Existence and regularity of solution for a Stochastic Cahn-Hilliard/Allen-Cahn equation with unbounded noise diffusion

Dimitra Antonopoulou

University of Chester, UK

joint work with G. Karali and A. Millet

Heraklion, May 2018

The Stochastic equation
We consider the Cahn-Hilliard/Allen-Cahn equation with multiplicative space-time noise:

$$
\begin{align*}
& u_{t}=-\varrho \Delta(\Delta u-f(u))+(\Delta u-f(u))+\sigma(u) \dot{W} \quad \text { in } \quad \mathcal{D} \times[0, T) \\
& u(x, 0)=u_{0}(x) \quad \text { in } \quad \mathcal{D} \\
& \frac{\partial u}{\partial \nu}=\frac{\partial \Delta u}{\partial \nu}=0 \quad \text { on } \quad \partial \mathcal{D} \times[0, T) \tag{1}
\end{align*}
$$

\mathcal{D} is a rectangular domain in \mathbb{R}^{d} with $d=1,2,3$,

$$
\varrho>0 \text { difusion constant, }
$$

$$
f=F^{\prime}, \quad F(u)=\left(1-u^{2}\right)^{2} \quad \text { is a double equal-well potential. }
$$

\dot{W} is a space-time white noise in the sense of Walsh, Lecture Notes in Math. 1986.
σ is Lipschitz with sub-linear growth such that

$$
\begin{equation*}
|\sigma(u)| \leq C\left(1+|u|^{\alpha}\right) \tag{2}
\end{equation*}
$$

for some $\alpha \in(0,1]$.

Main Results

We give sufficient conditions on the initial condition u_{0} so that:

1. a unique local (maximal) solution exists when $d=1,2,3$, for any $\alpha \in(0,1]$,
2. when $\alpha<\frac{1}{3}$, i.e. when the supremum of α coincides with the inverse of the polynomial order of the nonlinear function f, a global solution exists with Lipschitz path-regularity for $d=1$.

Approach motivated by the works: Cardon-Weber, Bernoulli 2001, Cardon-Weber, Millet, J. Theor. Probab.,2004,
Da Prato, Debussche, Nonlin. Anal., 1996, Antonopoulou, Karali, DCDSB, 2011.

The physical model
Surface diffusion, and, adsorption/desorption micromechanisms:
\hookrightarrow in surface processes,
\hookrightarrow on cluster interface morphology,
see Katsoulakis, Vlachos, IMA Vol. Math. Appl. 2003.
Stochastic time-dependent Ginzburg-Landau type equations with additive Gaussian white noise source:
\hookrightarrow Cahn-Hilliard (Model B),
\hookrightarrow Allen-Cahn (Model A),
appear in the classical theory of phase transitions;
see the universality classification of Hohenberg and Halperin, J. Rev. Mod. Phys. 1977.

A simplified mean field model of statistical mechanics
\hookrightarrow SPDE (1): Cahn-Hilliard and Allen-Cahn with noise.

1. The Cahn-Hilliard operator: mass conservative phase separation and surface diffusion.
2. The Allen-Cahn operator: adsorption and desorption and serves as a diffuse interface model for boundary coarsening.
3. Interacting particle systems are Markov processes set on a lattice corresponding to a solid surface, of Ising-type; see Giacomin, Lebowitz, Presutti, Math. Surveys Monogr. 1999.

Assuming that the particle-particle interactions are attractive \hookrightarrow system's Hamiltonian is nonnegative (attractive potential), \hookrightarrow so, the diffusion constant $\varrho>0$.

Weak formulation

For simplicity we set $\varrho=1$ and consider \mathcal{D} the unitary cube.
We say that u is a weak solution of the equation (1) if it satisfies:

$$
\begin{align*}
& \int_{\mathcal{D}}\left(u(x, t)-u_{0}(x)\right) \phi(x) d x= \\
& \int_{0}^{t} \int_{\mathcal{D}}\left(-\Delta^{2} \phi(x) u(x, s)+\Delta \phi(x)[f(u(x, s))+u(x, s)]\right. \tag{3}\\
& \quad-\phi(x) f(u(x, s))) d x d s \\
& +\int_{0}^{t} \int_{\mathcal{D}} \phi(x) \sigma(u(x, s)) W(d x, d s)
\end{align*}
$$

for all $\phi \in \mathcal{C}^{4}(\mathcal{D})$ with $\frac{\partial \phi}{\partial \nu}=\frac{\partial \Delta \phi}{\partial \nu}=0$ on $\partial \mathcal{D}$.

