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Hall-Ohm law
T= JE o= ( 9 oH )
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oy Hall conductance
op: dissipative conductance, ideally = 0

OH 7 experimental curve
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44 " classical curve
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Width of plateaus increases with disorder
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Spectral vs. Mobility Gap

The spectrum of a single-particle Hamiltonian

extended states (continuous spectrum)
' localized states (pure point spectrum)
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» (integrated) density of states n(u) is constant for n in a Spectral
Gap, and strictly increasing otherwise
» Hall conductance oy() is constant for p in a Mobility Gap

e
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Plateaus arise because of a Mobility Gap only!



The role of disorder
The spectrum of a single-particle Hamiltonian

extended states (continuous spectrum)
localized states (pure point spectrum)
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;L: Fermi energy

» For a periodic (crystalline) medium:
» Method of choice: Bloch theory and vector bundles (Thouless et
al.)
» Gap is spectral
» For a disordered medium:
» Method of choice: Non-commutative geometry (Bellissard; Avron
etal)
» Fermi energy may lie in a mobility gap (better) or just in a spectral
gap
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Mobility gap, technically speaking

Hamiltonian H on ¢2(Z9)
P, = E(_ ) (H): Fermi projection

>R
W

Assumption. Fermi projection has strong off-diagonal decay:
supe 1 " e XN |P, (x, X)| < o0
bd X
(some v >0, alle > 0)

» Proven in (virtually) all cases where localization is known.
» Trivially false for extended states at E = p.
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Topological insulators: Definition stated

» Insulator in the Bulk: Excitation gap
For independent electrons: Spectral gap at Fermi energy u

" - E

» Topology: In the space of Hamiltonians, a topological insulator
can not be deformed in an ordinary one, while keeping the gap
open (homotopy equivalence)

» Ordinary insulator: Can be deformed to the limit of well-separated
atoms (or void)

» Topological Hamiltonians may be inequivalent. Thus:
Classification into classes

» Analogy: torus # sphere (differ by genus)

» Refinement: The Hamiltonians enjoy a symmetry which is preserved
under deformations. (Classification trivially more restrictive, yet
potentially richer: Hamiltonians along deformation may not enjoy
symmetry even if endpoints do. Thus finer classes.)
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Bulk-edge correspondence

Recall: In the space of Hamiltonians, a topological insulator can not
be deformed in an ordinary one, while keeping the gap open and
respecting symmetries
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Bulk-edge correspondence

Deformation as interpolation in physical space:

topological insulator interpolating material void

» Gap must close somewhere in between. Hence: Interface states
at Fermi energy.

» Ordinary insulator ~ void: Edge states

» Bulk-edge correspondence: Termination of bulk of a topological
insulator implies edge states. (But not conversely!)
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Bulk-edge correspondence

In a nutshell: Termination of bulk of a topological insulator implies
edge states
» Goal: State the (intrinsic) topological property distinguishing
different classes of insulators.
More precisely:
» Express that property as an Index relating to the Bulk, resp. to
the Edge.
» Bulk-edge duality: Can it be shown that the two indices agree?
Can it be shown even in presence of just a mobility gap?
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The periodic table of topological matter

Symmetry d
Class | © ¥ M| 1 2 3 4 5 6 7 8
A o o oj0O zZ O Z 0 Z 0 =z
Alll o o 1|z 0 zZ 0 Z 0 Z O
Al 1 0 0,0 O O Z O Zo Zo Z
BDI 1 1 11Z 0 0 0 Z 0 Zo Zo
D 0O 1 0|Z, z 0O O O Z 0 Zs
pm {1 1 1|2, Z» Z 0 0 O Z O
All -1 0 0|0 Zo Zo Z 0 O O Z
Cll -1 1 11 Z 0 Zo Zo Z 0 0 O
C 0O -1t 0|0 Z 0 Zo Zo Z 0 O
Cl 1 1 1,0 0 Z 0 Zo Zo Z O
Notation:
© time-reversal ¥ charge conjugation M combined




The periodic table of topological matter

Symmetry d

Class|lo » n|1 2 3 4 5 6 7 8
A o 0 00 Z O Z 0 Z 0 Z
Al 10O 0 12z 0 Z 0 zZ 0 Z O
Al i 0 0|0 O O Z 0 Zo Zp Z
BDI /1 1 1]Z 0 0 0 Z 0 Z Zo
D 0 1 0({Z, z 0O O O Z 0 Z
pum (-1 1 1\%Z, Z Z 0 0O O Z O
Al |1 0 0|0 Zy Z, Z 0 0 0 Z
ch |1 1 1,%Z 0 Z, Z, Z 0 0 O
C 0O -1t 0|0 Z 0 Zy Zp Z 0 O
Cl i 1 1,0 0 Z 0 Zx Zo 7Z O

