Existence and regularity of solution for a Stochastic Cahn-Hilliard/Allen-Cahn equation with unbounded noise diffusion

Dimitra Antonopoulou

University of Chester, UK

joint work with G. Karali and A. Millet

Heraklion, May 2018

The Stochastic equation

We consider the Cahn-Hilliard/Allen-Cahn equation with multiplicative space-time noise:

$$\begin{split} u_t &= -\varrho \Delta \Big(\Delta u - f(u)\Big) + \Big(\Delta u - f(u)\Big) + \sigma(u)\dot{W} & \text{in } \mathcal{D} \times [0,T), \\ u(x,0) &= u_0(x) & \text{in } \mathcal{D}, \\ \frac{\partial u}{\partial \nu} &= \frac{\partial \Delta u}{\partial \nu} = 0 & \text{on } \partial \mathcal{D} \times [0,T). \end{split}$$

 \mathcal{D} is a rectangular domain in \mathbb{R}^d with d=1,2,3,

$$\varrho > 0$$
 difusion constant,

$$f = F'$$
, $F(u) = (1 - u^2)^2$ is a double equal-well potential.

 \dot{W} is a space-time white noise in the sense of Walsh, Lecture Notes in Math. 1986.

 σ is Lipschitz with sub-linear growth such that

$$|\sigma(u)| \le C(1+|u|^{\alpha}), \tag{2}$$

for some $\alpha \in (0,1]$.

Main Results

We give sufficient conditions on the initial condition u_0 so that:

- 1. a unique local (maximal) solution exists when d=1,2,3, for any $\alpha \in (0,1]$,
- 2. when $\alpha < \frac{1}{3}$, i.e. when the supremum of α coincides with the inverse of the polynomial order of the nonlinear function f, a global solution exists with Lipschitz path-regularity for d = 1.

Approach motivated by the works: Cardon-Weber, Bernoulli 2001, Cardon-Weber, Millet, J. Theor. Probab.,2004, Da Prato, Debussche, Nonlin, Anal., 1996, Antonopoulou, Karali, DCDSB, 2011.

The physical model

Surface diffusion, and, adsorption/desorption micromechanisms:

- \hookrightarrow in surface processes,
- \hookrightarrow on cluster interface morphology,

see Katsoulakis, Vlachos, IMA Vol. Math. Appl. 2003.

Stochastic time-dependent Ginzburg-Landau type equations with additive Gaussian white noise source:

- \hookrightarrow Allen-Cahn (Model A),

appear in the classical theory of phase transitions;

see the universality classification of Hohenberg and Halperin, J. Rev. Mod. Phys. 1977.

A simplified mean field model of statistical mechanics

- \hookrightarrow SPDE (1): Cahn-Hilliard and Allen-Cahn with noise.
 - 1. The Cahn-Hilliard operator: mass conservative phase separation and surface diffusion.
 - 2. The Allen-Cahn operator: adsorption and desorption and serves as a diffuse interface model for boundary coarsening.
 - 3. Interacting particle systems are Markov processes set on a lattice corresponding to a solid surface, of Ising-type; see Giacomin, Lebowitz, Presutti, Math. Surveys Monogr. 1999.

Assuming that the particle-particle interactions are attractive

- \hookrightarrow so, the diffusion constant $\varrho > 0$.

Weak formulation

For simplicity we set $\varrho=1$ and consider ${\mathcal D}$ the unitary cube.

We say that u is a weak solution of the equation (1) if it satisfies:

$$\int_{\mathcal{D}} \left(u(x,t) - u_0(x) \right) \phi(x) \, dx =$$

$$\int_{0}^{t} \int_{\mathcal{D}} \left(-\Delta^2 \phi(x) u(x,s) + \Delta \phi(x) [f(u(x,s)) + u(x,s)] - \phi(x) f(u(x,s)) \right) \, dx ds$$

$$+ \int_{0}^{t} \int_{\mathcal{D}} \phi(x) \sigma(u(x,s)) \, W(dx,ds),$$
(3)

for all $\phi \in \mathcal{C}^4(\mathcal{D})$ with $\frac{\partial \phi}{\partial \nu} = \frac{\partial \Delta \phi}{\partial \nu} = 0$ on $\partial \mathcal{D}$.