Measure $W(d x, d s)$: is a space-time white noise, induced by the one-dimensional $(d+1)$-parameter Wiener process

$$
W:=\{W(x, t): t \in[0, T], x \in \mathcal{D}\}
$$

(with d space variables and 1 time variable).
We define, $\forall t \geq 0$ the filtration generated by W as:

$$
\mathcal{F}_{t}:=\sigma(W(x, s): s \leq t, x \in \mathcal{D})
$$

Integral representation of solution
Using a Green's function, the solution of (3) is a mild solution:

$$
\begin{align*}
u(x, t)= & \int_{\mathcal{D}} u_{0}(y) G(x, y, t) d y \\
& +\int_{0}^{t} \int_{\mathcal{D}}[\Delta G(x, y, t-s)-G(x, y, t-s)] f(u(y, s)) d y d s \\
& +\int_{0}^{t} \int_{\mathcal{D}} G(x, y, t-s) \sigma(u(y, s)) W(d y, d s) \tag{4}
\end{align*}
$$

The Green's function
A proper Green's function is induced by the linear part of the SPDE: i.e. by the operator

$$
\mathcal{T}:=-\Delta^{2}+\Delta
$$

on \mathcal{D} with the homogeneous Neumann conditions
\hookrightarrow domain \mathcal{D} rectangular
\hookrightarrow trigonometric $L^{2}(\mathcal{D})$-orthonormal basis of eigenfunctions (explicitly given),
and the associated Green's function is

$$
\begin{equation*}
G(x, y, t)=\sum_{k} e^{-\left(\lambda_{k}^{2}+\lambda_{k}\right) t} \epsilon_{k}(x) \epsilon_{k}(y), \tag{5}
\end{equation*}
$$

for $t>0, x, y \in \mathcal{D}$.
IMPORTANT: $\mathcal{T}=-\Delta^{2}+\Delta$ is uniformly strongly parabolic in the sense of Petrovskıı.
\hookrightarrow Cahn-Hilliard operator is dominant.

Hölder estimates for the Green in space-time

$$
\begin{aligned}
& |G(x, y, t)| \leq c_{1} t^{-\frac{d}{4}} \exp \left(-c_{2}|x-y|^{\frac{4}{3}} t^{-\frac{1}{3}}\right) \\
& \left|\partial_{x}^{k} G(x, y, t)\right| \leq c_{1} t^{-\frac{d+|k|}{4}} \exp \left(-c_{2}|x-y|^{\frac{4}{3}} t^{-\frac{1}{3}}\right) \\
& \left|\partial_{t} G(x, y, t)\right| \leq c_{1} t^{-\frac{d+4}{4}} \exp \left(-c_{2}|x-y|^{\frac{4}{3}} t^{-\frac{1}{3}}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& \int_{0}^{t} \int_{\mathcal{D}}|G(x, z, t-r)-G(y, z, t-r)|^{2} d z d r \leq C|x-y|^{\gamma} \\
& \int_{0}^{s} \int_{\mathcal{D}}|G(x, z, t-r)-G(x, z, s-r)|^{2} d z d r \leq C|t-s|^{\gamma^{\prime}} \\
& \int_{s}^{t} \int_{\mathcal{D}}|G(x, z, t-r)|^{2} d z d r \leq C|t-s|^{\gamma^{\prime}}
\end{aligned}
$$

The cut-off SPDE
In order to prove the existence of the solution u to (4) we construct a cut-off SPDE:
Let $\chi_{n} \in C^{1}\left(\mathbb{R}, \mathbb{R}^{+}\right)$be a cut-off function satisfying

$$
\left|\chi_{n}\right| \leq 1, \quad\left|\chi_{n}^{\prime}\right| \leq 2 \quad \forall n>0,
$$

and

$$
\chi_{n}(x)=\left\{\begin{array}{lll}
1 & \text { if } & |x| \leq n \\
0 & \text { if } & |x| \geq n+1
\end{array}\right.
$$

