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The Stochastic equation

We consider the Cahn-Hilliard/Allen-Cahn equation with
multiplicative space-time noise:

up = —QA(AU - f(u)) n (Au - f(u)) Yo(WW in Dxo,T),
u(x,0) =up(x) in D
ou OAu
o v

)

=0 on 9Dx|[0,T).

D is a rectangular domain in RY with d = 1,2, 3,
0> 0 difusion constant,

f=F, F(u)=(1-u?? isa double equal-well potential.

W is a space-time white noise in the sense of Walsh, Lecture
Notes in Math. 1986.



o is Lipschitz with sub-linear growth such that
o(u)] < C(1+ [ul?), (2)

for some « € (0, 1].

Main Results

We give sufficient conditions on the initial condition ug so that:

1. a unique local (maximal) solution exists when d = 1,2, 3, for
any a € (0,1],

2. when a < % i.e. when the supremum of « coincides with the
inverse of the polynomial order of the nonlinear function f, a
global solution exists with Lipschitz path-regularity for d = 1.

Approach motivated by the works: Cardon-Weber, Bernoulli 2001, Cardon-Weber, Millet, J. Theor. Probab.,2004,

Da Prato, Debussche, Nonlin. Anal., 1996, Antonopoulou, Karali, DCDSB, 2011.



The physical model

Surface diffusion, and, adsorption/desorption micromechanisms:
< in surface processes,

< on cluster interface morphology,

see Katsoulakis, Vlachos, IMA Vol. Math. Appl. 2003.
Stochastic time-dependent Ginzburg-Landau type equations with
additive Gaussian white noise source:

— Cahn-Hilliard (Model B),

— Allen-Cahn (Model A),

appear in the classical theory of phase transitions;

see the universality classification of Hohenberg and Halperin, J.
Rev. Mod. Phys. 1977.



A simplified mean field model of statistical mechanics

— SPDE (1): Cahn-Hilliard and Allen-Cahn with noise.

1. The Cahn-Hilliard operator: mass conservative phase
separation and surface diffusion.

2. The Allen-Cahn operator: adsorption and desorption and
serves as a diffuse interface model for boundary coarsening.

3. Interacting particle systems are Markov processes set on a
lattice corresponding to a solid surface, of Ising-type; see
Giacomin, Lebowitz, Presutti, Math. Surveys Monogr. 1999.

Assuming that the particle-particle interactions are attractive
< system's Hamiltonian is nonnegative (attractive potential),

— so, the diffusion constant p > 0.



Weak formulation

For simplicity we set ¢ = 1 and consider D the unitary cube.

We say that u is a weak solution of the equation (1) if it satisfies:
[ (w6 = wolx )>¢(X) d =

/ / u(x,5) + Ad()[F(u(x,5)) + u(x, )]
S(x)F(u(x, s))) dxds

/ / d(x W (dx, ds),

for all ¢ € C*(D) with 52 = 282 = 0 on OD.

(3)




Measure W (dx, ds): is a space-time white noise,
induced by the one-dimensional (d + 1)-parameter Wiener process

W= {W(x,t): t€[0,T], x €D},

(with d space variables and 1 time variable).
We define, V t > 0 the filtration generated by W as:

Fe=0(W(x,s): s<t, xeD).

Integral representation of solution
Using a Green's function, the solution of (3) is a mild solution:

u(x, t) :/D uo(y)G(x,y,t) dy
+/of/D [AG(x,y,t —5) — G(x,y,t — s)]f(u(y,s)) dyds

+/0t/D G(x,y,t —s)o(u(y,s)) W(dy,ds). .



The Green’s function
A proper Green's function is induced by the linear part of the
SPDE: i.e. by the operator

T:=-A%2+A

on D with the homogeneous Neumann conditions

< domain D rectangular

<+ trigonometric L2(D)-orthonormal basis of eigenfunctions
(explicitly given),

and the associated Green's function is

G(x,y,t Ze AT e (x) ex(y),

fort >0, x,y € D.

IMPORTANT: 7 = —A? + A is uniformly strongly parabolic in
the sense of Petrovski.

— Cahn-Hilliard operator is dominant.