Measure W(dx, ds): is a space-time white noise, induced by the one-dimensional (d + 1)-parameter Wiener process

$$W := \{ W(x, t) : t \in [0, T], x \in \mathcal{D} \},$$

(with d space variables and 1 time variable). We define, $\forall t \geq 0$ the filtration generated by W as:

$$\mathcal{F}_t := \sigma(W(x,s): s \leq t, x \in \mathcal{D}).$$

Integral representation of solution

Using a Green's function, the solution of (3) is a mild solution:

$$u(x,t) = \int_{\mathcal{D}} u_0(y) G(x,y,t) dy$$

$$+ \int_0^t \int_{\mathcal{D}} \left[\Delta G(x,y,t-s) - G(x,y,t-s) \right] f(u(y,s)) dyds$$

$$+ \int_0^t \int_{\mathcal{D}} G(x,y,t-s) \sigma(u(y,s)) W(dy,ds).$$

The Green's function

A proper Green's function is induced by the linear part of the SPDE: i.e. by the operator

$$\mathcal{T} := -\Delta^2 + \Delta$$

on $\mathcal D$ with the homogeneous Neumann conditions

- \hookrightarrow domain \mathcal{D} rectangular
- \hookrightarrow trigonometric $L^2(\mathcal{D})$ -orthonormal basis of eigenfunctions (explicitly given),

and the associated Green's function is

$$G(x, y, t) = \sum_{k} e^{-(\lambda_k^2 + \lambda_k)t} \, \epsilon_k(x) \, \epsilon_k(y), \tag{5}$$

for t > 0, $x, y \in \mathcal{D}$.

IMPORTANT: $\mathcal{T} = -\Delta^2 + \Delta$ is uniformly strongly parabolic in the sense of Petrovskii.

Hölder estimates for the Green in space-time

$$|G(x,y,t)| \le c_1 t^{-\frac{d}{4}} \exp\left(-c_2 |x-y|^{\frac{4}{3}} t^{-\frac{1}{3}}\right),$$

$$|\partial_x^k G(x,y,t)| \le c_1 t^{-\frac{d+|k|}{4}} \exp\left(-c_2 |x-y|^{\frac{4}{3}} t^{-\frac{1}{3}}\right),$$

$$|\partial_t G(x,y,t)| \le c_1 t^{-\frac{d+4}{4}} \exp\left(-c_2 |x-y|^{\frac{4}{3}} t^{-\frac{1}{3}}\right),$$

and

$$\int_0^t \int_{\mathcal{D}} |G(x,z,t-r) - G(y,z,t-r)|^2 dz dr \le C|x-y|^{\gamma},$$

$$\int_0^s \int_{\mathcal{D}} |G(x,z,t-r) - G(x,z,s-r)|^2 dz dr \le C|t-s|^{\gamma'},$$

$$\int_0^t \int_{\mathcal{D}} |G(x,z,t-r)|^2 dz dr \le C|t-s|^{\gamma'}.$$

The cut-off SPDE

In order to prove the existence of the solution u to (4) we construct a cut-off SPDE:

Let $\chi_n \in C^1(\mathbb{R}, \mathbb{R}^+)$ be a cut-off function satisfying

$$|\chi_n| \le 1, \quad |\chi'_n| \le 2 \ \forall n > 0,$$

and

$$\chi_n(x) = \begin{cases} 1 & \text{if } |x| \le n, \\ 0 & \text{if } |x| \ge n+1. \end{cases}$$

For fixed n > 0, $x \in \mathcal{D}$, $t \in [0, T]$ and $q \in [3, +\infty)$, we consider the following cut-off SPDE:

$$u_{n}(x,t) = \int_{\mathcal{D}} u_{0}(y)G(x,y,t) dy$$

$$+ \int_{0}^{t} \int_{\mathcal{D}} \left[\Delta G(x,y,t-s) - G(x,y,t-s) \right]$$

$$\chi_{n}(\|u_{n}(\cdot,s)\|_{q}) f(u_{n}(y,s)) dyds$$

$$+ \int_{0}^{t} \int_{\mathcal{D}} G(x,y,t-s) \chi_{n}(\|u_{n}(\cdot,s)\|_{q}) \sigma(u_{n}(y,s)) W(dy,ds).$$

Theorem

Let σ be globally Lipschitz and satisfy the assumption (2) with $\alpha \in (0,1)$, and $u_0 \in L^q(\mathcal{D})$. Then, under certain assumptions on q, d, α , and β , the cut-off SPDE admits a unique solution u_n , in every time interval [0,T], such that $u_n \in \mathcal{H}_T$, where

$$\begin{split} \mathcal{H}_T := \Big\{ u(\cdot,t) \in L^q(\mathcal{D}) \text{ for } t \in [0,T] : \\ u \text{ is } (\mathcal{F}_t)\text{-adapted and } \|u\|_{\mathcal{H}_T} < \infty \Big\}, \end{split}$$

for

$$||u||_{\mathcal{H}_T} := \sup_{t \in [0,T]} \left(E[||u(\cdot,t)||_q^{\beta}] \right)^{\frac{1}{\beta}}.$$