For fixed $n>0, x \in \mathcal{D}, t \in[0, T]$ and $q \in[3,+\infty)$, we consider the following cut-off SPDE:

$$
\begin{aligned}
u_{n}(x, t)= & \int_{\mathcal{D}} u_{0}(y) G(x, y, t) d y \\
& +\int_{0}^{t} \int_{\mathcal{D}}[\Delta G(x, y, t-s)-G(x, y, t-s)] \\
& \chi_{n}\left(\left\|u_{n}(\cdot, s)\right\|_{q}\right) f\left(u_{n}(y, s)\right) d y d s \\
& +\int_{0}^{t} \int_{\mathcal{D}} G(x, y, t-s) \chi_{n}\left(\left\|u_{n}(\cdot, s)\right\|_{q}\right) \sigma\left(u_{n}(y, s)\right) W(d y, d s)
\end{aligned}
$$

Theorem
Let σ be globally Lipschitz and satisfy the assumption (2) with $\alpha \in(0,1)$, and $u_{0} \in L^{q}(\mathcal{D})$. Then, under certain assumptions on q, d, α, and β, the cut-off SPDE admits a unique solution u_{n}, in every time interval $[0, T]$, such that $u_{n} \in \mathcal{H}_{T}$, where

$$
\begin{aligned}
\mathcal{H}_{T}:= & \left\{u(\cdot, t) \in L^{q}(\mathcal{D}) \text { for } t \in[0, T]:\right. \\
& \left.u \text { is }\left(\mathcal{F}_{t}\right) \text {-adapted and }\|u\|_{\mathcal{H}_{T}}<\infty\right\},
\end{aligned}
$$

for

$$
\|u\|_{\mathcal{H}_{T}}:=\sup _{t \in[0, T]}\left(E\left[\|u(\cdot, t)\|_{q}^{\beta}\right]\right)^{\frac{1}{\beta}} .
$$

Main steps of proof:
Here, we split the solution in 3 parts with $\mathcal{L}_{n}\left(u_{n}\right)(x, t)$ being the noise term, as

$$
u_{n}(x, t)=\int_{\mathcal{D}} u_{0}(y) G(x, y, t) d y+\mathcal{M}_{n}\left(u_{n}\right)(x, t)+\mathcal{L}_{n}\left(u_{n}\right)(x, t)
$$

Using the Green's estimates, and the Lipschitz property of the diffusion σ, we prove that:

1. For fixed $n \geq 1, \exists T_{0}(n)$ sufficiently small and independent of u_{0} : for $T \leq T_{0}(n)$
$\mathcal{M}_{n}+\mathcal{L}_{n}, \quad$ is a contraction mapping from \mathcal{H}_{T} into \mathcal{H}_{T}.
Thus for $T \leq T_{0}(n)$, the $\operatorname{map} \mathcal{M}_{n}+\mathcal{L}_{n}$ has a unique fixed point in $\left\{u \in \mathcal{H}_{T}: u(\cdot, 0)=u_{0}\right\}$
\hookrightarrow in $[0, T]$, for $T \leq T_{0}(n), \exists$! solution u_{n}.
2. If $T>T_{0}(n)$, set

$$
\bar{u}_{0}(x)=u_{n}\left(x, T_{0}(n)\right)
$$

as new initial condition and $\bar{W}(t, x)=W\left(T_{0}(n)+t, x\right)$ related to the filtration $\left(\mathcal{F}_{T_{0}(n)+t}, t \geq 0\right)$ independent of $\mathcal{F}_{T_{0}(n)}$.
\hookrightarrow in the interval $\left[0,2 T_{0}(n)\right]$ take $u_{n}(x, t):=\bar{u}_{n}\left(x, t-T_{0}(n)\right)$ etc. by induction up to some time $N T_{0}(n) \geq T$.

Comments

1. We define the stopping time

$$
\begin{aligned}
T_{n} & =\min \left\{\inf \left\{t \geq 0:\left\|u_{n}(., t)\right\|_{q} \geq n\right\}, n\right\}, \\
t \hookleftarrow t_{\text {rand }} & :=\min \left\{t, T_{n}\right\},
\end{aligned}
$$