First version: Schnyder et al.; then Kitaev based on
Altland-Zirnbauer; based on Bloch theory




The periodic table of topological matter

Symmetry d

Class|© ¥ nj1 2 3 4 5 6 7 8
A o 0o 0|0 Z 0 Z 0 zZ 0 Z
Al {10 0 1,2z 0 zZ 0 Z 0 7Z O
Al 1 0 0|0 O O Z 0 Zp Zp Z
BDI |1 1 1|2Z 0 0 0 Z 0 Zo Zo
D 0O 1 0|Z, z 0 O O Z 0 Z
pm |-+ 1 1%, Zo Z 0 0 0 Z O
Al |-1 0 0|0 Z Zo Z 0 0 0 Z
ch |1 1 1,72 0 Z Zo Z 0 0 O
C 0O 1 0|0 Z 0 Zo Zp Z 0 O
Cl i 1 1,0 0 Z 0 Zo Zo 7Z O

By now: Non-commutative (bulk) index formulae have been found in
many cases (Prodan, Schulz-Baldes)



Special cases to be considered
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IQHE as a Bulk effect

Paradigm: Cyclotron orbit drifting under a electric field E

()
\_/

Hamiltonian Hg in the plane. Kubo formula (linear response to E‘)
OB = ltr PH “P,ua /\1]7 [P,LL7 /\2]]

where

P,: Fermi projection A(X)
A = N(x;), (i = 1,2) switches



IQHE as a Bulk effect (remarks)

Kubo formula (Bellissard et al., Avron et al.)
0B = ltr PH “P}M /\1]7 [P,LL7 /\2]]

extends the formula for the periodic case (Thouless et al., Avron)

B L PRIPRI0: P(K). 02P(K))
where T: Brillouin zone (torus); P(k) Fermi projection on the space of

states of quasi-momentum k = (k1, k2); 0; = 0/0K;

Remarks.
2mop = ch(P)

the Chern number of the vector bundle over T and fiber range P(k)



IQHE as a Bulk effect (remarks)

Kubo formula (Bellissard et al., Avron et al.)
OB — itr PH “Plﬂ /\1], [Pﬂ, /\2”

extends the formula for the periodic case (Thouless et al., Avron)

B L PRIPRI0: P(K). 02P(K))
where T: Brillouin zone (torus); P(k) Fermi projection on the space of

states of quasi-momentum k = (k1, k2); 0; = 0/0K;

Remarks.
2mop = ch(P)

the Chern number of the vector bundle over T and fiber range P(k)

Alternative treatment of disorder (Thouless): Large, but finite system
(square); (k1, k2) ~ (¥1, v2) phase slips in boundary conditions



Aside: What is the Chern number?

A (real) vector bundle over the circle (actually, a line bundle)
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Aside: What is the Chern number?

A (real) vector bundle over the circle (actually, a line bundle)

JJJJUJJJJIUJJUJJHM
mmmunmumﬂ“3

The line bundle is trivial, because it allows for a nowhere vanishing
global section.
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What is the Chern number?

Another vector bundle over the circle

7

T2

The line bundle is not trivial: No nowhere vanishing global section.



Complex bundles (E, T) on the 2-torus

(—TI', 7T)

(_777 _Tr)

» T3 = (p1,p2)

2

(m,7)
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Complex bundles (E, T) on the 2-torus

(—TI', 7T)

(_777 _Tr)

> T3¢ = (1,02
» Fibers E,
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Complex bundles (E, T) on the 2-torus

v

v

v

v

w2
(_7r7 7r) 1 (7T7 7T)

©1

(—=m,—m) (7, —m)

T3¢ = (¢1,2)
Fibers E,

Frame bundle F(E) has fibers F(E), > v = (v, ..

consisting of bases v of E,.
Does F(E) admit a global section?

