a mobility gap?

Some physics background first
How it all began: Quantum Hall systems
Topological insulators
Bulk-edge correspondence
The periodic table of topological matter
The case of the Quantum Hall Effect

Chiral systems
An experiment
A chiral Hamiltonian and its indices

Time periodic systems
Definitions and results
Some numerics

The periodic table of topological matter

Symmetry				d							
Class	Θ	Σ	\square	1	2	3	4	5	6	7	8
A	0	0	0	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}
Alll	0	0	1	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0
AI	1	0	0	0	0	0	\mathbb{Z}	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}
BDI	1	1	1	\mathbb{Z}	0	0	0	\mathbb{Z}	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}
D	0	1	0	\mathbb{Z}_{2}	\mathbb{Z}	0	0	0	\mathbb{Z}	0	\mathbb{Z}_{2}
DIII	-1	1	1	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	0	0	0	\mathbb{Z}	0
All	-1	0	0		\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	0	0	0	\mathbb{Z}
ClI	-1	-1	1	\mathbb{Z}	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	0	0	0
C	0	-1	0	0	\mathbb{Z}	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	0	0
Cl	1	-1	1	0	0	\mathbb{Z}	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	0

Notation:
Θ time-reversal Σ charge conjugation
Π combined

The periodic table of topological matter

Symmetry				d							
Class	Θ	Σ	Π	1	2	3	4	5	6	7	8
A	0	0	0	0	\mathbb{Z}	0	\mathbb{Z}	0	Z	0	\mathbb{Z}
Alll	0	0	1	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0
AI	1	0	0	0	0	0	\mathbb{Z}	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}
BDI	1	1	1	\mathbb{Z}	0	0	0	\mathbb{Z}	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}
D	0	1	0	\mathbb{Z}_{2}	\mathbb{Z}	0	0	0	\mathbb{Z}	0	\mathbb{Z}_{2}
DIII	-1	1	1	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	0	0	0	\mathbb{Z}	0
All	-1	0	0	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	0	0	0	\mathbb{Z}
CII	-1	-1	1	\mathbb{Z}	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	0	0	0
C	0	-1	0	0	\mathbb{Z}	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	0	0
Cl	1	-1	1	0	0	\mathbb{Z}	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	0

First version: Schnyder et al.; then Kitaev based on Altland-Zirnbauer; based on Bloch theory

The periodic table of topological matter

Symmetry				d										
Class	Θ	Σ	Π	1	2	3	4	5	6	7	8			
A	0	0	0	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}			
AIII	0	0	1	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0			
AI	1	0	0	0	0	0	\mathbb{Z}	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}			
BDI	1	1	1	\mathbb{Z}	0	0	0	\mathbb{Z}	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}			
D	0	1	0	\mathbb{Z}_{2}	\mathbb{Z}	0	0	0	\mathbb{Z}	0	\mathbb{Z}_{2}			
DIII	-1	1	1	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	0	0	0	\mathbb{Z}	0			
AII	-1	0	0	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	0	0	0	\mathbb{Z}			
CII	-1	-1	1	\mathbb{Z}	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	0	0	0			
C	0	-1	0	0	\mathbb{Z}	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	0	0			
CI	1	-1	1	0	0	\mathbb{Z}	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	0			

By now: Non-commutative (bulk) index formulae have been found in many cases (Prodan, Schulz-Baldes)

Special cases to be considered

Symmetry				d							
Class	Θ	Σ	\square	1	2	3	4	5	6	7	8
A	0	0	0	0	Z	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}
AIII	0	0	1	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0
AI	1	0	0	0	0	0	\mathbb{Z}	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}
BDI	1	1	1	\mathbb{Z}	0	0	0	\mathbb{Z}	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}
D	0	1	0	\mathbb{Z}_{2}	\mathbb{Z}	0	0	0	\mathbb{Z}	0	\mathbb{Z}_{2}
DIII	-1	1	1	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	0	0	0	\mathbb{Z}	0
All	-1	0	0	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	0	0	0	\mathbb{Z}
CII	-1	-1	1	\mathbb{Z}	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	0	0	0
C	0	-1	0	0	\mathbb{Z}	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	0	0
Cl	1	-1	1	0	0	\mathbb{Z}	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	0

... and one more

Some physics background first

How it all began: Quantum Hall systems Topological insulators
Bulk-edge correspondence
The periodic table of topological matter

The case of the Quantum Hall Effect

Chiral systems
An experiment
A chiral Hamiltonian and its indices

Time periodic systems
Definitions and results
Some numerics

IQHE as a Bulk effect

Paradigm: Cyclotron orbit drifting under a electric field \vec{E}

Hamiltonian H_{B} in the plane. Kubo formula (linear response to \vec{E})

$$
\sigma_{\mathrm{B}}=\operatorname{itr} P_{\mu}\left[\left[P_{\mu}, \Lambda_{1}\right],\left[P_{\mu}, \Lambda_{2}\right]\right]
$$

where
P_{μ} : Fermi projection
$\Lambda_{i}=\Lambda\left(x_{i}\right),(i=1,2)$ switches

IQHE as a Bulk effect (remarks)

Kubo formula (Bellissard et al., Avron et al.)

