# Disorder and topology. The cases of Floquet and of chiral systems

Gian Michele Graf ETH Zurich

Partial Differential Equations in Physics and Materials Science Heraklion May 10-16, 2018

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

# Disorder and topology. The cases of Floquet and of chiral systems

Gian Michele Graf ETH Zurich

Partial Differential Equations in Physics and Materials Science Heraklion May 10-16, 2018

based on joint works with A. Elgart, J. Schenker; J. Shapiro; C. Tauber

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

#### Outline

#### Some physics background first

How it all began: Quantum Hall systems Topological insulators Bulk-edge correspondence The periodic table of topological matter

#### The case of the Quantum Hall Effect

#### Chiral systems

An experiment A chiral Hamiltonian and its indices

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

#### Time periodic systems

#### Some physics background first

How it all began: Quantum Hall systems Topological insulators Bulk-edge correspondence The periodic table of topological matter

The case of the Quantum Hall Effect

Chiral systems

An experiment A chiral Hamiltonian and its indices

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Time periodic systems

#### Some physics background first

How it all began: Quantum Hall systems

Topological insulators Bulk-edge correspondence The periodic table of topological matter

#### The case of the Quantum Hall Effect

#### Chiral systems

An experiment A chiral Hamiltonian and its indices

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

#### Time periodic systems

## The experiment (von Klitzing, 1980)



Hall-Ohm law

$$\vec{j} = \underline{\sigma}\vec{E}$$
,  $\underline{\sigma} = \begin{pmatrix} \sigma_{\rm D} & \sigma_{\rm H} \\ -\sigma_{\rm H} & \sigma_{\rm D} \end{pmatrix}$ 

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

 $\sigma_{\rm H}$ : Hall conductance  $\sigma_{\rm D}$ : dissipative conductance, ideally = 0

## The experiment (von Klitzing, 1980) Hall-Ohm law

$$\vec{j} = \underline{\sigma}\vec{E}$$
,  $\underline{\sigma} = \begin{pmatrix} \sigma_{\rm D} & \sigma_{\rm H} \\ -\sigma_{\rm H} & \sigma_{\rm D} \end{pmatrix}$ 

 $\sigma_{\rm H}$ : Hall conductance

 $\sigma_{\rm D}$ : dissipative conductance, ideally = 0



# The experiment (von Klitzing, 1980) Hall-Ohm law

$$\vec{j} = \underline{\sigma}\vec{E}$$
,  $\underline{\sigma} = \begin{pmatrix} \sigma_{\rm D} & \sigma_{\rm H} \\ -\sigma_{\rm H} & \sigma_{\rm D} \end{pmatrix}$ 

 $\sigma_{\rm H}$ : Hall conductance

 $\sigma_{\rm D}$ : dissipative conductance, ideally = 0



・ロット (雪) (日) (日)

Width of plateaus increases with disorder

#### The spectrum of a single-particle Hamiltonian





The spectrum of a single-particle Hamiltonian



(integrated) density of states n(μ) is constant for μ in a Spectral Gap, and strictly increasing otherwise

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

The spectrum of a single-particle Hamiltonian



(integrated) density of states n(μ) is constant for μ in a Spectral Gap, and strictly increasing otherwise

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

► Hall conductance  $\sigma_{\rm H}(\mu)$  is constant for  $\mu$  in a Mobility Gap

The spectrum of a single-particle Hamiltonian



- (integrated) density of states n(μ) is constant for μ in a Spectral Gap, and strictly increasing otherwise
- ► Hall conductance  $\sigma_{\rm H}(\mu)$  is constant for  $\mu$  in a Mobility Gap



Plateaus arise because of a Mobility Gap only!

# The role of disorder

The spectrum of a single-particle Hamiltonian



- ► For a periodic (crystalline) medium:
  - Method of choice: Bloch theory and vector bundles (Thouless et al.)
  - Gap is spectral
- For a disordered medium:
  - Method of choice: Non-commutative geometry (Bellissard; Avron et al.)
  - Fermi energy may lie in a mobility gap (better) or just in a spectral gap

# Mobility gap, technically speaking

Hamiltonian *H* on  $\ell^2(\mathbb{Z}^d)$  $P_{\mu} = E_{(-\infty,\mu)}(H)$ : Fermi projection



#### Mobility gap, technically speaking

Hamiltonian *H* on  $\ell^2(\mathbb{Z}^d)$  $P_{\mu} = E_{(-\infty,\mu)}(H)$ : Fermi projection



Assumption. Fermi projection has strong off-diagonal decay:

$$\sup_{x'} \mathrm{e}^{-arepsilon |x'|} \sum_{x} \mathrm{e}^{
u |x-x'|} |\mathcal{P}_{\mu}(x,x')| < \infty$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

(some  $\nu > 0$ , all  $\varepsilon > 0$ )

# Mobility gap, technically speaking

Hamiltonian *H* on  $\ell^2(\mathbb{Z}^d)$  $P_{\mu} = E_{(-\infty,\mu)}(H)$ : Fermi projection



Assumption. Fermi projection has strong off-diagonal decay:

$$\sup_{x'} \mathrm{e}^{-arepsilon |x'|} \sum_{x} \mathrm{e}^{
u |x-x'|} |\mathcal{P}_{\mu}(x,x')| < \infty$$

(some  $\nu > 0$ , all  $\varepsilon > 0$ )

- Proven in (virtually) all cases where localization is known.
- Trivially false for extended states at  $E = \mu$ .

#### Some physics background first

How it all began: Quantum Hall systems Topological insulators Bulk-edge correspondence

The periodic table of topological matter

#### The case of the Quantum Hall Effect

#### Chiral systems

An experiment A chiral Hamiltonian and its indices

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

#### Time periodic systems

Insulator in the Bulk: Excitation gap
 For independent electrons: Spectral gap at Fermi energy μ



◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Insulator in the Bulk: Excitation gap
 For independent electrons: Spectral gap at Fermi energy μ



 Topology: In the space of Hamiltonians, a topological insulator can not be deformed in an ordinary one, while keeping the gap open (homotopy equivalence)

- Insulator in the Bulk: Excitation gap
   For independent electrons: Spectral gap at Fermi energy μ
- Topology: In the space of Hamiltonians, a topological insulator can not be deformed in an ordinary one, while keeping the gap open (homotopy equivalence)
  - Ordinary insulator: Can be deformed to the limit of well-separated atoms (or void)

μ

Ê

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- Insulator in the Bulk: Excitation gap
   For independent electrons: Spectral gap at Fermi energy μ
- Topology: In the space of Hamiltonians, a topological insulator can not be deformed in an ordinary one, while keeping the gap open (homotopy equivalence)
  - Ordinary insulator: Can be deformed to the limit of well-separated atoms (or void)

μ

Ê

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

 Topological Hamiltonians may be inequivalent. Thus: Classification into classes

- Insulator in the Bulk: Excitation gap
   For independent electrons: Spectral gap at Fermi energy μ
- Topology: In the space of Hamiltonians, a topological insulator can not be deformed in an ordinary one, while keeping the gap open (homotopy equivalence)
  - Ordinary insulator: Can be deformed to the limit of well-separated atoms (or void)

μ

Ē

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

- Topological Hamiltonians may be inequivalent. Thus: Classification into classes
- ► Analogy: torus ≠ sphere (differ by genus)

- Insulator in the Bulk: Excitation gap
   For independent electrons: Spectral gap at Fermi energy μ
- Topology: In the space of Hamiltonians, a topological insulator can not be deformed in an ordinary one, while keeping the gap open (homotopy equivalence)
  - Ordinary insulator: Can be deformed to the limit of well-separated atoms (or void)

μ

Ē

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

- Topological Hamiltonians may be inequivalent. Thus: Classification into classes
- Analogy: torus  $\neq$  sphere (differ by genus)
- Refinement: The Hamiltonians enjoy a symmetry which is preserved under deformations.