- VN)



Classification by a Chern number

#2)

_oeut




Classification by a Chern number

_|_

8021
o oe Lemma. On the cut torus the frame
} } bundle admits a section
| — e VY EF(E),
| | 1
| |
1 1

» Boundary values v (y2) and v_(p2) at the point
(1, p0) = (—m, po) of the cut



Classification by a Chern number

_|_

5021
o oe Lemma. On the cut torus the frame
} } bundle admits a section
| — e VY EF(E),
| | 1
| |
1 1

» Boundary values v (y2) and v_(p2) at the point
(7, p2) = (—m, p2) of the cut
» Transition matrix T(p2) € GL(N)

Vi(p2) = vo(p2)T(p2),  (p2€8")



Classification by a Chern number

v2)

l Lemma. On the cut torus the frame
} bundle admits a section
- o= v(p) € F(E),
|
|

o e'e

+ ©1

» Boundary values v (y2) and v_(p2) at the point
(7, p2) = (—m, p2) of the cut
» Transition matrix T(p2) € GL(N)

Vi(p2) = vo(p2)T(p2),  (p2€8")

» Definition. The Chern number Ch(E) is the winding number of
det T(y2) along ¢, € S’



The winding number visualized

Proposition. The Chern number Ch(E) is the winding number of det T(2)
along o € S’

Eigenvalues of T(y») for a single p; € [, 7] = S'

O



The winding number visualized

Eigenvalues of T(y») for a single ¢, € [-7, 7] = S
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Eigenvalues of T(y3) for a all ¢, € [-7, 7] = S' as a whole

N N ‘
AN /
\ d
[
AN N
N




The winding number visualized
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The winding number visualized

Eigenvalues of T(y») for a single ¢, € [-7, 7] = S

J

Eigenvalues of T(y3) for a all ¢, € [-7, 7] = S' as a whole

\ \
A

=

winding number=
signed number of crossings of fiducial line
N=-2
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Hall conductance (bulk)

Definition: Bulk Index is the Chern number ch(P) of the Bloch bundle
P defined by the Fermi projection

Physical meaning: The Hall conductance in the bulk interpretation is
on = (27)'ch(P)

End of aside. Back to the disordered case



IQHE as a Bulk effect (remarks)

OB = itrPH [[Pll* /\1], [P/M /\2]]
where A; = A(x;), (i = 1,2) switches. Supports of VA;:

Xgﬁ\

X1

Remark. The trace is well-defined. Roughly: An operator has a
well-defined trace if it acts non-trivially on finitely many states only.
Here the intersection contains only finitely many sites.
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Equality of conductances

There is a definition of the Edge Hall conductanceog for the case of a
spectral gap, which needs to be amended in the case of a mobility

gap.
Theorem (Schulz-Baldes, Kellendonk, Richter). Ergodic setting. If the
Fermi energy p lies in a spectral gap of Hg, then

OE = OB.

In particular, og does not depend on boundary conditions.

Theorem (Elgart, G., Schenker). Ergodic setting not assumed. Same
is true in the case of a mobility gap.
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An experiment: Amo et al.

2 T |sband

Momentum k (r/a)

S-band

Figure: Zigzag chain of coupled micropillars and lasing modes
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An experiment: Amo et al.
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The Su-Schrieffer-Heeger model (1 dimensional)
Alternating chain with nearest neighbor hopping
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The Su-Schrieffer-Heeger model (1 dimensional)
Alternating chain with nearest neighbor hopping

wn 1
n+1
Hilbert space: sites arranged in dimers

H=—P2,CN) 225 — ( Un )
nez

Un
0o S
(s %)
with S, S* acting on ¢?(Z,CN) as
(Sy™)n = AnT/’,J»,rq + By, (SY7)n = An1¥pg + Boton
(An, By € GL(N) almost surely)

Hamiltonian



Chiral symmetry
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Chiral symmetry

1 0
=(o &)
{H,M} =HN+MNH=0
hence

Hp =Xy = H(p) = =A(MNy)

Energy A = 0 is special:
» Eigenspace of A = 0 invariant under I1
P vy P
\/%ﬁ \w‘/\/

» Eigenvalue equation Hy = M\ is Sy™ = \yp—, S*y~ = M, i.e.

Al 4+ Bt =Xy, Ayt + By = Mo

is one 2nd order difference equation, but two 1st order for A =0



Bulk index

Let
Y =sgnH

Definition. The Bulk index is
N = %tr(l‘lZ[/\,Z])

with A = A(n) a switch function (cf. Prodan et al.)