$$
\sigma_{\mathrm{B}}=\mathrm{itr} P_{\mu}\left[\left[P_{\mu}, \Lambda_{1}\right],\left[P_{\mu}, \Lambda_{2}\right]\right]
$$

extends the formula for the periodic case (Thouless et al., Avron)

$$
\sigma_{\mathrm{B}}=-\frac{\mathrm{i}}{(2 \pi)^{2}} \int_{\mathbb{T}} d^{2} k \operatorname{tr}\left(P(k)\left[\partial_{1} P(k), \partial_{2} P(k)\right]\right)
$$

where \mathbb{T} : Brillouin zone (torus); $P(k)$ Fermi projection on the space of states of quasi-momentum $k=\left(k_{1}, k_{2}\right) ; \partial_{i}=\partial / \partial k_{i}$ Remarks.

$$
2 \pi \sigma_{\mathrm{B}}=\operatorname{ch}(P)
$$

the Chern number of the vector bundle over \mathbb{T} and fiber range $P(k)$

IQHE as a Bulk effect (remarks)

Kubo formula (Bellissard et al., Avron et al.)

$$
\sigma_{\mathrm{B}}=\mathrm{itr} P_{\mu}\left[\left[P_{\mu}, \Lambda_{1}\right],\left[P_{\mu}, \Lambda_{2}\right]\right]
$$

extends the formula for the periodic case (Thouless et al., Avron)

$$
\sigma_{\mathrm{B}}=-\frac{\mathrm{i}}{(2 \pi)^{2}} \int_{\mathbb{T}} d^{2} k \operatorname{tr}\left(P(k)\left[\partial_{1} P(k), \partial_{2} P(k)\right]\right)
$$

where \mathbb{T} : Brillouin zone (torus); $P(k)$ Fermi projection on the space of states of quasi-momentum $k=\left(k_{1}, k_{2}\right) ; \partial_{i}=\partial / \partial k_{i}$

Remarks.

$$
2 \pi \sigma_{\mathrm{B}}=\operatorname{ch}(P)
$$

the Chern number of the vector bundle over \mathbb{T} and fiber range $P(k)$

Alternative treatment of disorder (Thouless): Large, but finite system (square); $\left(k_{1}, k_{2}\right) \rightsquigarrow\left(\varphi_{1}, \varphi_{2}\right)$ phase slips in boundary conditions

Aside: What is the Chern number?

A (real) vector bundle over the circle (actually, a line bundle)

Aside: What is the Chern number?

A (real) vector bundle over the circle (actually, a line bundle)

The line bundle is trivial, because it allows for a nowhere vanishing global section.

What is the Chern number?

Another vector bundle over the circle

What is the Chern number?

Another vector bundle over the circle

The line bundle is not trivial: No nowhere vanishing global section.

Complex bundles (E, \mathbb{T}) on the 2 -torus

- $\mathbb{T} \ni \varphi=\left(\varphi_{1}, \varphi_{2}\right)$

Complex bundles (E, \mathbb{T}) on the 2 -torus

- $\mathbb{T} \ni \varphi=\left(\varphi_{1}, \varphi_{2}\right)$
- Fibers E_{φ}

Complex bundles (E, \mathbb{T}) on the 2 -torus

- $\mathbb{T} \ni \varphi=\left(\varphi_{1}, \varphi_{2}\right)$
- Fibers E_{φ}
- Frame bundle $F(E)$ has fibers $F(E)_{\varphi} \ni v=\left(v_{1}, \ldots v_{N}\right)$ consisting of bases v of E_{φ}.
- Does $F(E)$ admit a global section?

Classification by a Chern number

Classification by a Chern number

Lemma. On the cut torus the frame bundle admits a section

$$
\varphi \mapsto v(\varphi) \in F(E)_{\varphi}
$$

- Boundary values $v_{+}\left(\varphi_{2}\right)$ and $v_{-}\left(\varphi_{2}\right)$ at the point $\left(\pi, \varphi_{2}\right) \equiv\left(-\pi, \varphi_{2}\right)$ of the cut

Classification by a Chern number

Lemma. On the cut torus the frame bundle admits a section
$\varphi \mapsto v(\varphi) \in F(E)_{\varphi}$

- Boundary values $v_{+}\left(\varphi_{2}\right)$ and $v_{-}\left(\varphi_{2}\right)$ at the point $\left(\pi, \varphi_{2}\right) \equiv\left(-\pi, \varphi_{2}\right)$ of the cut
- Transition matrix $T\left(\varphi_{2}\right) \in \mathrm{GL}(N)$

$$
v_{+}\left(\varphi_{2}\right)=v_{-}\left(\varphi_{2}\right) T\left(\varphi_{2}\right), \quad\left(\varphi_{2} \in S^{1}\right)
$$

Classification by a Chern number

Lemma. On the cut torus the frame bundle admits a section

$$
\varphi \mapsto v(\varphi) \in F(E)_{\varphi}
$$

- Boundary values $v_{+}\left(\varphi_{2}\right)$ and $v_{-}\left(\varphi_{2}\right)$ at the point $\left(\pi, \varphi_{2}\right) \equiv\left(-\pi, \varphi_{2}\right)$ of the cut
- Transition matrix $T\left(\varphi_{2}\right) \in \operatorname{GL}(N)$

$$
v_{+}\left(\varphi_{2}\right)=v_{-}\left(\varphi_{2}\right) T\left(\varphi_{2}\right), \quad\left(\varphi_{2} \in S^{1}\right)
$$