Holder estimates for the Green in space-time

GOy, )| < crt™ % exp ( —olx—yl3 t_%>,

d+|k| 1

0KG(x,y,t)| < ct™ 2 exp ( — o |x —y|% tii),

+4

6y, ) St ep (= alx -y t73),
and
t
/ / |G(x,z,t —r) — G(y, z,t — r)|? dzdr < C|x — y|7,
o Jp
/ / |G(x,z,t —r) — G(x,z,5 — r)|? dzdr < C|t — 5|,
0 JD

t
/ / G(x,2,t — )2 dzdr < Clt — 5|
s JD



The cut-off SPDE

In order to prove the existence of the solution u to (4) we
construct a cut-off SPDE:

Let x, € C}(R,R*) be a cut-off function satisfying

Xnl €1, X4l <2 ¥n>0,

1 if |x| <n,
Xn(x)_{ x| <

0 if |x|>n+1.

For fixed n >0, x € D, t € [0, T] and q € [3,+00), we consider
the following cut-off SPDE:

n(,£) = /D w0(y)G(x. . 1) dy

and

+/0t/D [AG(x,y,t—s)— G(x,y,t—s)]
Xn(llun(+; s)llq) f(un(y, s)) dyds

+/ot/D G(x,y,t —5) Xn(llun(-;s)llq) o (un(y,s)) W(dy, ds).



Theorem

Let o be globally Lipschitz and satisfy the assumption (2) with
a € (0,1), and up € L9(D). Then, under certain assumptions on
q, d, a, and B, the cut-off SPDE admits a unique solution uy, in
every time interval [0, T|, such that u, € Hr, where

Hr = {u(-, t) € LY(D) for t € [0, T]:
u is (Ft)-adapted and [Ju||,; < oo}7

for

@[

u = su E[l|u(-, t)]57)".
luller = sup_(EDluC, 0I5

Main steps of proof:

Here, we split the solution in 3 parts with £,(u,)(x, t) being the
noise term, as

up(x, t) = /D up(y)G(x,y,t) dy + Mu(un)(x,t) + Ln(un)(x, t).



Using the Green's estimates, and the Lipschitz property of the
diffusion o, we prove that:

1. For fixed n > 1, 3Ty(n) sufficiently small and independent of
up: for T < To(n)

M, + L, is a contraction mapping from Ht into Hr.
Thus for T < Ty(n), the map M, + L, has a unique fixed
point in {u eHr: u(-,0)= uo}
— in [0, T], for T < To(n),3! solution up,.
2. If T > To(n), set
fo(x) = un(x, To(n))

as new initial condition and W(t,x) = W(To(n) + t,x)
related to the filtration (F7;(5)4+, t > 0) independent of
FTo(n)-

< in the interval [0,2Ty(n)] take up(x, t) :=
etc. by induction up to some time NTy(n) > T.



Comments

1. We define the stopping time
To=min{inf {t >0 : [Jun(.,t)|lqg = n},n},

t <= trand = min{tv Tn})

2. then use that for any s < tyang

Xn(llun(-58)llq) =1,
so, the process (up(.,t),t < T,) is a solution to (4)
(mild solution of the initial SPDE).

3. Further, we define T* := limsup, Tp;
then uniqueness of the cut-off solution
< existence of a solution u(., t) of (4) in [0, T*)
(u defined by the limit value of the truncated processes),

4. and get that u is a local maximal solution to (4) in [0, T%), i.e.

sup{[Ju(., t)|lqg: t < T*} =0 as.



Global existence and uniqueness of solution
1. Dimensions restrict the result to d = 1, due to the
Gagliardo-Nirenberg inequality for the nonlinearity,

2. and the nonlinearity (polynomial of order 3) results to a
restriction for the noise diffusion growth:
1

< —.
43

The method

1. We write v, := u, — L£,(u,) as an element of L?(D) using the
othonormal eigenfunction basis of the negative Neumann
Laplacian on the cube with spectrum

O=X <A <A<

and then cut-off the Fourier series at the first m modes
— v}, for which we prove an L2 estimate on the limit
m — 00



t
Ivnle )3+ 180 5) 1B < CCT) [T+ o+ )] ()

for

1La(un) i == sup_sup [La(un)(x, t)],
te[0,T] xeD

where remind
Lolun) = | t [ 60 vst=5) ol o) runly. ) Wiy )

. We use the Holder estimates of Green's in space and time
together with Burkholder-Davies-Gundy inequality for the
space-time noise integral, i.e.

ELo(n) ™) = E( [ [ G0yt = ) xallunC.9)la) alun(y. ) Wiy a6) )

< GoE(l /O/D 60, vt = ) xanlllun(- 9)llq) o (un(y 5)) dy, ds|P),



to prove

(a) in expectation a p-moment space-time Holder estimate for
Ln(up) (very technical),

(b) and to derive finally for §: g > § > 2°‘d

E<”£,,(u,,)||f{;) < Gp(T) min {n20"’, teS[l(J)pT]E(”u"( )H2ap)}.