2. then use that for any $s \leq t_{\text {rand }}$

$$
\chi_{n}\left(\left\|u_{n}(., s)\right\|_{q}\right)=1
$$

so, the process $\left(u_{n}(., t), t<T_{n}\right)$ is a solution to (4) (mild solution of the initial SPDE).
3. Further, we define $T^{*}:=\lim \sup _{n} T_{n}$; then uniqueness of the cut-off solution
\hookrightarrow existence of a solution $u(., t)$ of (4) in $\left[0, T^{*}\right)$
(u defined by the limit value of the truncated processes),
4. and get that u is a local maximal solution to (4) in $\left[0, T^{*}\right)$, i.e.

$$
\sup \left\{\|u(., t)\|_{q}: t<T^{*}\right\}=\infty \text { a.s. }
$$

Global existence and uniqueness of solution

1. Dimensions restrict the result to $d=1$, due to the Gagliardo-Nirenberg inequality for the nonlinearity,
2. and the nonlinearity (polynomial of order 3) results to a restriction for the noise diffusion growth:

$$
\alpha<\frac{1}{3} .
$$

The method

1. We write $v_{n}:=u_{n}-\mathcal{L}_{n}\left(u_{n}\right)$ as an element of $L^{2}(\mathcal{D})$ using the othonormal eigenfunction basis of the negative Neumann Laplacian on the cube with spectrum

$$
0=\lambda_{0}<\lambda_{1} \leq \lambda_{2} \leq \cdots,
$$

and then cut-off the Fourier series at the first m modes $\hookrightarrow v_{n}^{m}$, for which we prove an L^{2} estimate on the limit $m \rightarrow \infty$

$$
\left\|v_{n}(\cdot, t)\right\|_{2}^{2}+\int_{0}^{t}\left\|\Delta v_{n}(\cdot, s)\right\|_{2}^{2} d s \leq C(T)\left[1+\left\|u_{0}\right\|_{2}^{4}+\left\|\mathcal{L}_{n}\left(u_{n}\right)\right\|_{L^{\infty}}^{6}\right](*)
$$

for

$$
\left\|\mathcal{L}_{n}\left(u_{n}\right)\right\|_{L^{\infty}}:=\sup _{t \in[0, T]} \sup _{x \in \mathcal{D}}\left|\mathcal{L}_{n}\left(u_{n}\right)(x, t)\right|,
$$

where remind

$$
\mathcal{L}_{n}\left(u_{n}\right):=\int_{0}^{t} \int_{\mathcal{D}} G(x, y, t-s) \chi_{n}\left(\left\|u_{n}(\cdot, s)\right\|_{q}\right) \sigma\left(u_{n}(y, s)\right) W(d y, d s)
$$

2. We use the Hölder estimates of Green's in space and time together with Burkholder-Davies-Gundy inequality for the space-time noise integral, i.e.

$$
\begin{aligned}
E\left(\left|\mathcal{L}_{n}\left(u_{n}\right)\right|^{2 p}\right) & :=E\left(\left|\int_{0}^{t} \int_{\mathcal{D}} G(x, y, t-s) \chi_{n}\left(\left\|u_{n}(\cdot, s)\right\|_{q}\right) \sigma\left(u_{n}(y, s)\right) W(d y, d s)\right|^{2 p}\right) \\
& \leq C_{p} E\left(\left|\int_{0}^{t} \int_{\mathcal{D}} G(x, y, t-s) \chi_{n}\left(\left\|u_{n}(\cdot, s)\right\|_{q}\right) \sigma\left(u_{n}(y, s)\right) d y, d s\right|^{p}\right),
\end{aligned}
$$

(a) in expectation a p-moment space-time Hölder estimate for $\mathcal{L}_{n}\left(u_{n}\right)$ (very technical),
(b) and to derive finally for $\tilde{q}: q \geq \tilde{q}>\frac{2 \alpha d}{4-d}$
$E\left(\left\|\mathcal{L}_{n}\left(u_{n}\right)\right\|_{L^{\infty}}^{2 p}\right) \leq C_{p}(T) \min \left\{n^{2 \alpha p}, \sup _{t \in[0, T]} E\left(\left\|u_{n}(., t)\right\|_{\tilde{q}}^{2 \alpha p}\right)\right\}$.
We then use the above in $\left(^{*}\right)$ by replacing $u_{n}=v_{n}+\mathcal{L}_{n}\left(u_{n}\right)$ and derive:
if $u_{0} \in L^{q}(\mathcal{D})$ and $p \in[2, \infty)$