- Insulator in the Bulk: Excitation gap
   For independent electrons: Spectral gap at Fermi energy μ
- Topology: In the space of Hamiltonians, a topological insulator can not be deformed in an ordinary one, while keeping the gap open (homotopy equivalence)
  - Ordinary insulator: Can be deformed to the limit of well-separated atoms (or void)

μ

Ē

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

- Topological Hamiltonians may be inequivalent. Thus: Classification into classes
- Analogy: torus  $\neq$  sphere (differ by genus)
- Refinement: The Hamiltonians enjoy a symmetry which is preserved under deformations. (Classification trivially more restrictive, yet potentially richer: Hamiltonians along deformation may not enjoy symmetry even if endpoints do. Thus finer classes.)

#### Some physics background first

How it all began: Quantum Hall systems Topological insulators Bulk-edge correspondence

The periodic table of topological matter

#### The case of the Quantum Hall Effect

#### Chiral systems

An experiment A chiral Hamiltonian and its indices

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

#### Time periodic systems

Recall: In the space of Hamiltonians, a topological insulator can not be deformed in an ordinary one, while keeping the gap open and respecting symmetries

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Deformation as interpolation in physical space:



 Gap must close somewhere in between. Hence: Interface states at Fermi energy.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Deformation as interpolation in physical space:



 Gap must close somewhere in between. Hence: Interface states at Fermi energy.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Ordinary insulator ~ void: Edge states

Deformation as interpolation in physical space:



- Gap must close somewhere in between. Hence: Interface states at Fermi energy.
- Ordinary insulator ~ void: Edge states
- Bulk-edge correspondence: Termination of bulk of a topological insulator implies edge states.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Deformation as interpolation in physical space:



- Gap must close somewhere in between. Hence: Interface states at Fermi energy.
- Ordinary insulator ~ void: Edge states
- Bulk-edge correspondence: Termination of bulk of a topological insulator implies edge states. (But not conversely!)

In a nutshell: Termination of bulk of a topological insulator implies edge states

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

In a nutshell: Termination of bulk of a topological insulator implies edge states

 Goal: State the (intrinsic) topological property distinguishing different classes of insulators.

(ロ) (同) (三) (三) (三) (○) (○)

More precisely:

In a nutshell: Termination of bulk of a topological insulator implies edge states

 Goal: State the (intrinsic) topological property distinguishing different classes of insulators.

More precisely:

Express that property as an Index relating to the Bulk, resp. to the Edge.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

In a nutshell: Termination of bulk of a topological insulator implies edge states

 Goal: State the (intrinsic) topological property distinguishing different classes of insulators.

More precisely:

- Express that property as an Index relating to the Bulk, resp. to the Edge.
- Bulk-edge duality: Can it be shown that the two indices agree? Can it be shown even in presence of just a mobility gap?

(ロ) (同) (三) (三) (三) (○) (○)

#### Some physics background first

How it all began: Quantum Hall systems Topological insulators Bulk-edge correspondence

The periodic table of topological matter

#### The case of the Quantum Hall Effect

#### Chiral systems

An experiment A chiral Hamiltonian and its indices

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

#### Time periodic systems

# The periodic table of topological matter

| Symmetry |    |    |   | d              |                |                |                |                |                |                |                |
|----------|----|----|---|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| Class    | Θ  | Σ  | П | 1              | 2              | 3              | 4              | 5              | 6              | 7              | 8              |
| A        | 0  | 0  | 0 | 0              | $\mathbb{Z}$   | 0              | $\mathbb{Z}$   | 0              | $\mathbb{Z}$   | 0              | $\mathbb{Z}$   |
| AIII     | 0  | 0  | 1 | $\mathbb{Z}$   | 0              | $\mathbb{Z}$   | 0              | $\mathbb{Z}$   | 0              | $\mathbb{Z}$   | 0              |
| AI       | 1  | 0  | 0 | 0              | 0              | 0              | $\mathbb{Z}$   | 0              | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ | $\mathbb{Z}$   |
| BDI      | 1  | 1  | 1 | $\mathbb{Z}$   | 0              | 0              | 0              | $\mathbb{Z}$   | 0              | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ |
| D        | 0  | 1  | 0 | $\mathbb{Z}_2$ | $\mathbb{Z}$   | 0              | 0              | 0              | $\mathbb{Z}$   | 0              | $\mathbb{Z}_2$ |
| DIII     | -1 | 1  | 1 | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ | $\mathbb{Z}$   | 0              | 0              | 0              | $\mathbb{Z}$   | 0              |
| All      | -1 | 0  | 0 | 0              | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ | $\mathbb{Z}$   | 0              | 0              | 0              | $\mathbb{Z}$   |
| CII      | -1 | -1 | 1 | $\mathbb{Z}$   | 0              | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ | $\mathbb{Z}$   | 0              | 0              | 0              |
| С        | 0  | -1 | 0 | 0              | $\mathbb{Z}$   | 0              | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ | $\mathbb{Z}$   | 0              | 0              |
| CI       | 1  | -1 | 1 | 0              | 0              | $\mathbb{Z}$   | 0              | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ | $\mathbb{Z}$   | 0              |

Notation:

⊖ time-reversal

 $\Sigma$  charge conjugation

#### $\Pi$ combined

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○ ○
# The periodic table of topological matter

| Symmetry |    |    |   | d              |                |                |                |                |                |                |                |  |
|----------|----|----|---|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|--|
| Class    | Θ  | Σ  | П | 1              | 2              | 3              | 4              | 5              | 6              | 7              | 8              |  |
| A        | 0  | 0  | 0 | 0              | $\mathbb{Z}$   | 0              | $\mathbb{Z}$   | 0              | $\mathbb{Z}$   | 0              | $\mathbb{Z}$   |  |
| AIII     | 0  | 0  | 1 | $\mathbb{Z}$   | 0              | $\mathbb{Z}$   | 0              | $\mathbb{Z}$   | 0              | $\mathbb{Z}$   | 0              |  |
| AI       | 1  | 0  | 0 | 0              | 0              | 0              | $\mathbb{Z}$   | 0              | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ | $\mathbb{Z}$   |  |
| BDI      | 1  | 1  | 1 | $\mathbb{Z}$   | 0              | 0              | 0              | $\mathbb{Z}$   | 0              | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ |  |
| D        | 0  | 1  | 0 | $\mathbb{Z}_2$ | $\mathbb{Z}$   | 0              | 0              | 0              | $\mathbb{Z}$   | 0              | $\mathbb{Z}_2$ |  |
| DIII     | -1 | 1  | 1 | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ | $\mathbb{Z}$   | 0              | 0              | 0              | $\mathbb{Z}$   | 0              |  |
| All      | -1 | 0  | 0 | 0              | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ | $\mathbb{Z}$   | 0              | 0              | 0              | $\mathbb{Z}$   |  |
| CII      | -1 | -1 | 1 | $\mathbb{Z}$   | 0              | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ | $\mathbb{Z}$   | 0              | 0              | 0              |  |
| С        | 0  | -1 | 0 | 0              | $\mathbb{Z}$   | 0              | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ | $\mathbb{Z}$   | 0              | 0              |  |
| CI       | 1  | -1 | 1 | 0              | 0              | $\mathbb{Z}$   | 0              | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ | $\mathbb{Z}$   | 0              |  |

First version: Schnyder et al.; then Kitaev based on Altland-Zirnbauer; based on Bloch theory

# The periodic table of topological matter

| Symmetry |    |    |   | d              |                |                |                |                |                |                |                |  |
|----------|----|----|---|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|--|
| Class    | Θ  | Σ  | П | 1              | 2              | 3              | 4              | 5              | 6              | 7              | 8              |  |
| A        | 0  | 0  | 0 | 0              | $\mathbb{Z}$   | 0              | $\mathbb{Z}$   | 0              | $\mathbb{Z}$   | 0              | $\mathbb{Z}$   |  |
| AIII     | 0  | 0  | 1 | $\mathbb{Z}$   | 0              | $\mathbb{Z}$   | 0              | $\mathbb{Z}$   | 0              | $\mathbb{Z}$   | 0              |  |
| AI       | 1  | 0  | 0 | 0              | 0              | 0              | $\mathbb{Z}$   | 0              | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ | $\mathbb{Z}$   |  |
| BDI      | 1  | 1  | 1 | $\mathbb{Z}$   | 0              | 0              | 0              | $\mathbb{Z}$   | 0              | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ |  |
| D        | 0  | 1  | 0 | $\mathbb{Z}_2$ | $\mathbb{Z}$   | 0              | 0              | 0              | $\mathbb{Z}$   | 0              | $\mathbb{Z}_2$ |  |
| DIII     | -1 | 1  | 1 | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ | $\mathbb{Z}$   | 0              | 0              | 0              | $\mathbb{Z}$   | 0              |  |
| All      | -1 | 0  | 0 | 0              | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ | $\mathbb{Z}$   | 0              | 0              | 0              | $\mathbb{Z}$   |  |
| CII      | -1 | -1 | 1 | $\mathbb{Z}$   | 0              | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ | $\mathbb{Z}$   | 0              | 0              | 0              |  |
| С        | 0  | -1 | 0 | 0              | $\mathbb{Z}$   | 0              | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ | $\mathbb{Z}$   | 0              | 0              |  |
| CI       | 1  | -1 | 1 | 0              | 0              | $\mathbb{Z}$   | 0              | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ | $\mathbb{Z}$   | 0              |  |

By now: Non-commutative (bulk) index formulae have been found in many cases (Prodan, Schulz-Baldes)

### Special cases to be considered

| Symmetry |    |    |   | d              |                |                |                |                |                |                |                |  |
|----------|----|----|---|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|--|
| Class    | Θ  | Σ  | П | 1              | 2              | 3              | 4              | 5              | 6              | 7              | 8              |  |
| A        | 0  | 0  | 0 | 0              | $\mathbb{Z}$   | 0              | $\mathbb{Z}$   | 0              | $\mathbb{Z}$   | 0              | $\mathbb{Z}$   |  |
| AIII     | 0  | 0  | 1 | $\mathbb{Z}$   | 0              | $\mathbb{Z}$   | 0              | $\mathbb{Z}$   | 0              | $\mathbb{Z}$   | 0              |  |
| AI       | 1  | 0  | 0 | 0              | 0              | 0              | $\mathbb{Z}$   | 0              | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ | $\mathbb{Z}$   |  |
| BDI      | 1  | 1  | 1 | $\mathbb{Z}$   | 0              | 0              | 0              | $\mathbb{Z}$   | 0              | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ |  |
| D        | 0  | 1  | 0 | $\mathbb{Z}_2$ | $\mathbb{Z}$   | 0              | 0              | 0              | $\mathbb{Z}$   | 0              | $\mathbb{Z}_2$ |  |
| DIII     | -1 | 1  | 1 | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ | $\mathbb{Z}$   | 0              | 0              | 0              | $\mathbb{Z}$   | 0              |  |
| All      | -1 | 0  | 0 | 0              | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ | $\mathbb{Z}$   | 0              | 0              | 0              | $\mathbb{Z}$   |  |
| CII      | -1 | -1 | 1 | $\mathbb{Z}$   | 0              | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ | $\mathbb{Z}$   | 0              | 0              | 0              |  |
| С        | 0  | -1 | 0 | 0              | $\mathbb{Z}$   | 0              | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ | $\mathbb{Z}$   | 0              | 0              |  |
| CI       | 1  | -1 | 1 | 0              | 0              | $\mathbb{Z}$   | 0              | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ | $\mathbb{Z}$   | 0              |  |

... and one more

#### Some physics background first

How it all began: Quantum Hall systems Topological insulators Bulk-edge correspondence The periodic table of topological matter

### The case of the Quantum Hall Effect

#### Chiral systems

An experiment A chiral Hamiltonian and its indices

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

### Time periodic systems

Definitions and results Some numerics

### IQHE as a Bulk effect

Paradigm: Cyclotron orbit drifting under a electric field  $\vec{E}$ 



Hamiltonian  $H_B$  in the plane. Kubo formula (linear response to  $\vec{E}$ )

$$\sigma_{\rm B} = {\rm i} \operatorname{tr} \boldsymbol{P}_{\mu} \big[ [\boldsymbol{P}_{\mu}, \boldsymbol{\Lambda}_1], [\boldsymbol{P}_{\mu}, \boldsymbol{\Lambda}_2] \big]$$

#### where

 $P_{\mu}$ : Fermi projection  $\Lambda_i = \Lambda(x_i)$ , (i = 1, 2) switches



◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

### IQHE as a Bulk effect (remarks)

Kubo formula (Bellissard et al., Avron et al.)