- Definition. The Chern number $\operatorname{Ch}(E)$ is the winding number of $\operatorname{det} T\left(\varphi_{2}\right)$ along $\varphi_{2} \in S^{1}$

The winding number visualized

Proposition. The Chern number $\operatorname{Ch}(E)$ is the winding number of $\operatorname{det} T\left(\varphi_{2}\right)$ along $\varphi_{2} \in S^{1}$
Eigenvalues of $T\left(\varphi_{2}\right)$ for a single $\varphi_{2} \in[-\pi, \pi] \equiv S^{1}$

The winding number visualized

Eigenvalues of $T\left(\varphi_{2}\right)$ for a single $\varphi_{2} \in[-\pi, \pi] \equiv S^{1}$

Eigenvalues of $T\left(\varphi_{2}\right)$ for a all $\varphi_{2} \in[-\pi, \pi] \equiv S^{1}$ as a whole

The winding number visualized

Eigenvalues of $T\left(\varphi_{2}\right)$ for a single $\varphi_{2} \in[-\pi, \pi] \equiv S^{1}$

Eigenvalues of $T\left(\varphi_{2}\right)$ for a all $\varphi_{2} \in[-\pi, \pi] \equiv S^{1}$ as a whole

The winding number visualized

Eigenvalues of $T\left(\varphi_{2}\right)$ for a single $\varphi_{2} \in[-\pi, \pi] \equiv S^{1}$

Eigenvalues of $T\left(\varphi_{2}\right)$ for a all $\varphi_{2} \in[-\pi, \pi] \equiv S^{1}$ as a whole

The winding number visualized

Eigenvalues of $T\left(\varphi_{2}\right)$ for a single $\varphi_{2} \in[-\pi, \pi] \equiv S^{1}$

Eigenvalues of $T\left(\varphi_{2}\right)$ for a all $\varphi_{2} \in[-\pi, \pi] \equiv S^{1}$ as a whole

winding number=
signed number of crossings of fiducial line

$$
N=-2
$$

Hall conductance (bulk)

Definition: Bulk Index is the Chern number $\operatorname{ch}(P)$ of the Bloch bundle P defined by the Fermi projection

Hall conductance (bulk)

Definition: Bulk Index is the Chern number $\operatorname{ch}(P)$ of the Bloch bundle P defined by the Fermi projection

Physical meaning: The Hall conductance in the bulk interpretation is

$$
\sigma_{\mathrm{H}}=(2 \pi)^{-1} \operatorname{ch}(P)
$$

Hall conductance (bulk)

Definition: Bulk Index is the Chern number $\operatorname{ch}(P)$ of the Bloch bundle P defined by the Fermi projection

Physical meaning: The Hall conductance in the bulk interpretation is

$$
\sigma_{\mathrm{H}}=(2 \pi)^{-1} \operatorname{ch}(P)
$$

End of aside. Back to the disordered case

IQHE as a Bulk effect (remarks)

$$
\sigma_{\mathrm{B}}=\mathrm{i} \operatorname{tr} P_{\mu}\left[\left[P_{\mu}, \Lambda_{1}\right],\left[P_{\mu}, \Lambda_{2}\right]\right]
$$

where $\Lambda_{i}=\Lambda\left(x_{i}\right),(i=1,2)$ switches. Supports of $\vec{\nabla} \Lambda_{i}$:

Remark. The trace is well-defined. Roughly: An operator has a well-defined trace if it acts non-trivially on finitely many states only. Here the intersection contains only finitely many sites.

Equality of conductances

There is a definition of the Edge Hall conductance σ_{E} for the case of a spectral gap, which needs to be amended in the case of a mobility gap.

Equality of conductances

There is a definition of the Edge Hall conductance σ_{E} for the case of a spectral gap, which needs to be amended in the case of a mobility gap.

Theorem (Schulz-Baldes, Kellendonk, Richter). Ergodic setting. If the Fermi energy μ lies in a spectral gap of H_{B}, then

$$
\sigma_{\mathrm{E}}=\sigma_{\mathrm{B}}
$$

In particular, σ_{E} does not depend on boundary conditions.

Equality of conductances

There is a definition of the Edge Hall conductance σ_{E} for the case of a spectral gap, which needs to be amended in the case of a mobility gap.

Theorem (Schulz-Baldes, Kellendonk, Richter). Ergodic setting. If the Fermi energy μ lies in a spectral gap of H_{B}, then

$$
\sigma_{\mathrm{E}}=\sigma_{\mathrm{B}}
$$

In particular, σ_{E} does not depend on boundary conditions.
Theorem (Elgart, G., Schenker). Ergodic setting not assumed. Same is true in the case of a mobility gap.

Some physics background first

How it all began: Quantum Hall systems
Topological insulators
Bulk-edge correspondence
The periodic table of topological matter

The case of the Quantum Hall Effect

Chiral systems
An experiment
A chiral Hamiltonian and its indices

Time periodic systems
Definitions and results
Some numerics

Some physics background first
How it all began: Quantum Hall systems
Topological insulators
Bulk-edge correspondence
The periodic table of topological matter

The case of the Quantum Hall Effect

Chiral systems
An experiment
A chiral Hamiltonian and its indices

Time periodic systems
Definitions and results
Some numerics

An experiment: Amo et al.