We then use the above in (*) by replacing u, = v, + L,(up)
and derive:
if up € L9(D) and p € [2,00)

E( supllunlOIE) < Co(T)[1+ ol + (1-+ o))
te|l,
E( sup [lun(0)[5) .
te[0,T]

which by a boot-strap argument gives the restriction a < %
and the moment estimates in 2

E( sup lun( D)) < Go(T)[1+ [l 15,

te[0,T]



3. Our aim for global existence, is to prove moment estimates in
L9, this restricts dimensions in d = 1, when estimating a
deterministic part of u,, i.e.

Mp(up) ::/0 /D [AG(x,y,t—5)— G(x,y, t —s)|x
Xn([[un(:, 5)llq) f(un(y, 5)) dyds

for which we prove for ¢ > 3 and 8 > 2, by using the [
moments

E( sup_[Ma(un)(,1)]1F) < C.

0<t<T

< moments in L9 for u,.

4. Thus, defining the stopping time

Tn = inf{t > 0: Hun('a t)“q > n}’



Chebyshev inequality gives

P(T,<T)< n*ﬁE< S[L(;pT] lun(-, t)||§) < Cn P,
te(o,

for 8 > 2, so, by the Borel-Cantelli Lemma
P(limsup{T, < T})=0
n—oo

and thus,

T, — o0 a.ss. as n— oo.

The uniqueness follows from the uniqueness of u,, since

u(-,t) := up(-, t) on [0, Ty,

and since T, — 00 a.s.



Extension of results for:

up = —QA(AU — f(u)) + é(Au - f(u)) +o(u)W,

when
0>0, §=>0,

and for more general domains with a smooth in space, space-time
noise
dxW (dt),

by the Antonopoulou, Karali, DCDSB, 2011, approach.

NOTE: the non-smooth in space noise in the definition of Walsh
needs the domain

D a cartesian product in R < rectangle.



While by the Cardon-Weber, Bernoulli, 2001 method, we derive
path regularity as follows:

Theorem
Ford =1, and a € (0, 3), if ug € L>(D):

(i) If ug is continuous, then the global solution of (4) has a.s.
continuous trajectories.

(i) If uy is B-Holder continuous for 0 < § < 1, then the trajectories
of the global solution to (4) are a.s. min{3, (2 — ¢)}-continuous

in space and min{%, (% - %)}—continuous in time.

And for d = 2,3, the same result for the maximal solutions in
D x [0, T*).



Comments

1. The integral form of the solution u given by (4) is split
as follows:

u(t,x) = Geug(x) + Z(x, t) + T (x, t),
for
T(x,t) = /O t /D [AG(x,y, t—5)—G(x,y, t—s)|F(uly,s)) dyds,

and

T(x, t):/ot/D G(x,y. t — s)o(uly, s)) W(dy, ds).



2. Considering the initial condition involving term

2.1 If ug is continuous, then the function G;ug is continuous.

2.2 If ug belongs to C(D) for 0 < § < 1, then
(x,t) = Geug(x) is 5-Holder continuous in x and 2-Holder
continuous in t.

2.3 If ug is bounded, then u belongs a.s. to L*°(0, T; L9(D)) for
any g < oo large enough.

3. For some a € (0,1) define the operators F and #H on
L>°(0, T; L9(D)) as follows:

v)(t, x) ::/t/ G(x,z,t —s)(t —s) ?v(z,s) dzds,

)(z,s) // AGZ%S_S) G(Z,y,S—SI)]
)M (v(y,s")) dyds’



4. So, first

I(x, t) = caF (H(u)(x, 1),

Lsin(ra).

where ¢; ;== 1~

Using the estimates of the Green's function, we prove that

H maps L*°(0, T; L9(D)) into itself.

5. Moreover,

J(x,t) = caF(K(upn))(x,t) on theset {T < T},

for

K= [ [ Gyt =s)(e—9)

Liserryo(un(y,s))W(dy, ds),
for T :== min{inf{t > 0: |us|lq > n}, T}



Using the Holder estimates of Green's function, we prove

E(H’C(”"”ﬁgo(m[o,r])) <oo, Vp=1,
and

E(IK(n)I2P) < E(IK(un)22. o rpy) < 000 ¥ = 1.

So, we deduce that

J(u) € CM(D x [0, T]) as. on the set {T < T},

and as n — oo

1 d d
a.s. J(u) € CM([0, T] x D) for A < 573 and p <2 — >