 $\sigma_{\rm B} = \operatorname{i} \operatorname{tr} \boldsymbol{P}_{\mu} \big[ [\boldsymbol{P}_{\mu}, \boldsymbol{\Lambda}_1], [\boldsymbol{P}_{\mu}, \boldsymbol{\Lambda}_2] \big]$ 

extends the formula for the periodic case (Thouless et al., Avron)

$$\sigma_{\rm B} = -\frac{\mathrm{i}}{(2\pi)^2} \int_{\mathbb{T}} d^2 k \operatorname{tr}(P(k)[\partial_1 P(k), \partial_2 P(k)])$$

where  $\mathbb{T}$ : Brillouin zone (torus); P(k) Fermi projection on the space of states of quasi-momentum  $k = (k_1, k_2)$ ;  $\partial_i = \partial/\partial k_i$ 

### Remarks.

$$2\pi\sigma_{\rm B}={
m ch}(P)$$

the Chern number of the vector bundle over  $\mathbb{T}$  and fiber range P(k)

### IQHE as a Bulk effect (remarks)

Kubo formula (Bellissard et al., Avron et al.)

 $\sigma_{\rm B} = {\rm i} \operatorname{tr} \boldsymbol{P}_{\mu} \big[ [\boldsymbol{P}_{\mu}, \boldsymbol{\Lambda}_1], [\boldsymbol{P}_{\mu}, \boldsymbol{\Lambda}_2] \big]$ 

extends the formula for the periodic case (Thouless et al., Avron)

$$\sigma_{\rm B} = -\frac{\mathrm{i}}{(2\pi)^2} \int_{\mathbb{T}} d^2 k \operatorname{tr}(P(k)[\partial_1 P(k), \partial_2 P(k)])$$

where  $\mathbb{T}$ : Brillouin zone (torus); P(k) Fermi projection on the space of states of quasi-momentum  $k = (k_1, k_2)$ ;  $\partial_i = \partial/\partial k_i$ 

### Remarks.

$$2\pi\sigma_{\rm B}={\rm ch}(P)$$

the Chern number of the vector bundle over  $\mathbb{T}$  and fiber range P(k)

Alternative treatment of disorder (Thouless): Large, but finite system (square);  $(k_1, k_2) \rightsquigarrow (\varphi_1, \varphi_2)$  phase slips in boundary conditions

# Aside: What is the Chern number?

A (real) vector bundle over the circle (actually, a line bundle)



# Aside: What is the Chern number?

A (real) vector bundle over the circle (actually, a line bundle)



The line bundle is trivial, because it allows for a nowhere vanishing global section.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

## What is the Chern number?

Another vector bundle over the circle



▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

# What is the Chern number?

Another vector bundle over the circle



The line bundle is not trivial: No nowhere vanishing global section.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Complex bundles  $(E, \mathbb{T})$  on the 2-torus



$$\blacktriangleright \ \mathbb{T} \ni \varphi = (\varphi_1, \varphi_2)$$

▲ロト▲聞ト▲臣ト▲臣ト 臣 のへで

Complex bundles  $(E, \mathbb{T})$  on the 2-torus



ヘロア 人間 アメヨア ヘヨア

E 900

$$\blacktriangleright \ \mathbb{T} \ni \varphi = (\varphi_1, \varphi_2)$$

Fibers E<sub>φ</sub>

### Complex bundles $(E, \mathbb{T})$ on the 2-torus



$$\blacktriangleright \ \mathbb{T} \ni \varphi = (\varphi_1, \varphi_2)$$

- Fibers E<sub>φ</sub>
- Frame bundle F(E) has fibers F(E)<sub>φ</sub> ∋ v = (v<sub>1</sub>,...v<sub>N</sub>) consisting of bases v of E<sub>φ</sub>.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Does F(E) admit a global section?



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ



Lemma. On the cut torus the frame bundle admits a section  $\varphi \mapsto v(\varphi) \in F(E)_{\varphi}$ 

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Boundary values v<sub>+</sub>(φ<sub>2</sub>) and v<sub>-</sub>(φ<sub>2</sub>) at the point (π, φ<sub>2</sub>) ≡ (−π, φ<sub>2</sub>) of the cut



Lemma. On the cut torus the frame bundle admits a section  $\varphi \mapsto v(\varphi) \in F(E)_{\varphi}$ 

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

▶ Boundary values  $v_+(\varphi_2)$  and  $v_-(\varphi_2)$  at the point  $(\pi, \varphi_2) \equiv (-\pi, \varphi_2)$  of the cut

• Transition matrix  $T(\varphi_2) \in GL(N)$ 

$$\mathbf{v}_+(arphi_2) = \mathbf{v}_-(arphi_2) T(arphi_2) , \qquad (arphi_2 \in \mathcal{S}^1)$$



Lemma. On the cut torus the frame bundle admits a section  $\varphi \mapsto v(\varphi) \in F(E)_{\varphi}$ 

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

▶ Boundary values  $v_+(\varphi_2)$  and  $v_-(\varphi_2)$  at the point  $(\pi, \varphi_2) \equiv (-\pi, \varphi_2)$  of the cut

• Transition matrix  $T(\varphi_2) \in GL(N)$ 

$$\mathbf{v}_+(\varphi_2) = \mathbf{v}_-(\varphi_2)T(\varphi_2), \qquad (\varphi_2 \in S^1)$$

Definition. The Chern number Ch(E) is the winding number of det T(φ<sub>2</sub>) along φ<sub>2</sub> ∈ S<sup>1</sup>

Proposition. The Chern number Ch(E) is the winding number of det  $T(\varphi_2)$  along  $\varphi_2 \in S^1$ 

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Eigenvalues of  $T(\varphi_2)$  for a single  $\varphi_2 \in [-\pi, \pi] \equiv S^1$ 



Eigenvalues of  $T(\varphi_2)$  for a single  $\varphi_2 \in [-\pi, \pi] \equiv S^1$ 

Eigenvalues of  $T(\varphi_2)$  for a all  $\varphi_2 \in [-\pi, \pi] \equiv S^1$  as a whole



Eigenvalues of  $T(\varphi_2)$  for a single  $\varphi_2 \in [-\pi, \pi] \equiv S^1$ 

Eigenvalues of  $T(\varphi_2)$  for a all  $\varphi_2 \in [-\pi, \pi] \equiv S^1$  as a whole



Eigenvalues of  $T(\varphi_2)$  for a single  $\varphi_2 \in [-\pi, \pi] \equiv S^1$ 

Eigenvalues of  $T(\varphi_2)$  for a all  $\varphi_2 \in [-\pi, \pi] \equiv S^1$  as a whole



Eigenvalues of  $T(\varphi_2)$  for a single  $\varphi_2 \in [-\pi, \pi] \equiv S^1$ 

Eigenvalues of  $T(\varphi_2)$  for a all  $\varphi_2 \in [-\pi, \pi] \equiv S^1$  as a whole



winding number= signed number of crossings of fiducial line N = -2

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Definition: Bulk Index is the Chern number ch(P) of the Bloch bundle P defined by the Fermi projection

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Definition: Bulk Index is the Chern number ch(P) of the Bloch bundle *P* defined by the Fermi projection

Physical meaning: The Hall conductance in the bulk interpretation is

$$\sigma_{\rm H} = (2\pi)^{-1} {\rm ch}(\boldsymbol{P})$$

Definition: Bulk Index is the Chern number ch(P) of the Bloch bundle *P* defined by the Fermi projection

Physical meaning: The Hall conductance in the bulk interpretation is

$$\sigma_{\mathrm{H}} = (2\pi)^{-1} \mathrm{ch}(P)$$

(ロ) (同) (三) (三) (三) (○) (○)

End of aside. Back to the disordered case

### IQHE as a Bulk effect (remarks)

 $\sigma_{\rm B} = {\rm i} \operatorname{tr} \mathcal{P}_{\mu} \big[ [\mathcal{P}_{\mu}, \Lambda_1], [\mathcal{P}_{\mu}, \Lambda_2] \big]$ 

where  $\Lambda_i = \Lambda(x_i)$ , (i = 1, 2) switches. Supports of  $\nabla \Lambda_i$ :



**Remark.** The trace is well-defined. Roughly: An operator has a well-defined trace if it acts non-trivially on finitely many states only. Here the intersection contains only finitely many sites.