Figure: Zigzag chain of coupled micropillars and lasing modes

An experiment: Amo et al.

Figure: Lasing modes: bulk and edge

Some physics background first
How it all began: Quantum Hall systems
Topological insulators
Bulk-edge correspondence
The periodic table of topological matter

The case of the Quantum Hall Effect

Chiral systems
An experiment
A chiral Hamiltonian and its indices

Time periodic systems
Definitions and results
Some numerics

The Su-Schrieffer-Heeger model (1 dimensional)

Alternating chain with nearest neighbor hopping

The Su-Schrieffer-Heeger model (1 dimensional)
Alternating chain with nearest neighbor hopping

Hilbert space: sites arranged in dimers

$$
\mathcal{H}=\ell^{2}\left(\mathbb{Z}, \mathbb{C}^{N}\right) \otimes \mathbb{C}^{2} \ni \psi=\binom{\psi_{n}^{+}}{\psi_{n}^{-}}_{n \in \mathbb{Z}}
$$

Hamiltonian

$$
H=\left(\begin{array}{ll}
0 & S^{*} \\
S & 0
\end{array}\right)
$$

with S, S^{*} acting on $\ell^{2}\left(\mathbb{Z}, \mathbb{C}^{N}\right)$ as

$$
\left(S \psi^{+}\right)_{n}=A_{n} \psi_{n-1}^{+}+B_{n} \psi_{n}^{+}, \quad\left(S^{*} \psi^{-}\right)_{n}=A_{n+1}^{*} \psi_{n+1}^{-}+B_{n}^{*} \psi_{n}^{-}
$$

$\left(A_{n}, B_{n} \in \mathrm{GL}(N)\right.$ almost surely)

Chiral symmetry

$$
\begin{gathered}
\Pi=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \\
\{H, \Pi\} \equiv H \Pi+\Pi H=0
\end{gathered}
$$

hence

$$
\boldsymbol{H} \psi=\lambda \psi \quad \Longrightarrow \quad H(\Pi \psi)=-\lambda(\Pi \psi)
$$

Chiral symmetry

$$
\begin{gathered}
\Pi=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \\
\{H, \Pi\} \equiv H \Pi+\Pi H=0
\end{gathered}
$$

hence

$$
H \psi=\lambda \psi \quad \Longrightarrow \quad H(\Pi \psi)=-\lambda(\Pi \psi)
$$

Energy $\lambda=0$ is special:

- Eigenspace of $\lambda=0$ invariant under Π

Chiral symmetry

$$
\begin{gathered}
\Pi=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \\
\{H, \Pi\} \equiv H \Pi+\Pi H=0
\end{gathered}
$$

hence

$$
H \psi=\lambda \psi \quad \Longrightarrow \quad H(\Pi \psi)=-\lambda(\Pi \psi)
$$

Energy $\lambda=0$ is special:

- Eigenspace of $\lambda=0$ invariant under Π

- Eigenvalue equation $\boldsymbol{H} \psi=\lambda \psi$ is $\boldsymbol{S} \psi^{+}=\lambda \psi^{-}, \boldsymbol{S}^{*} \psi^{-}=\lambda \psi^{+}$, i.e.

$$
A_{n} \psi_{n-1}^{+}+B_{n} \psi_{n}^{+}=\lambda \psi_{n}^{-}, \quad A_{n+1}^{*} \psi_{n+1}^{-}+B_{n}^{*} \psi_{n}^{-}=\lambda \psi_{n}^{+}
$$

is one 2 nd order difference equation, but two 1 st order for $\lambda=0$

Bulk index

Let

$$
\Sigma=\operatorname{sgn} H
$$

Definition. The Bulk index is

$$
\mathcal{N}=\frac{1}{2} \operatorname{tr}(\Pi \Sigma[\Lambda, \Sigma])
$$

with $\Lambda=\Lambda(n)$ a switch function (cf. Prodan et al.)

Edge Hamiltonian and index

Edge Hamiltonian H_{a} defined by restriction to $n \leq a$ (Dirichlet boundary condition $\psi_{a+1}^{-}=0$). Chiral symmetry preserved.

Edge Hamiltonian and index

Edge Hamiltonian H_{a} defined by restriction to $n \leq a$ (Dirichlet boundary condition $\psi_{a+1}^{-}=0$). Chiral symmetry preserved.
Eigenspace of $\lambda=0$ still invariant under Π.

Edge Hamiltonian and index

Edge Hamiltonian H_{a} defined by restriction to $n \leq a$ (Dirichlet boundary condition $\psi_{a+1}^{-}=0$). Chiral symmetry preserved.
Eigenspace of $\lambda=0$ still invariant under Π.

$$
\mathcal{N}_{a}^{ \pm}:=\operatorname{dim}\left\{\psi \mid H_{a} \psi=0, \Pi \psi= \pm \psi\right\}
$$

Edge Hamiltonian and index

Edge Hamiltonian H_{a} defined by restriction to $n \leq a$ (Dirichlet boundary condition $\psi_{a+1}^{-}=0$). Chiral symmetry preserved.
Eigenspace of $\lambda=0$ still invariant under Π.

$$
\mathcal{N}_{a}^{ \pm}:=\operatorname{dim}\left\{\psi \mid H_{a} \psi=0, \Pi \psi= \pm \psi\right\}
$$

Definition. The Edge index is

$$
\mathcal{N}_{a}^{\#}:=\mathcal{N}_{a}^{+}-\mathcal{N}_{a}^{-}
$$

and can be shown to be independent of a. Call it \mathcal{N}^{\sharp}.