Main steps of proof:

Here, we split the solution in 3 parts with $\mathcal{L}_n(u_n)(x,t)$ being the noise term, as

$$u_n(x,t) = \int_{\mathcal{D}} u_0(y) G(x,y,t) dy + \mathcal{M}_n(u_n)(x,t) + \mathcal{L}_n(u_n)(x,t).$$

Using the Green's estimates, and the Lipschitz property of the diffusion σ , we prove that:

1. For fixed $n \ge 1$, $\exists T_0(n)$ sufficiently small and independent of u_0 : for $T \le T_0(n)$

$$\mathcal{M}_n + \mathcal{L}_n$$
, is a contraction mapping from \mathcal{H}_T into \mathcal{H}_T .

Thus for $T \leq T_0(n)$, the map $\mathcal{M}_n + \mathcal{L}_n$ has a unique fixed point in $\Big\{u \in \mathcal{H}_T: \ u(\cdot,0) = u_0\Big\}$

$$\hookrightarrow$$
 in $[0, T]$, for $T \leq T_0(n)$, \exists ! solution u_n .

2. If $T > T_0(n)$, set

$$\bar{u}_0(x) = u_n(x, T_0(n))$$

as new initial condition and $\bar{W}(t,x) = W(T_0(n) + t,x)$ related to the filtration $(\mathcal{F}_{T_0(n)+t}, t \geq 0)$ independent of $\mathcal{F}_{T_0(n)}$.

 \hookrightarrow in the interval $[0, 2T_0(n)]$ take $u_n(x, t) := \bar{u}_n(x, t - T_0(n))$ etc. by induction up to some time $NT_0(n) \ge T$.

Comments

1. We define the stopping time

$$T_n = \min\{\inf\{t \ge 0 : \|u_n(.,t)\|_q \ge n\}, n\},$$

$$t \longleftrightarrow t_{\text{rand}} := \min\{t, T_n\},$$

2. then use that for any $s \leq t_{\rm rand}$

$$\chi_n(\|u_n(.,s)\|_q)=1,$$

so, the process $(u_n(.,t), t < T_n)$ is a solution to (4) (mild solution of the initial SPDE).

- Further, we define T* := lim sup_n T_n; then uniqueness of the cut-off solution

 ⇔ existence of a solution u(., t) of (4) in [0, T*)
 (u defined by the limit value of the truncated processes),
- 4. and get that u is a local maximal solution to (4) in $[0, T^*)$, i.e.

$$\sup\{\|u(.,t)\|_a: t < T^*\} = \infty \text{ a.s.}$$

Global existence and uniqueness of solution

- 1. Dimensions restrict the result to d=1, due to the Gagliardo-Nirenberg inequality for the nonlinearity,
- 2. and the nonlinearity (polynomial of order 3) results to a restriction for the noise diffusion growth:

$$\alpha < \frac{1}{3}$$
.

The method

1. We write $v_n := u_n - \mathcal{L}_n(u_n)$ as an element of $L^2(\mathcal{D})$ using the othonormal eigenfunction basis of the negative Neumann Laplacian on the cube with spectrum

$$0 = \lambda_0 < \lambda_1 < \lambda_2 < \cdots$$

and then cut-off the Fourier series at the first m modes $\hookrightarrow v_n^m$, for which we prove an L^2 estimate on the limit $m \to \infty$

$$\|v_n(\cdot,t)\|_2^2 + \int_0^t \|\Delta v_n(\cdot,s)\|_2^2 ds \leq C(T) \Big[1 + \|u_0\|_2^4 + \|\mathcal{L}_n(u_n)\|_{L^{\infty}}^6\Big] (*),$$

for

$$\|\mathcal{L}_n(u_n)\|_{L^{\infty}} := \sup_{t \in [0,T]} \sup_{x \in \mathcal{D}} |\mathcal{L}_n(u_n)(x,t)|,$$

where remind

$$\mathcal{L}_n(u_n) := \int_0^t \int_{\mathcal{D}} G(x, y, t-s) \, \chi_n(\|u_n(\cdot, s)\|_q) \, \sigma(u_n(y, s)) \, W(dy, ds)$$

We use the Hölder estimates of Green's in space and time together with Burkholder-Davies-Gundy inequality for the space-time noise integral, i.e.