# Equality of conductances

There is a definition of the Edge Hall conductance  $\sigma_{\rm E}$  for the case of a spectral gap, which needs to be amended in the case of a mobility gap.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

# Equality of conductances

There is a definition of the Edge Hall conductance  $\sigma_{\rm E}$  for the case of a spectral gap, which needs to be amended in the case of a mobility gap.

Theorem (Schulz-Baldes, Kellendonk, Richter). Ergodic setting. If the Fermi energy  $\mu$  lies in a spectral gap of  $H_B$ , then

 $\sigma_{\rm E} = \sigma_{\rm B}.$ 

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

In particular,  $\sigma_{\rm E}$  does not depend on boundary conditions.

# Equality of conductances

There is a definition of the Edge Hall conductance  $\sigma_{\rm E}$  for the case of a spectral gap, which needs to be amended in the case of a mobility gap.

Theorem (Schulz-Baldes, Kellendonk, Richter). Ergodic setting. If the Fermi energy  $\mu$  lies in a spectral gap of  $H_B$ , then

 $\sigma_{\rm E} = \sigma_{\rm B}$ .

In particular,  $\sigma_{\rm E}$  does not depend on boundary conditions.

Theorem (Elgart, G., Schenker). Ergodic setting not assumed. Same is true in the case of a mobility gap.

(ロ) (同) (三) (三) (三) (○) (○)

#### Some physics background first

How it all began: Quantum Hall systems Topological insulators Bulk-edge correspondence The periodic table of topological matter

The case of the Quantum Hall Effect

#### Chiral systems

An experiment A chiral Hamiltonian and its indices

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

#### Time periodic systems

Definitions and results Some numerics

#### Some physics background first

How it all began: Quantum Hall systems Topological insulators Bulk-edge correspondence The periodic table of topological matter

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

### The case of the Quantum Hall Effect

### Chiral systems An experiment A chiral Hamiltonian and its indices

#### Time periodic systems

Definitions and results Some numerics

# An experiment: Amo et al.



Figure: Zigzag chain of coupled micropillars and lasing modes

ロ > < 個 > < 目 > < 目 > < 目 > < 回 > < < の へ ()</li>

### An experiment: Amo et al.



Figure: Lasing modes: bulk and edge

・ロット (雪) (日) (日)

ъ

#### Some physics background first

How it all began: Quantum Hall systems Topological insulators Bulk-edge correspondence The periodic table of topological matter

### The case of the Quantum Hall Effect

#### Chiral systems

- An experiment
- A chiral Hamiltonian and its indices

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

### Time periodic systems

Definitions and results Some numerics

# The Su-Schrieffer-Heeger model (1 dimensional)

Alternating chain with nearest neighbor hopping



・ロット (雪) (日) (日)

э
#### The Su-Schrieffer-Heeger model (1 dimensional) Alternating chain with nearest neighbor hopping



Hilbert space: sites arranged in dimers

$$\mathcal{H} = \ell^{2}(\mathbb{Z}, \mathbb{C}^{N}) \otimes \mathbb{C}^{2} \ni \psi = \left(\begin{array}{c} \psi_{n}^{+} \\ \psi_{n}^{-} \end{array}\right)_{n \in \mathbb{Z}}$$

Hamiltonian

$$H = \left( egin{array}{cc} 0 & \mathcal{S}^* \ \mathcal{S} & 0 \end{array} 
ight)$$

with S,  $S^*$  acting on  $\ell^2(\mathbb{Z}, \mathbb{C}^N)$  as

$$(S\psi^+)_n = A_n\psi^+_{n-1} + B_n\psi^+_n, \qquad (S^*\psi^-)$$

 $(A_n, B_n \in \operatorname{GL}(N)$  almost surely)

$$(S^*\psi^-)_n = A^*_{n+1}\psi^-_{n+1} + B^*_n\psi^-_n$$

< □ > < □ > < □ > < □ > < □ > < □ >

## Chiral symmetry

$$\Pi = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
$$H, \Pi\} \equiv H\Pi + \Pi H = 0$$

{

hence

$$H\psi = \lambda\psi \implies H(\Pi\psi) = -\lambda(\Pi\psi)$$

# Chiral symmetry

$$\Pi = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
$$H, \Pi \} \equiv H\Pi + \Pi H = 0$$

hence

$$H\psi = \lambda\psi \quad \Longrightarrow \quad H(\Pi\psi) = -\lambda(\Pi\psi)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Energy  $\lambda = 0$  is special:

• Eigenspace of  $\lambda = 0$  invariant under  $\Pi$ 

ł

# Chiral symmetry

$$\Pi = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
$$H, \Pi\} \equiv H\Pi + \Pi H = 0$$

hence

$$H\psi = \lambda\psi \quad \Longrightarrow \quad H(\Pi\psi) = -\lambda(\Pi\psi)$$

Energy  $\lambda = 0$  is special:

• Eigenspace of  $\lambda = 0$  invariant under  $\Pi$ 



• Eigenvalue equation  $H\psi = \lambda \psi$  is  $S\psi^+ = \lambda \psi^-$ ,  $S^*\psi^- = \lambda \psi^+$ , i.e.

$$\boldsymbol{A}_{\boldsymbol{n}}\psi_{\boldsymbol{n}-1}^{+} + \boldsymbol{B}_{\boldsymbol{n}}\psi_{\boldsymbol{n}}^{+} = \lambda\psi_{\boldsymbol{n}}^{-}, \qquad \boldsymbol{A}_{\boldsymbol{n}+1}^{*}\psi_{\boldsymbol{n}+1}^{-} + \boldsymbol{B}_{\boldsymbol{n}}^{*}\psi_{\boldsymbol{n}}^{-} = \lambda\psi_{\boldsymbol{n}}^{+}$$

is one 2nd order difference equation, but two 1st order for  $\lambda = 0$ 

#### Let

$$\Sigma = \operatorname{sgn} H$$

#### Definition. The Bulk index is

$$\mathcal{N} = \frac{1}{2} \, \text{tr} (\Pi \Sigma [\Lambda, \Sigma])$$



▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

with  $\Lambda = \Lambda(n)$  a switch function (cf. Prodan et al.)