A) E 1



Edge Hamiltonian and index

JF
a—1 1/};_

wa_ /(/7;+1 =0

Edge Hamiltonian H; defined by restriction to n < a (Dirichlet
boundary condition v, ; = 0). Chiral symmetry preserved.
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Edge Hamiltonian and index

+ +
R a—1 a
\\\\ /\w_/ /O\/
a Yar1 =

Edge Hamiltonian H; defined by restriction to n < a (Dirichlet
boundary condition v, ; = 0). Chiral symmetry preserved.

Eigenspace of A = 0 still invariant under .

N =dim{y | Hap = 0,y = b}



Edge Hamiltonian and index

+ +
R a—1 a
\\\\ /\17D_/ /O\//,
a Var1 =

Edge Hamiltonian H; defined by restriction to n < a (Dirichlet
boundary condition v, ; = 0). Chiral symmetry preserved.

Eigenspace of A = 0 still invariant under .
Ny i=dim{¢ | Hay = 0,1y = £}
Definition. The Edge index is
Ny =N{ - N7

and can be shown to be independent of a. Call it V%,
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Bulk-edge duality
Theorem (G., Shapiro). Assume X\ = 0 lies in a mobility gap. Then

N =N

Remark. Consider the dynamical system Apy}  + Bt = 0 with
Lyaponov exponents

M= 2N
The assumption is satisfied if 7; # 0; then N* = #{i | 7; > 0}. Phase
boundaries correspond to v; = 0 (cf. Prodan et al.)

Lyapunov spectrum of the full chain has 2N exponents, spectrum is
even (Example: N = 4)
» at energy A # 0 (simple spectrum)
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0

» Spectrum is simple because measure on transfer matrices is
irreducible
» s0 v = 0is not in the spectrum; localization follows



Bulk-edge duality
Theorem (G., Shapiro). Assume X\ = 0 lies in a mobility gap. Then

N =N

Remark. Consider the dynamical system Apy}  + Bt = 0 with
Lyaponov exponents

M= 2N
The assumption is satisfied if 7; # 0; then N* = #{i | 7; > 0}. Phase
boundaries correspond to v; = 0 (cf. Prodan et al.)

Lyapunov spectrum of the full chain has 2N exponents, spectrum is
even (Example: N = 4)
» at energy A # 0 (simple spectrum)
— 00— 000 —0 0=
0

» At \ = 0 chains decouple: CN @ 0 and 0 @ CV are invariant
subspaces



Bulk-edge duality
Theorem (G., Shapiro). Assume X\ = 0 lies in a mobility gap. Then
N =N*

Remark. Consider the dynamical system Apy}  + Bt = 0 with
Lyaponov exponents
M= 2N
The assumption is satisfied if 7; # 0; then N* = #{i | 7; > 0}. Phase
boundaries correspond to v; = 0 (cf. Prodan et al.)
Lyapunov spectrum of the full chain has 2N exponents, spectrum is
even (Example: N = 4)
» at energy A # 0 (simple spectrum)
——0—0 00— —0 00—
0
» of the upper (+) and lower (—) chains, at energy A =0
——0—0—0 10— —0 00—

» at energy A = 0 (phase boundary)
— oo o * *—— o o=
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Floquet topological insulators

H = H(t) (bulk) Hamiltonian in the plane with period T
H(t+T)=H()

(disorder allowed, no adiabatic setting)

U(t) propagator for the interval (0, t)
U = U(T) fundamental propagator

Assumption: Spectrum of U has gaps:

specU C S!
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Special case first: U(t) periodic, i.e.

U=1
Bulk index
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Bulk index

Special case first: U(t) periodic, i.e.
U=1
Bulk index
1 T
N = 2/ dttr(U*0,U[U*[Ay, U], U Ag, U]])
0
with U = U(t) and switches A; = A(x;), (I = 1,2)
Remark. Extends the formula for the periodic case (Rudner et al.)

_ 1
- 872

)
No / dt / Rk tr(U*8,U[U" 8, U, U*,U])
0 T

with U = U(t, k) acting on the space of states of quasi-momentum
k = (ki, ko)
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Edge index
Hg(t) restriction of H(t) to right half-space x; > 0

Us corresponding fundamental propagator
In general: UE #1
Edge index
N = tr(Og[As, Ur]) = tr(UpAa Uk — A)

Remarks.
» The trace is well-defined

X2

Xy

edge



Edge index
Hg(t) restriction of H(t) to right half-space x; > 0

Us corresponding fundamental propagator
In general: UE #1
Edge index
N = tr(Og[As, Ur]) = tr(UpAa Uk — A)