$$\begin{split} E(\left|\mathcal{L}_{n}(u_{n})\right|^{2p}) &:= E(\left|\int_{0}^{t} \int_{\mathcal{D}} G(x,y,t-s) \, \chi_{n}(\left\|u_{n}(\cdot,s)\right\|_{q}) \, \sigma(u_{n}(y,s)) \, \left.W(dy,ds)\right|^{2p}) \\ &\leq C_{p} E(\left|\int_{0}^{t} \int_{\mathcal{D}} G(x,y,t-s) \, \chi_{n}(\left\|u_{n}(\cdot,s)\right\|_{q}) \, \sigma(u_{n}(y,s)) \, dy,ds\right|^{p}), \end{split}$$

to prove

- (a) in expectation a p-moment space-time Hölder estimate for $\mathcal{L}_n(u_n)$ (very technical),
- (b) and to derive finally for \tilde{q} : $q \geq \tilde{q} > \frac{2\alpha d}{4-d}$

$$E\Big(\|\mathcal{L}_n(u_n)\|_{L^\infty}^{2p}\Big) \leq C_p(T) \min\Big\{n^{2\alpha p}, \sup_{t \in [0,T]} E\Big(\|u_n(.,t)\|_{\tilde{q}}^{2\alpha p}\Big)\Big\}.$$

We then use the above in (*) by replacing $u_n = v_n + \mathcal{L}_n(u_n)$ and derive:

if
$$u_0 \in L^q(\mathcal{D})$$
 and $p \in [2, \infty)$

$$E\left(\sup_{t\in[0,T]}\|u_{n}(\cdot,t)\|_{2}^{p}\right) \leq C_{p}(T)\left[1+\|u_{0}\|_{2}^{p}+(1+\|u_{0}\|_{2}^{p})\right]$$
$$E\left(\sup_{t\in[0,T]}\|u_{n}(\cdot,t)\|_{2}^{3\alpha p}\right),$$

which by a boot-strap argument gives the restriction $\alpha < \frac{1}{3}$ and the moment estimates in L^2

$$E\left(\sup_{t\in[0,T]}\|u_n(\cdot,t)\|_2^p\right)\leq C_p(T)\left[1+\|u_0\|_2^{\frac{p}{1-3\alpha}}\right].$$

3. Our aim for global existence, is to prove moment estimates in L^q , this restricts dimensions in d=1, when estimating a deterministic part of u_n , i.e.

$$\mathcal{M}_n(u_n) := \int_0^t \int_{\mathcal{D}} \left[\Delta G(x, y, t - s) - G(x, y, t - s) \right] \times \chi_n(\|u_n(\cdot, s)\|_q) f(u_n(y, s)) dyds$$

for which we prove for $q \ge 3$ and $\beta \ge 2$, by using the L^2 moments

$$E\left(\sup_{0 \le t \le T} \|\mathcal{M}_n(u_n)(\cdot, t)\|_q^{\beta}\right) \le C,$$

- \hookrightarrow moments in L^q for u_n .
- 4. Thus, defining the stopping time

$$\mathcal{T}_n:=\inf\Big\{t\geq 0:\;\|u_n(\cdot,t)\|_q\geq n\Big\},$$

Chebyshev inequality gives

$$P(T_n < T) \leq n^{-\beta} E\Big(\sup_{t \in [0,T]} \|u_n(\cdot,t)\|_q^{\beta}\Big) \leq Cn^{-\beta},$$

for $\beta \geq 2$, so, by the Borel-Cantelli Lemma

$$P(\limsup_{n\to\infty}\{T_n< T\})=0$$

and thus,

$$T_n \to \infty$$
 a.s. as $n \to \infty$.

The uniqueness follows from the uniqueness of u_n , since

$$u(\cdot,t) := u_n(\cdot,t)$$
 on $[0,T_n]$,

and since $T_n \to \infty$ a.s.

Extension of results for:

$$u_t = -\varrho\Delta\Big(\Delta u - f(u)\Big) + \hat{q}\Big(\Delta u - f(u)\Big) + \sigma(u)\dot{W},$$

when

$$\varrho>0,\quad \hat{q}\geq 0,$$

and for more general domains with a smooth in space, space-time noise

$$dxW(dt)$$
,

by the Antonopoulou, Karali, DCDSB, 2011, approach.

NOTE: the non-smooth in space noise in the definition of Walsh needs the domain

 \mathcal{D} a cartesian product in $\mathbb{R}^d \hookrightarrow \text{rectangle}$.