・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

-

Edge Hamiltonian  $H_a$  defined by restriction to  $n \le a$  (Dirichlet boundary condition  $\psi_{a+1}^- = 0$ ). Chiral symmetry preserved.



・ コット (雪) ( 小田) ( コット 日)

Edge Hamiltonian  $H_a$  defined by restriction to  $n \le a$  (Dirichlet boundary condition  $\psi_{a+1}^- = 0$ ). Chiral symmetry preserved.

Eigenspace of  $\lambda = 0$  still invariant under  $\Pi$ .



Edge Hamiltonian  $H_a$  defined by restriction to  $n \le a$  (Dirichlet boundary condition  $\psi_{a+1}^- = 0$ ). Chiral symmetry preserved.

Eigenspace of  $\lambda = 0$  still invariant under  $\Pi$ .

$$\mathcal{N}_{a}^{\pm} := \dim\{\psi \mid H_{a}\psi = 0, \Pi\psi = \pm\psi\}$$

・ コット (雪) ( 小田) ( コット 日)



Edge Hamiltonian  $H_a$  defined by restriction to  $n \le a$  (Dirichlet boundary condition  $\psi_{a+1}^- = 0$ ). Chiral symmetry preserved.

Eigenspace of  $\lambda = 0$  still invariant under  $\Pi$ .

$$\mathcal{N}_{a}^{\pm} := \dim\{\psi \mid H_{a}\psi = 0, \Pi\psi = \pm\psi\}$$

Definition. The Edge index is

$$\mathcal{N}_a^{\sharp} := \mathcal{N}_a^+ - \mathcal{N}_a^-$$

and can be shown to be independent of *a*. Call it  $\mathcal{N}^{\sharp}$ .

#### Theorem (G., Shapiro). Assume $\lambda = 0$ lies in a mobility gap. Then

$$\mathcal{N}=\mathcal{N}^{\sharp}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Theorem (G., Shapiro). Assume  $\lambda = 0$  lies in a mobility gap. Then

$$\mathcal{N}=\mathcal{N}^{\sharp}$$

**Remark.** Consider the dynamical system  $A_n\psi_{n-1}^+ + B_n\psi_n^+ = 0$  with Lyaponov exponents

$$\gamma_1 \geq \ldots \geq \gamma_N$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

The assumption is satisfied if  $\gamma_i \neq 0$ ; then  $\mathcal{N}^{\sharp} = \sharp\{i \mid \gamma_i > 0\}$ .

Theorem (G., Shapiro). Assume  $\lambda = 0$  lies in a mobility gap. Then

$$\mathcal{N}=\mathcal{N}^{\sharp}$$

**Remark.** Consider the dynamical system  $A_n\psi_{n-1}^+ + B_n\psi_n^+ = 0$  with Lyaponov exponents

$$\gamma_1 \geq \ldots \geq \gamma_N$$

The assumption is satisfied if  $\gamma_i \neq 0$ ; then  $\mathcal{N}^{\sharp} = \sharp\{i \mid \gamma_i > 0\}$ . Phase boundaries correspond to  $\gamma_i = 0$  (cf. Prodan et al.)

(ロ) (同) (三) (三) (三) (○) (○)

Theorem (G., Shapiro). Assume  $\lambda = 0$  lies in a mobility gap. Then

$$\mathcal{N}=\mathcal{N}^{\sharp}$$

**Remark.** Consider the dynamical system  $A_n\psi_{n-1}^+ + B_n\psi_n^+ = 0$  with Lyaponov exponents

$$\gamma_1 \geq \ldots \geq \gamma_N$$

The assumption is satisfied if  $\gamma_i \neq 0$ ; then  $\mathcal{N}^{\sharp} = \sharp\{i \mid \gamma_i > 0\}$ . Phase boundaries correspond to  $\gamma_i = 0$  (cf. Prodan et al.)

Lyapunov spectrum of the full chain has 2N exponents, spectrum is even (Example: N = 4)

• at energy  $\lambda \neq 0$  (simple spectrum)



- Spectrum is simple because measure on transfer matrices is irreducible
- so  $\gamma = 0$  is not in the spectrum; localization follows

Theorem (G., Shapiro). Assume  $\lambda = 0$  lies in a mobility gap. Then

$$\mathcal{N}=\mathcal{N}^{\sharp}$$

**Remark.** Consider the dynamical system  $A_n\psi_{n-1}^+ + B_n\psi_n^+ = 0$  with Lyaponov exponents

$$\gamma_1 \geq \ldots \geq \gamma_N$$

The assumption is satisfied if  $\gamma_i \neq 0$ ; then  $\mathcal{N}^{\sharp} = \sharp\{i \mid \gamma_i > 0\}$ . Phase boundaries correspond to  $\gamma_i = 0$  (cf. Prodan et al.)

Lyapunov spectrum of the full chain has 2N exponents, spectrum is even (Example: N = 4)

• at energy 
$$\lambda \neq 0$$
 (simple spectrum)



(ロ) (同) (三) (三) (三) (○) (○)

At λ = 0 chains decouple: C<sup>N</sup> ⊕ 0 and 0 ⊕ C<sup>N</sup> are invariant subspaces

Theorem (G., Shapiro). Assume  $\lambda = 0$  lies in a mobility gap. Then

$$\mathcal{N}=\mathcal{N}^{\sharp}$$

**Remark.** Consider the dynamical system  $A_n\psi_{n-1}^+ + B_n\psi_n^+ = 0$  with Lyaponov exponents

$$\gamma_1 \geq \ldots \geq \gamma_N$$

The assumption is satisfied if  $\gamma_i \neq 0$ ; then  $\mathcal{N}^{\sharp} = \sharp\{i \mid \gamma_i > 0\}$ . Phase boundaries correspond to  $\gamma_i = 0$  (cf. Prodan et al.)

Lyapunov spectrum of the full chain has 2N exponents, spectrum is even (Example: N = 4)





• of the upper (+) and lower (-) chains, at energy  $\lambda = 0$ 

• at energy  $\lambda = 0$  (phase boundary)

#### Some physics background first

How it all began: Quantum Hall systems Topological insulators Bulk-edge correspondence The periodic table of topological matter

The case of the Quantum Hall Effect

#### Chiral systems

An experiment A chiral Hamiltonian and its indices

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

#### Time periodic systems

Definitions and results Some numerics

#### Some physics background first

How it all began: Quantum Hall systems Topological insulators Bulk-edge correspondence The periodic table of topological matter

#### The case of the Quantum Hall Effect

#### Chiral systems

An experiment A chiral Hamiltonian and its indices

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

#### Time periodic systems Definitions and results

Some numerics

# Floquet topological insulators

H = H(t) (bulk) Hamiltonian in the plane with period T

H(t+T)=H(t)

(disorder allowed, no adiabatic setting)

# Floquet topological insulators

H = H(t) (bulk) Hamiltonian in the plane with period T

H(t+T)=H(t)

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

(disorder allowed, no adiabatic setting)

U(t) propagator for the interval (0, t) $\hat{U} = U(T)$  fundamental propagator

# Floquet topological insulators

H = H(t) (bulk) Hamiltonian in the plane with period T

H(t+T)=H(t)

(disorder allowed, no adiabatic setting)

U(t) propagator for the interval (0, t) $\hat{U} = U(T)$  fundamental propagator

Assumption: Spectrum of  $\hat{U}$  has gaps:



Special case first: U(t) periodic, i.e.