$$
\begin{array}{r}
E\left(\sup _{t \in[0, T]}\left\|u_{n}(\cdot, t)\right\|_{2}^{p}\right) \leq C_{p}(T)\left[1+\left\|u_{0}\right\|_{2}^{p}+\left(1+\left\|u_{0}\right\|_{2}^{p}\right)\right. \\
\left.E\left(\sup _{t \in[0, T]}\left\|u_{n}(., t)\right\|_{2}^{3 \alpha p}\right)\right],
\end{array}
$$

which by a boot-strap argument gives the restriction $\alpha<\frac{1}{3}$ and the moment estimates in L^{2}

$$
E\left(\sup _{t \in[0, T]}\left\|u_{n}(\cdot, t)\right\|_{2}^{p}\right) \leq C_{p}(T)\left[1+\left\|u_{0}\right\|_{2}^{\frac{p}{1-3 \alpha}}\right] .
$$

3. Our aim for global existence, is to prove moment estimates in L^{q}, this restricts dimensions in $d=1$, when estimating a deterministic part of u_{n}, i.e.

$$
\begin{aligned}
\mathcal{M}_{n}\left(u_{n}\right):= & \int_{0}^{t} \int_{\mathcal{D}}[\Delta G(x, y, t-s)-G(x, y, t-s)] \times \\
& \chi_{n}\left(\left\|u_{n}(\cdot, s)\right\|_{q}\right) f\left(u_{n}(y, s)\right) d y d s
\end{aligned}
$$

for which we prove for $q \geq 3$ and $\beta \geq 2$, by using the L^{2} moments

$$
E\left(\sup _{0 \leq t \leq T}\left\|\mathcal{M}_{n}\left(u_{n}\right)(\cdot, t)\right\|_{q}^{\beta}\right) \leq C
$$

\hookrightarrow moments in L^{q} for u_{n}.
4. Thus, defining the stopping time

$$
T_{n}:=\inf \left\{t \geq 0:\left\|u_{n}(\cdot, t)\right\|_{q} \geq n\right\}
$$

Chebyshev inequality gives

$$
P\left(T_{n}<T\right) \leq n^{-\beta} E\left(\sup _{t \in[0, T]}\left\|u_{n}(\cdot, t)\right\|_{q}^{\beta}\right) \leq C n^{-\beta}
$$

for $\beta \geq 2$, so, by the Borel-Cantelli Lemma

$$
P\left(\limsup _{n \rightarrow \infty}\left\{T_{n}<T\right\}\right)=0
$$

and thus,

$$
T_{n} \rightarrow \infty \text { a.s. as } n \rightarrow \infty
$$

The uniqueness follows from the uniqueness of u_{n}, since

$$
u(\cdot, t):=u_{n}(\cdot, t) \text { on }\left[0, T_{n}\right],
$$

and since $T_{n} \rightarrow \infty$ a.s.

Extension of results for:

$$
u_{t}=-\varrho \Delta(\Delta u-f(u))+\hat{q}(\Delta u-f(u))+\sigma(u) \dot{W}
$$

when

$$
\varrho>0, \quad \hat{q} \geq 0
$$

and for more general domains with a smooth in space, space-time noise

$$
d x W(d t)
$$

by the Antonopoulou, Karali, DCDSB, 2011, approach.
NOTE: the non-smooth in space noise in the definition of Walsh needs the domain
\mathcal{D} a cartesian product in $\mathbb{R}^{d} \hookrightarrow$ rectangle.

While by the Cardon-Weber, Bernoulli, 2001 method, we derive path regularity as follows:

Theorem
For $d=1$, and $\alpha \in\left(0, \frac{1}{3}\right)$, if $u_{0} \in L^{\infty}(\mathcal{D})$:
(i) If u_{0} is continuous, then the global solution of (4) has a.s. continuous trajectories.
(ii) If u_{0} is β-Hölder continuous for $0<\beta<1$, then the trajectories of the global solution to (4) are a.s. $\min \left\{\beta,\left(2-\frac{d}{2}\right)\right\}$-continuous in space and $\min \left\{\frac{\beta}{4},\left(\frac{1}{2}-\frac{d}{8}\right)\right\}$-continuous in time.

And for $d=2,3$, the same result for the maximal solutions in $\mathcal{D} \times\left[0, T^{*}\right)$.