While by the Cardon-Weber, Bernoulli, 2001 method, we derive path regularity as follows:

Theorem

For d=1, and $\alpha\in(0,\frac{1}{3})$, if $u_0\in L^\infty(\mathcal{D})$:

- (i) If u_0 is continuous, then the global solution of (4) has a.s. continuous trajectories.
- (ii) If u_0 is β -Hölder continuous for $0<\beta<1$, then the trajectories of the global solution to (4) are a.s. $\min\{\beta,\ (2-\frac{d}{2})\}$ -continuous in space and $\min\{\frac{\beta}{4}, (\frac{1}{2}-\frac{d}{8})\}$ -continuous in time.

And for d = 2, 3, the same result for the maximal solutions in $\mathcal{D} \times [0, T^*)$.

Comments

1. The integral form of the solution u given by (4) is split as follows:

$$u(t,x) = G_t u_0(x) + \mathcal{I}(x,t) + \mathcal{J}(x,t),$$

for

$$\mathcal{I}(x,t) = \int_0^t \int_{\mathcal{D}} [\Delta G(x,y,t-s) - G(x,y,t-s)] f(u(y,s)) \, dy ds,$$

and

$$\mathcal{J}(x,t) = \int_0^t \int_{\mathcal{D}} G(x,y,t-s) \sigma(u(y,s)) \ W(dy,ds).$$

- 2. Considering the initial condition involving term
 - 2.1 If u_0 is continuous, then the function $G_t u_0$ is continuous.
 - 2.2 If u_0 belongs to $C^{\delta}(\mathcal{D})$ for $0 < \delta < 1$, then $(x,t) \to G_t u_0(x)$ is δ -Hölder continuous in x and $\frac{\delta}{4}$ -Hölder continuous in t.
 - 2.3 If u_0 is bounded, then u belongs a.s. to $L^{\infty}(0, T; L^q(\mathcal{D}))$ for any $q < \infty$ large enough.
- 3. For some $a \in (0,1)$ define the operators \mathcal{F} and \mathcal{H} on $L^{\infty}(0,T;L^{q}(\mathcal{D}))$ as follows:

$$\begin{split} \mathcal{F}(v)(t,x) &:= \int_0^t \int_{\mathcal{D}} G(x,z,t-s)(t-s)^{-a} v(z,s) \ dz ds, \\ \mathcal{H}(v)(z,s) &:= \int_0^s \int_{\mathcal{D}} \left[\Delta G(z,y,s-s') - G(z,y,s-s') \right] \\ & (s-s')^{a-1} f(v(y,s')) \ dy ds'. \end{split}$$

4. So, first

$$\mathcal{I}(x,t) = c_{\mathsf{a}} \mathcal{F}(\mathcal{H}(u))(x,t),$$

where $c_a := \pi^{-1} \sin(\pi a)$.

Using the estimates of the Green's function, we prove that

$$\mathcal{H}$$
 maps $L^{\infty}(0, T; L^{q}(\mathcal{D}))$ into itself.

5. Moreover,

$$\mathcal{J}(x,t) = c_a \mathcal{F}(\mathcal{K}(u_n))(x,t)$$
 on the set $\{T \leq T_n^*\}$,

for

$$\mathcal{K}(u_n)(x,t) = \int_0^t \int_{\mathcal{D}} G(x,y,t-s)(t-s)^{a-1} \\ 1_{\{s \le T_n^*\}} \sigma(u_n(y,s)) W(dy,ds),$$
 for $T_n^* := \min\{\inf\{t \ge 0 : \|u_n\|_a \ge n\}, \ T^*\}.$

Using the Hölder estimates of Green's function, we prove

$$E(\|\mathcal{K}(u_n)\|_{L^{\infty}(\mathcal{D}\times[0,T])}^{2p})<\infty, \quad \forall p\geq 1,$$

and

$$E\big(\|\mathcal{K}(u_n)\|_q^{2p}\big) \leq E\big(\|\mathcal{K}(u_n)\|_{L^\infty(\mathcal{D}\times[0,T])}^{2p}\big) < \infty, \quad \forall p \geq 1.$$

So, we deduce that

$$\mathcal{J}(u) \in \mathcal{C}^{\lambda,\mu}(\mathcal{D} \times [0,T])$$
 a.s. on the set $\{T \leq T_n^*\}$,

and as $n \to \infty$

$$\textit{a.s.} \ \, \mathcal{J}(\textit{u}) \in \mathcal{C}^{\lambda,\mu}([0,T] \times \mathcal{D}) \text{ for } \lambda < \frac{1}{2} - \frac{\textit{d}}{8} \text{ and } \mu < 2 - \frac{\textit{d}}{2}.$$