 $\widehat{U} = 1$ 



Special case first: U(t) periodic, i.e.

 $\widehat{U} = 1$ 

**Bulk index** 

$$\mathcal{N}_{\mathrm{B}} = \frac{1}{2} \int_{0}^{T} dt \operatorname{tr}(U^{*} \partial_{t} U \big[ U^{*}[\Lambda_{1}, U], U^{*}[\Lambda_{2}, U] \big])$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

with U = U(t) and switches  $\Lambda_i = \Lambda(x_i)$ , (i = 1, 2)

Special case first: U(t) periodic, i.e.

 $\widehat{U} = 1$ 

#### **Bulk index**

$$\mathcal{N}_{\mathrm{B}} = \frac{1}{2} \int_0^T dt \operatorname{tr}(U^* \partial_t U \big[ U^* [\Lambda_1, U], U^* [\Lambda_2, U] \big])$$

with U = U(t) and switches  $\Lambda_i = \Lambda(x_i)$ , (i = 1, 2)

**Remark.** Extends the formula for the periodic case (Rudner et al.)

$$\mathcal{N}_{\rm B} = \frac{1}{8\pi^2} \int_0^T dt \int_{\mathbb{T}} d^2 k \operatorname{tr}(U^* \partial_t U[U^* \partial_1 U, U^* \partial_2 U])$$

with U = U(t, k) acting on the space of states of quasi-momentum  $k = (k_1, k_2)$ 

 $H_{\rm E}(t)$  restriction of H(t) to right half-space  $x_1 > 0$ 

 $\widehat{\textit{U}}_{\rm E}$  corresponding fundamental propagator

 $H_{\rm E}(t)$  restriction of H(t) to right half-space  $x_1 > 0$ 

(ロ) (同) (三) (三) (三) (○) (○)

 $\widehat{\textit{U}}_{\!
m E}$  corresponding fundamental propagator

In general:  $\widehat{U}_{E} \neq 1$ 

 $H_{\rm E}(t)$  restriction of H(t) to right half-space  $x_1 > 0$ 

 $\widehat{U}_{\rm E}$  corresponding fundamental propagator In general:  $\widehat{U}_{\rm E} \neq 1$ 

Edge index

$$\mathcal{N}_{\mathrm{E}} = \mathsf{tr}(\widehat{\mathcal{U}}_{\mathrm{E}}^*[\Lambda_2, \widehat{\mathcal{U}}_{\mathrm{E}}]) = \mathsf{tr}(\widehat{\mathcal{U}}_{\mathrm{E}}^*\Lambda_2\widehat{\mathcal{U}}_{\mathrm{E}} - \Lambda_2)$$

#### Remarks.

► The trace is well-defined



◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

 $H_{\rm E}(t)$  restriction of H(t) to right half-space  $x_1 > 0$ 

 $\widehat{U}_{\rm E}$  corresponding fundamental propagator In general:  $\widehat{U}_{\rm E} \neq 1$ 

Edge index

$$\mathcal{N}_{\mathrm{E}} = \mathsf{tr}(\widehat{\mathcal{U}}_{\mathrm{E}}^*[\Lambda_2, \widehat{\mathcal{U}}_{\mathrm{E}}]) = \mathsf{tr}(\widehat{\mathcal{U}}_{\mathrm{E}}^*\Lambda_2\widehat{\mathcal{U}}_{\mathrm{E}} - \Lambda_2)$$

#### Remarks.

► The trace is well-defined



- $N_E$  is charge that crossed the line  $x_2 = 0$  during a period.
- $\mathcal{N}_E$  is independent of  $\Lambda_2$  and an integer.

 $\widehat{U} \neq 1$ 



 $\widehat{U} \neq 1$ 

Pair of periodic Hamiltonians  $H_i(t)$ , (i = 1, 2) with

 $\widehat{U}_1 = \widehat{U}_2$ 

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

 $\widehat{U} \neq 1$ 

Pair of periodic Hamiltonians  $H_i(t)$ , (i = 1, 2) with

$$\widehat{U}_1 = \widehat{U}_2$$

Define Hamiltonian H(t) with period 2T by

$$H(t) = \begin{cases} H_1(t) & (0 < t < T) \\ -H_2(-t) & (-T < t < 0) \end{cases}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

 $\widehat{U} \neq 1$ 

Pair of periodic Hamiltonians  $H_i(t)$ , (i = 1, 2) with

$$\widehat{U}_1 = \widehat{U}_2$$

Define Hamiltonian H(t) with period 2T by

$$H(t) = \begin{cases} H_1(t) & (0 < t < T) \\ -H_2(2T - t) & (T < t < 2T) \end{cases}$$

Then

$$U(t) = \begin{cases} U_1(t) & (0 < t < T) \\ U_2(2T - t) & (T < t < 2T) \end{cases}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

has  $\hat{U} = 1$ .

 $\widehat{U} \neq 1$ 

Pair of periodic Hamiltonians  $H_i(t)$ , (i = 1, 2) with

$$\widehat{U}_1 = \widehat{U}_2$$

Define Hamiltonian H(t) with period 2T by

$$H(t) = \begin{cases} H_1(t) & (0 < t < T) \\ -H_2(2T - t) & (T < t < 2T) \end{cases}$$

Then

$$U(t) = \begin{cases} U_1(t) & (0 < t < T) \\ U_2(2T - t) & (T < t < 2T) \end{cases}$$

has  $\widehat{U} = 1$ . Define  $\mathcal{N}, \mathcal{N}_E$  (for the pair) as before.