1. The integral form of the solution u given by (4) is split as follows:

$$
u(t, x)=G_{t} u_{0}(x)+\mathcal{I}(x, t)+\mathcal{J}(x, t)
$$

for

$$
\mathcal{I}(x, t)=\int_{0}^{t} \int_{\mathcal{D}}[\Delta G(x, y, t-s)-G(x, y, t-s)] f(u(y, s)) d y d s
$$

and

$$
\mathcal{J}(x, t)=\int_{0}^{t} \int_{\mathcal{D}} G(x, y, t-s) \sigma(u(y, s)) W(d y, d s)
$$

2. Considering the initial condition involving term
2.1 If u_{0} is continuous, then the function $G_{t} u_{0}$ is continuous.
2.2 If u_{0} belongs to $C^{\delta}(\mathcal{D})$ for $0<\delta<1$, then
$(x, t) \rightarrow G_{t} u_{0}(x)$ is δ-Hölder continuous in x and $\frac{\delta}{4}$-Hölder continuous in t.
2.3 If u_{0} is bounded, then u belongs a.s. to $L^{\infty}\left(0, T ; L^{q}(\mathcal{D})\right)$ for any $q<\infty$ large enough.
3. For some $a \in(0,1)$ define the operators \mathcal{F} and \mathcal{H} on $L^{\infty}\left(0, T ; L^{q}(\mathcal{D})\right)$ as follows:

$$
\begin{gathered}
\mathcal{F}(v)(t, x):=\int_{0}^{t} \int_{\mathcal{D}} G(x, z, t-s)(t-s)^{-a} v(z, s) d z d s \\
\mathcal{H}(v)(z, s):=\int_{0}^{s} \int_{\mathcal{D}}\left[\Delta G\left(z, y, s-s^{\prime}\right)-G\left(z, y, s-s^{\prime}\right)\right] \\
\left(s-s^{\prime}\right)^{a-1} f\left(v\left(y, s^{\prime}\right)\right) d y d s^{\prime}
\end{gathered}
$$

4. So, first

$$
\mathcal{I}(x, t)=c_{a} \mathcal{F}(\mathcal{H}(u))(x, t)
$$

where $c_{a}:=\pi^{-1} \sin (\pi a)$.
Using the estimates of the Green's function, we prove that

$$
\mathcal{H} \text { maps } L^{\infty}\left(0, T ; L^{q}(\mathcal{D})\right) \text { into itself. }
$$

5. Moreover,

$$
\mathcal{J}(x, t)=c_{a} \mathcal{F}\left(\mathcal{K}\left(u_{n}\right)\right)(x, t) \text { on the set }\left\{T \leq T_{n}^{*}\right\}
$$

for

$$
\begin{aligned}
\mathcal{K}\left(u_{n}\right)(x, t)= & \int_{0}^{t} \int_{\mathcal{D}} G(x, y, t-s)(t-s)^{a-1} \\
& 1_{\left\{s \leq T_{n}^{*}\right\}} \sigma\left(u_{n}(y, s)\right) W(d y, d s) \\
& \text { for } T_{n}^{*}:=\min \left\{\inf \left\{t \geq 0:\left\|u_{n}\right\|_{q} \geq n\right\}, \quad T^{*}\right\}
\end{aligned}
$$

Using the Hölder estimates of Green's function, we prove

$$
E\left(\left\|\mathcal{K}\left(u_{n}\right)\right\|_{L^{\infty}(\mathcal{D} \times[0, T])}^{2 p}\right)<\infty, \quad \forall p \geq 1
$$

and

$$
E\left(\left\|\mathcal{K}\left(u_{n}\right)\right\|_{q}^{2 p}\right) \leq E\left(\left\|\mathcal{K}\left(u_{n}\right)\right\|_{L^{\infty}(\mathcal{D} \times[0, T])}^{2 p}\right)<\infty, \quad \forall p \geq 1 .
$$

So, we deduce that

$$
\mathcal{J}(u) \in \mathcal{C}^{\lambda, \mu}(\mathcal{D} \times[0, T]) \text { a.s. on the set }\left\{T \leq T_{n}^{*}\right\}
$$

and as $n \rightarrow \infty$
a.s. $\mathcal{J}(u) \in \mathcal{C}^{\lambda, \mu}([0, T] \times \mathcal{D})$ for $\lambda<\frac{1}{2}-\frac{d}{8}$ and $\mu<2-\frac{d}{2}$.