Bulk-edge duality

Theorem (G., Shapiro). Assume $\lambda=0$ lies in a mobility gap. Then

$$
\mathcal{N}=\mathcal{N}^{\sharp}
$$

Bulk-edge duality

Theorem (G., Shapiro). Assume $\lambda=0$ lies in a mobility gap. Then

$$
\mathcal{N}=\mathcal{N}^{\sharp}
$$

Remark. Consider the dynamical system $A_{n} \psi_{n-1}^{+}+B_{n} \psi_{n}^{+}=0$ with Lyaponov exponents

$$
\gamma_{1} \geq \ldots \geq \gamma_{N}
$$

The assumption is satisfied if $\gamma_{i} \neq 0$; then $\mathcal{N}^{\sharp}=\sharp\left\{i \mid \gamma_{i}>0\right\}$.

Bulk-edge duality

Theorem (G., Shapiro). Assume $\lambda=0$ lies in a mobility gap. Then

$$
\mathcal{N}=\mathcal{N}^{\sharp}
$$

Remark. Consider the dynamical system $A_{n} \psi_{n-1}^{+}+B_{n} \psi_{n}^{+}=0$ with Lyaponov exponents

$$
\gamma_{1} \geq \ldots \geq \gamma_{N}
$$

The assumption is satisfied if $\gamma_{i} \neq 0$; then $\mathcal{N}^{\sharp}=\sharp\left\{i \mid \gamma_{i}>0\right\}$. Phase boundaries correspond to $\gamma_{i}=0$ (cf. Prodan et al.)

Bulk-edge duality

Theorem (G., Shapiro). Assume $\lambda=0$ lies in a mobility gap. Then

$$
\mathcal{N}=\mathcal{N}^{\sharp}
$$

Remark. Consider the dynamical system $A_{n} \psi_{n-1}^{+}+B_{n} \psi_{n}^{+}=0$ with Lyaponov exponents

$$
\gamma_{1} \geq \ldots \geq \gamma_{N}
$$

The assumption is satisfied if $\gamma_{i} \neq 0$; then $\mathcal{N}^{\sharp}=\sharp\left\{i \mid \gamma_{i}>0\right\}$. Phase boundaries correspond to $\gamma_{i}=0$ (cf. Prodan et al.)
Lyapunov spectrum of the full chain has $2 N$ exponents, spectrum is even (Example: $N=4$)

- at energy $\lambda \neq 0$ (simple spectrum)

- Spectrum is simple because measure on transfer matrices is irreducible
- so $\gamma=0$ is not in the spectrum; localization follows

Bulk-edge duality

Theorem (G., Shapiro). Assume $\lambda=0$ lies in a mobility gap. Then

$$
\mathcal{N}=\mathcal{N}^{\sharp}
$$

Remark. Consider the dynamical system $A_{n} \psi_{n-1}^{+}+B_{n} \psi_{n}^{+}=0$ with Lyaponov exponents

$$
\gamma_{1} \geq \ldots \geq \gamma_{N}
$$

The assumption is satisfied if $\gamma_{i} \neq 0$; then $\mathcal{N}^{\sharp}=\sharp\left\{i \mid \gamma_{i}>0\right\}$. Phase boundaries correspond to $\gamma_{i}=0$ (cf. Prodan et al.)
Lyapunov spectrum of the full chain has $2 N$ exponents, spectrum is even (Example: $N=4$)

- at energy $\lambda \neq 0$ (simple spectrum)

- At $\lambda=0$ chains decouple: $\mathbb{C}^{N} \oplus 0$ and $0 \oplus \mathbb{C}^{N}$ are invariant subspaces

Bulk-edge duality

Theorem (G., Shapiro). Assume $\lambda=0$ lies in a mobility gap. Then

$$
\mathcal{N}=\mathcal{N}^{\sharp}
$$

Remark. Consider the dynamical system $A_{n} \psi_{n-1}^{+}+B_{n} \psi_{n}^{+}=0$ with Lyaponov exponents

$$
\gamma_{1} \geq \ldots \geq \gamma_{N}
$$

The assumption is satisfied if $\gamma_{i} \neq 0$; then $\mathcal{N}^{\sharp}=\sharp\left\{i \mid \gamma_{i}>0\right\}$. Phase boundaries correspond to $\gamma_{i}=0$ (cf. Prodan et al.)
Lyapunov spectrum of the full chain has $2 N$ exponents, spectrum is even (Example: $N=4$)

- at energy $\lambda \neq 0$ (simple spectrum)

- of the upper $(+)$ and lower (-) chains, at energy $\lambda=0$

- at energy $\lambda=0$ (phase boundary)

Some physics background first

How it all began: Quantum Hall systems
Topological insulators
Bulk-edge correspondence
The periodic table of topological matter