 $\widehat{U} \neq 1$ 

Pair of periodic Hamiltonians  $H_i(t)$ , (i = 1, 2) with

$$\widehat{U}_1 = \widehat{U}_2$$

Define Hamiltonian H(t) with period 2T by

$$H(t) = \begin{cases} H_1(t) & (0 < t < T) \\ -H_2(2T - t) & (T < t < 2T) \end{cases}$$

Then

$$U(t) = \begin{cases} U_1(t) & (0 < t < T) \\ U_2(2T - t) & (T < t < 2T) \end{cases}$$

has  $\widehat{U} = 1$ . Define  $\mathcal{N}, \mathcal{N}_E$  (for the pair) as before. Theorem (G., Tauber)  $\mathcal{N} = \mathcal{N}_E$ 

### Duality in time and space

Let the interface Hamiltonian  $H_{I}(t)$  be a bulk Hamiltonian with

$$H_{\mathrm{I}}(t) = egin{cases} H_{\mathrm{I}}(t) \ H_{\mathrm{2}}(t) \ H_{\mathrm{2}}(t) \end{cases}$$

on states supported on large  $\pm x_1$ 

(still assuming  $\widehat{U}_1 = \widehat{U}_2 =: \widehat{U}_{\bullet}$ )



#### Duality in time and space

Let the interface Hamiltonian  $H_{I}(t)$  be a bulk Hamiltonian with

$$H_{\rm I}(t) = egin{cases} H_{\rm I}(t) \ H_{\rm 2}(t) \end{bmatrix}$$
 on states supported on large  $\pm x_1$ 

(still assuming  $\widehat{U}_1 = \widehat{U}_2 =: \widehat{U}_{\bullet}$ )

Interface index

 $\mathcal{N}_{\mathrm{I}} = \mathsf{tr}(\widehat{U}_{\bullet}^{*}\widehat{U}_{\mathrm{I}}[\Lambda_{2},\widehat{U}_{\bullet}^{*}\widehat{U}_{\mathrm{I}}])$ 



◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

#### Duality in time and space

Let the interface Hamiltonian  $H_{I}(t)$  be a bulk Hamiltonian with

$$H_{\rm I}(t) = egin{cases} H_{\rm I}(t) \ H_{\rm 2}(t) \end{bmatrix}$$
 on states supported on large  $\pm x_1$ 

(still assuming  $\widehat{U}_1 = \widehat{U}_2 =: \widehat{U}_{\bullet}$ )

Interface index

 $\mathcal{N}_{\mathrm{I}} = \mathsf{tr}(\widehat{U}_{\bullet}^{*}\widehat{U}_{\mathrm{I}}[\Lambda_{2},\widehat{U}_{\bullet}^{*}\widehat{U}_{\mathrm{I}}])$ 



Theorem (G., Tauber) The indices for the two diagrams agree:

$$(\mathcal{N}=)\mathcal{N}_{\mathrm{E}}=\mathcal{N}_{\mathrm{I}}$$

(日) (日) (日) (日) (日) (日) (日)
$\widehat{U} \neq \mathbf{1}$ 



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ





Let  $\alpha \in \mathbb{R}$  and  $\omega = e^{i\alpha}$ . For  $z \notin \omega \mathbb{R}_+$  (ray) define the branch

$$\log_lpha z = \log |z| + \mathrm{i} \arg_lpha z$$

by  $\alpha - 2\pi < \arg_{\alpha} z < \alpha$ .





(ロ) (同) (三) (三) (三) (○) (○)

Let  $\alpha \in \mathbb{R}$  and  $\omega = e^{i\alpha}$ . For  $z \notin \omega \mathbb{R}_+$  (ray) define the branch  $\log_{\alpha} z = \log |z| + i \arg_{\alpha} z$ 

by  $\alpha - 2\pi < \arg_{\alpha} z < \alpha$ .

Comparison Hamiltonian  $H_{\alpha}$ : For  $\omega \notin \operatorname{spec} \widehat{U}$  set

$$-\mathrm{i}H_{lpha}T:=\log_{lpha}\widehat{U}$$

So,  

$$\widehat{U}_{\alpha} = \widehat{U}$$

$$U_{\alpha+2\pi}(t) = U_{\alpha}(t)e^{2\pi i t/T}$$

$$\mathcal{N}_{B,\alpha+2\pi} = \mathcal{N}_{B,\alpha} =: \mathcal{N}_{\omega}$$





Let  $\alpha \in \mathbb{R}$  and  $\omega = e^{i\alpha}$ . For  $z \notin \omega \mathbb{R}_+$  (ray) define the branch

$$\log_{\alpha} z = \log |z| + \mathrm{i} \arg_{\alpha} z$$

by  $\alpha - 2\pi < \arg_{\alpha} z < \alpha$ .

Comparison Hamiltonian  $H_{\alpha}$ : For  $\omega \notin \operatorname{spec} \widehat{U}$  set

$$-\mathrm{i}H_{\alpha}T := \log_{\alpha}\widehat{U}$$

**Theorem** (Rudner et al.; G., Tauber) For  $\omega, \omega'$  in gaps

$$\mathcal{N}_{\omega'} - \mathcal{N}_{\omega} = \mathrm{i} \operatorname{\mathsf{tr}} oldsymbol{P}ig[ [oldsymbol{P}, oldsymbol{\Lambda_1}], [oldsymbol{P}, oldsymbol{\Lambda_2}]ig]$$

where  $P = P_{\omega,\omega'}$  is the spectral projection associated with spec $\hat{U}$ between  $\omega, \omega'$  (counter-clockwise)

#### Some physics background first

How it all began: Quantum Hall systems Topological insulators Bulk-edge correspondence The periodic table of topological matter

#### The case of the Quantum Hall Effect

#### Chiral systems

An experiment A chiral Hamiltonian and its indices

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

#### Time periodic systems

Definitions and results

Some numerics

## Bulk and Edge spectrum



Bulk (left) and Edge spectrum (right); color: participation ratio

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

### Computing the edge index

Edge index based  $\mathcal{N}_{E,\alpha}$  based on the pair  $(H, H_{\alpha})$  (with  $\alpha = \pi$ )

$$\mathcal{N}_{\mathrm{E},\alpha} = \operatorname{tr} A \qquad A = \widehat{U}_{\mathrm{E}}^* \Lambda_2 \widehat{U}_{\mathrm{E}} - \widehat{U}_{\alpha,\mathrm{E}}^* \Lambda_2 \widehat{U}_{\alpha,\mathrm{E}}$$

The diagonal integral kernel A(x, x) as  $\log |A(x, x)|$ 



Boundary conditions:

- Vertical edges: Dirichlet
- Horizontal edges: Periodic

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

### Computing the edge index

Edge index based  $\mathcal{N}_{E,\alpha}$  based on the pair  $(H, H_{\alpha})$  (with  $\alpha = \pi$ )

$$\mathcal{N}_{\mathrm{E},\alpha} = \operatorname{tr} A \qquad A = \widehat{U}_{\mathrm{E}}^* \Lambda_2 \widehat{U}_{\mathrm{E}} - \widehat{U}_{\alpha,\mathrm{E}}^* \Lambda_2 \widehat{U}_{\alpha,\mathrm{E}}$$

The diagonal integral kernel A(x, x) as  $\log |A(x, x)|$ 



Boundary conditions:

- Vertical edges: Dirichlet
- Horizontal edges: Periodic

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

## The transition



#### Edge index (left) and zoom (right)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Integer detected with 1 part in 10<sup>12</sup>

# Summary

Quantum Hall Effect as the first type of topological insulator

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- Essential role of disorder (spectral vs. mobility gap)
- Symmetry as a new twist
- Bulk-edge duality
- Chiral symmetry
- Floquet topological insulator

# Summary

- Quantum Hall Effect as the first type of topological insulator
- Essential role of disorder (spectral vs. mobility gap)
- Symmetry as a new twist
- Bulk-edge duality
- Chiral symmetry
- Floquet topological insulator

Thank you for your attention!

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>