Remarks.
» The trace is well-defined

X2

X1

edge

» Nk is charge that crossed the line xo = 0 during a period.
» Nk is independent of A, and an integer.
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U#1
Pair of periodic Hamiltonians H;(t), (i = 1,2) with
Ui =Us
Define Hamiltonian H(t) with period 2T by

Ht) = Hi(t) O0<t<T)
—Ho(—1t) (-T<t<0)
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General case: Pair of Hamiltonians
U#1
Pair of periodic Hamiltonians H;(t), (i = 1,2) with
Ur = O

Define Hamiltonian H(t) with period 2T by

Ht) = Hi(t) O0<t<T)
| —H(2T — 1) (T <t<2T)

Th
o u(t) = Ui (1) (0<t<T)
| Ws(2T - 1) (T <t<2T)

has U = 1. Define N, N& (for the pair) as before.
Theorem (G., Tauber) V' = Ng
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Let the interface Hamiltonian Hi(t) be a bulk Hamiltonian with

Hi(t) = (1) on states supported on large +x;
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Duality in time and space
Let the interface Hamiltonian Hi(t) be a bulk Hamiltonian with

Ha(t)

(still assuming Uy = Up = U.)

Hi(t) = {H1 (1) on states supported on large +x;
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M = tr(U; Uiz, U Uh)




Duality in time and space
Let the interface Hamiltonian Hi(t) be a bulk Hamiltonian with

Ha(t)

(still assuming Uy = Up = U.)

Hi(t) = {H1 (1) on states supported on large +x;

Interface index o o~
M = tr(U; Uiz, U Uh)

t t

Th o Y

® Hy g(t) Ho 5(t) « — Hy (1)

8 X1 Xq
—Ho g(—t)

Theorem (G., Tauber) The indices for the two diagrams agree:

(N =)V =M
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U#1

w
Let o € R and w = e'®. For z ¢ wR, (ray) define the branch

log, z =log|z| +iarg, z

by a — 27 <arg,z < a.



Back to single Hamiltonian

~

U#1

w
Let o € R and w = e'®. For z ¢ wR, (ray) define the branch

log, z =log|z| +iarg, z
by o — 21 < arg, z < a.

Comparison Hamiltonian H,,: For w ¢ specU set

~

—iH, T :=log, U
So,

> DO[ = U
> a+27r(t) _ Ua(t)e27rit/T

> NB,a+27r = NB,a = Nw



Back to single Hamiltonian

~

U#1
w

Let o« € R and w = e'*. For z ¢ wR. (ray) define the branch

log, z =log|z| +iarg, z
by o — 27 < arg, z < .
Comparison Hamiltonian H,,: For w ¢ spch set

—iH, T :=log,, U
Theorem (Rudner et al.; G., Tauber) For w,w’ in gaps
N = N, = itr P[[P, ], [P, A2]]

where P = P, . is the spectral projection associated with spch
between w,w’ (counter-clockwise)



Some physics background first

The case of the Quantum Hall Effect

Chiral systems

Time periodic systems

Some numerics



Bulk and Edge spectrum

Edge spectrum
J=5.30, delta = 6.28, dr=7.85, N=M=40

Bulk spectrum

J=5.30, delta = 6.28, dr=7.85, N=M=40 1
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Bulk (left) and Edge spectrum (right); color: participation ratio



Computing the edge index

Edge index based Mg, based on the pair (H, H,) (with o = )
NE@ =trA

A= UEAZ/UE — U;,EAZ Ua,E
The diagonal integral kernel A(x, x) as log |A(x, x)|

Boundary conditions:

> Vertical edges: Dirichlet

» Horizontal edges: Periodic



Computing the edge index

Edge index based Mg, based on the pair (H, H,) (with o = )
NE@ =trA

A= UEAZ/UE — U;,EAZ Ua,E
The diagonal integral kernel A(x, x) as log |A(x, x)|

Boundary conditions:

> Vertical edges: Dirichlet

» Horizontal edges: Periodic



The transition

12 Invariant wrt J for d = 3.14, dr=3.14 12 Invariant wrt J for d = 3.14, dr=3.14
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Edge index (left) and zoom (right)
Integer detected with 1 part in 102
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Summary

v

Quantum Hall Effect as the first type of topological insulator
Essential role of disorder (spectral vs. mobility gap)
Symmetry as a new twist

Bulk-edge duality

Chiral symmetry

v

v

v

v

v

Floquet topological insulator

Thank you for your attention!
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