The case of the Quantum Hall Effect

Chiral systems
An experiment
A chiral Hamiltonian and its indices

Time periodic systems
Definitions and results
Some numerics

Some physics background first
How it all began: Quantum Hall systems
Topological insulators
Bulk-edge correspondence
The periodic table of topological matter

The case of the Quantum Hall Effect

Chiral systems
An experiment
A chiral Hamiltonian and its indices

Time periodic systems
Definitions and results
Some numerics

Floquet topological insulators

$H=H(t)$ (bulk) Hamiltonian in the plane with period T

$$
H(t+T)=H(t)
$$

(disorder allowed, no adiabatic setting)

Floquet topological insulators

$H=H(t)$ (bulk) Hamiltonian in the plane with period T

$$
H(t+T)=H(t)
$$

(disorder allowed, no adiabatic setting)
$U(t)$ propagator for the interval $(0, t)$
$\widehat{U}=U(T)$ fundamental propagator

Floquet topological insulators

$H=H(t)$ (bulk) Hamiltonian in the plane with period T

$$
H(t+T)=H(t)
$$

(disorder allowed, no adiabatic setting) $U(t)$ propagator for the interval $(0, t)$
$\widehat{U}=U(T)$ fundamental propagator
Assumption: Spectrum of \widehat{U} has gaps:

spec $\widehat{U} \subset S^{1}$

Bulk index

Special case first: $U(t)$ periodic, i.e.

$$
\widehat{U}=1
$$

Bulk index

Special case first: $U(t)$ periodic, i.e.

$$
\widehat{U}=1
$$

Bulk index

$$
\mathcal{N}_{\mathrm{B}}=\frac{1}{2} \int_{0}^{T} d t \operatorname{tr}\left(U^{*} \partial_{t} U\left[U^{*}\left[\Lambda_{1}, U\right], U^{*}\left[\Lambda_{2}, U\right]\right]\right)
$$

with $U=U(t)$ and switches $\Lambda_{i}=\Lambda\left(x_{i}\right),(i=1,2)$

Bulk index

Special case first: $U(t)$ periodic, i.e.

$$
\widehat{U}=1
$$

Bulk index

$$
\mathcal{N}_{\mathrm{B}}=\frac{1}{2} \int_{0}^{T} d t \operatorname{tr}\left(U^{*} \partial_{t} U\left[U^{*}\left[\Lambda_{1}, U\right], U^{*}\left[\Lambda_{2}, U\right]\right]\right)
$$

with $U=U(t)$ and switches $\Lambda_{i}=\Lambda\left(x_{i}\right),(i=1,2)$
Remark. Extends the formula for the periodic case (Rudner et al.)

$$
\mathcal{N}_{\mathrm{B}}=\frac{1}{8 \pi^{2}} \int_{0}^{T} d t \int_{\mathbb{T}} d^{2} k \operatorname{tr}\left(U^{*} \partial_{t} U\left[U^{*} \partial_{1} U, U^{*} \partial_{2} U\right]\right)
$$

with $U=U(t, k)$ acting on the space of states of quasi-momentum $k=\left(k_{1}, k_{2}\right)$

Edge index

$H_{\mathrm{E}}(t)$ restriction of $H(t)$ to right half-space $x_{1}>0$
\widehat{U}_{E} corresponding fundamental propagator

Edge index

$H_{\mathrm{E}}(t)$ restriction of $H(t)$ to right half-space $x_{1}>0$
\widehat{U}_{E} corresponding fundamental propagator
In general: $\widehat{U}_{\mathrm{E}} \neq 1$

Edge index

$H_{\mathrm{E}}(t)$ restriction of $H(t)$ to right half-space $x_{1}>0$
\widehat{U}_{E} corresponding fundamental propagator In general: $\widehat{U}_{\mathrm{E}} \neq 1$
Edge index

$$
\mathcal{N}_{\mathrm{E}}=\operatorname{tr}\left(\widehat{U}_{\mathrm{E}}^{*}\left[\Lambda_{2}, \widehat{U}_{\mathrm{E}}\right]\right)=\operatorname{tr}\left(\widehat{U}_{\mathrm{E}}^{*} \Lambda_{2} \widehat{U}_{\mathrm{E}}-\Lambda_{2}\right)
$$

Remarks.

- The trace is well-defined

Edge index

$H_{\mathrm{E}}(t)$ restriction of $H(t)$ to right half-space $x_{1}>0$
\widehat{U}_{E} corresponding fundamental propagator In general: $\widehat{U}_{\mathrm{E}} \neq 1$
Edge index

$$
\mathcal{N}_{\mathrm{E}}=\operatorname{tr}\left(\widehat{U}_{\mathrm{E}}^{*}\left[\Lambda_{2}, \widehat{U}_{\mathrm{E}}\right]\right)=\operatorname{tr}\left(\widehat{U}_{\mathrm{E}}^{*} \Lambda_{2} \widehat{U}_{\mathrm{E}}-\Lambda_{2}\right)
$$

Remarks.

- The trace is well-defined

- \mathcal{N}_{E} is charge that crossed the line $x_{2}=0$ during a period.
- \mathcal{N}_{E} is independent of Λ_{2} and an integer.

General case: Pair of Hamiltonians

$$
\widehat{U} \neq 1
$$

General case: Pair of Hamiltonians

$$
\widehat{U} \neq 1
$$

Pair of periodic Hamiltonians $H_{i}(t),(i=1,2)$ with

$$
\widehat{U}_{1}=\widehat{U}_{2}
$$

General case: Pair of Hamiltonians

$$
\widehat{U} \neq 1
$$

Pair of periodic Hamiltonians $H_{i}(t),(i=1,2)$ with

$$
\widehat{U}_{1}=\widehat{U}_{2}
$$

Define Hamiltonian $H(t)$ with period $2 T$ by

$$
H(t)= \begin{cases}H_{1}(t) & (0<t<T) \\ -H_{2}(-t) & (-T<t<0)\end{cases}
$$

General case: Pair of Hamiltonians

$$
\widehat{U} \neq 1
$$

Pair of periodic Hamiltonians $H_{i}(t),(i=1,2)$ with

$$
\widehat{U}_{1}=\widehat{U}_{2}
$$

Define Hamiltonian $H(t)$ with period $2 T$ by

$$
H(t)= \begin{cases}H_{1}(t) & (0<t<T) \\ -H_{2}(2 T-t) & (T<t<2 T)\end{cases}
$$

Then

$$
U(t)= \begin{cases}U_{1}(t) & (0<t<T) \\ U_{2}(2 T-t) & (T<t<2 T)\end{cases}
$$

has $\widehat{U}=1$.

General case: Pair of Hamiltonians

$$
\widehat{U} \neq 1
$$

Pair of periodic Hamiltonians $H_{i}(t),(i=1,2)$ with

$$
\widehat{U}_{1}=\widehat{U}_{2}
$$

Define Hamiltonian $H(t)$ with period $2 T$ by

$$
H(t)= \begin{cases}H_{1}(t) & (0<t<T) \\ -H_{2}(2 T-t) & (T<t<2 T)\end{cases}
$$

Then

$$
U(t)= \begin{cases}U_{1}(t) & (0<t<T) \\ U_{2}(2 T-t) & (T<t<2 T)\end{cases}
$$

has $\widehat{U}=1$. Define $\mathcal{N}, \mathcal{N}_{\mathrm{E}}$ (for the pair) as before.

General case: Pair of Hamiltonians

$$
\widehat{U} \neq 1
$$

Pair of periodic Hamiltonians $H_{i}(t),(i=1,2)$ with

$$
\widehat{U}_{1}=\widehat{U}_{2}
$$

Define Hamiltonian $H(t)$ with period $2 T$ by

$$
H(t)= \begin{cases}H_{1}(t) & (0<t<T) \\ -H_{2}(2 T-t) & (T<t<2 T)\end{cases}
$$

Then

$$
U(t)= \begin{cases}U_{1}(t) & (0<t<T) \\ U_{2}(2 T-t) & (T<t<2 T)\end{cases}
$$

has $\widehat{U}=1$. Define $\mathcal{N}, \mathcal{N}_{\mathrm{E}}$ (for the pair) as before.
Theorem (G., Tauber) $\mathcal{N}=\mathcal{N}_{\mathrm{E}}$

Duality in time and space

Let the interface Hamiltonian $H_{\mathrm{I}}(t)$ be a bulk Hamiltonian with

$$
H_{\mathrm{I}}(t)=\left\{\begin{array}{l}
H_{1}(t) \\
H_{2}(t)
\end{array} \text { on states supported on large } \pm x_{1}\right.
$$

(still assuming $\widehat{U}_{1}=\widehat{U}_{2}=: \widehat{U}_{\mathbf{0}}$)

Duality in time and space

Let the interface Hamiltonian $H_{\mathrm{I}}(t)$ be a bulk Hamiltonian with

$$
H_{\mathrm{I}}(t)=\left\{\begin{array}{l}
H_{1}(t) \\
H_{2}(t)
\end{array} \text { on states supported on large } \pm x_{1}\right.
$$

(still assuming $\widehat{U}_{1}=\widehat{U}_{2}=: \widehat{U}_{0}$)
Interface index

$$
\mathcal{N}_{\mathrm{I}}=\operatorname{tr}\left(\widehat{U}_{*}^{*} \widehat{U}_{\mathrm{I}}\left[\Lambda_{2}, \widehat{U}_{0}^{*} \widehat{U}_{\mathrm{I}}\right]\right)
$$

Duality in time and space

Let the interface Hamiltonian $H_{\mathrm{I}}(t)$ be a bulk Hamiltonian with

$$
H_{1}(t)=\left\{\begin{array}{l}
H_{1}(t) \\
H_{2}(t)
\end{array} \quad \text { on states supported on large } \pm x_{1}\right.
$$

(still assuming $\widehat{U}_{1}=\widehat{U}_{2}=: \widehat{U}_{0}$)
Interface index

$$
\mathcal{N}_{\mathrm{I}}=\operatorname{tr}\left(\widehat{U}_{*}^{*} \widehat{U}_{\mathrm{I}}\left[\Lambda_{2}, \widehat{U}_{0}^{*} \widehat{U}_{\mathrm{I}}\right]\right)
$$

Theorem (G., Tauber) The indices for the two diagrams agree:

$$
(\mathcal{N}=) \mathcal{N}_{\mathrm{E}}=\mathcal{N}_{\mathrm{I}}
$$

Back to single Hamiltonian

$$
\widehat{U} \neq 1
$$

Back to single Hamiltonian

$$
\widehat{U} \neq 1
$$

Let $\alpha \in \mathbb{R}$ and $\omega=\mathrm{e}^{\mathrm{i} \alpha}$. For $z \notin \omega \mathbb{R}_{+}$(ray) define the branch $\log _{\alpha} z=\log |z|+\mathrm{i} \arg _{\alpha} z$
by $\alpha-2 \pi<\arg _{\alpha} z<\alpha$.

Back to single Hamiltonian

$$
\widehat{U} \neq 1
$$

Let $\alpha \in \mathbb{R}$ and $\omega=\mathrm{e}^{\mathrm{i} \alpha}$. For $z \notin \omega \mathbb{R}_{+}$(ray) define the branch

$$
\log _{\alpha} z=\log |z|+\mathrm{i} \arg _{\alpha} z
$$

by $\alpha-2 \pi<\arg _{\alpha} z<\alpha$.
Comparison Hamiltonian H_{α} : For $\omega \notin \operatorname{spec} \widehat{U}$ set

$$
-\mathrm{i} H_{\alpha} T:=\log _{\alpha} \widehat{U}
$$

So,

- $\widehat{U}_{\alpha}=\widehat{U}$
- $U_{\alpha+2 \pi}(t)=U_{\alpha}(t) \mathrm{e}^{2 \pi \mathrm{i} t / T}$
- $\mathcal{N}_{\mathrm{B}, \alpha+2 \pi}=\mathcal{N}_{\mathrm{B}, \alpha}=: \mathcal{N}_{\omega}$

Back to single Hamiltonian

$$
\widehat{U} \neq 1
$$

Let $\alpha \in \mathbb{R}$ and $\omega=\mathrm{e}^{\mathrm{i} \alpha}$. For $z \notin \omega \mathbb{R}_{+}$(ray) define the branch

$$
\log _{\alpha} z=\log |z|+\mathrm{i} \arg _{\alpha} z
$$

by $\alpha-2 \pi<\arg _{\alpha} z<\alpha$.
Comparison Hamiltonian H_{α} : For $\omega \notin \operatorname{spec} \widehat{U}$ set

$$
-\mathrm{i} H_{\alpha} T:=\log _{\alpha} \widehat{U}
$$

Theorem (Rudner et al.; G., Tauber) For ω, ω^{\prime} in gaps

$$
\mathcal{N}_{\omega^{\prime}}-\mathcal{N}_{\omega}=\operatorname{itr} P\left[\left[P, \Lambda_{1}\right],\left[P, \Lambda_{2}\right]\right]
$$

where $P=P_{\omega, \omega^{\prime}}$ is the spectral projection associated with spec \widehat{U} between ω, ω^{\prime} (counter-clockwise)

Some physics background first
How it all began: Quantum Hall systems
Topological insulators
Bulk-edge correspondence
The periodic table of topological matter

The case of the Quantum Hall Effect

Chiral systems
An experiment
A chiral Hamiltonian and its indices

Time periodic systems
Definitions and results
Some numerics

Bulk and Edge spectrum

Edge spectrum
Bulk spectrum

Bulk (left) and Edge spectrum (right); color: participation ratio

Computing the edge index

Edge index based $\mathcal{N}_{\mathrm{E}, \alpha}$ based on the pair $\left(H, H_{\alpha}\right)$ (with $\alpha=\pi$)

$$
\mathcal{N}_{\mathrm{E}, \alpha}=\operatorname{tr} A \quad A=\widehat{U}_{\mathrm{E}}^{*} \Lambda_{2} \widehat{U}_{\mathrm{E}}-\widehat{U}_{\alpha, \mathrm{E}}^{*} \Lambda_{2} \widehat{U}_{\alpha, \mathrm{E}}
$$

The diagonal integral kernel $A(x, x)$ as $\log |A(x, x)|$

Boundary conditions:

- Vertical edges: Dirichlet
- Horizontal edges: Periodic

Computing the edge index

Edge index based $\mathcal{N}_{\mathrm{E}, \alpha}$ based on the pair $\left(H, H_{\alpha}\right)$ (with $\alpha=\pi$)

$$
\mathcal{N}_{\mathrm{E}, \alpha}=\operatorname{tr} A \quad A=\widehat{U}_{\mathrm{E}}^{*} \Lambda_{2} \widehat{U}_{\mathrm{E}}-\widehat{U}_{\alpha, \mathrm{E}}^{*} \Lambda_{2} \widehat{U}_{\alpha, \mathrm{E}}
$$

The diagonal integral kernel $A(x, x)$ as $\log |A(x, x)|$

Boundary conditions:

- Vertical edges: Dirichlet
- Horizontal edges: Periodic

The transition

Edge index (left) and zoom (right)

Integer detected with 1 part in 10^{12}

Summary

- Quantum Hall Effect as the first type of topological insulator
- Essential role of disorder (spectral vs. mobility gap)
- Symmetry as a new twist
- Bulk-edge duality
- Chiral symmetry
- Floquet topological insulator

Summary

- Quantum Hall Effect as the first type of topological insulator
- Essential role of disorder (spectral vs. mobility gap)
- Symmetry as a new twist
- Bulk-edge duality
- Chiral symmetry
- Floquet topological insulator

Thank you for your attention!

