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Lecture 3a. Dynamical equation for the magnetization

The Landau-Lifshitz equation

We derive equations for the dynamics of the magnetization as Hamilton's
equations obtained for the magnetic energy E,
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Remark

The dynamical part of the Landou-Lifshitz equation has the same form as the
equation of motion of a magnetic moment in o fleld.

It conserves the length of the local magnetization vector

d

" (M?) = —29M - (M x F) = 0.
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A conservative model

Hamilton’s equations

The Landau-Lifshitz equation is Hamilton’s equation where the magnetic energy
is the Hamiltonian. It conserves the energy

dE E o\
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Rationalized form of effective field

Assume exchange, anisotropy and external field energy (in 1D)
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We rescale space x — x {ex and we have

F = /L()Msf, f: 8X2m + k2m383 + h.
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Rationalized form of the equation

The Landau-Lifshitz equation is %—I\:[ =—YM X F, or

o Lengths are measured in units of lex.

o Time is measured in units of 1/(yuoM,).
We define the energy (that gives the desired effective field)

E = %f((‘)xm.axm)dx—i— %f(l —m3)2dx—fh-mdx.
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Example (Exchange length and typical time scale for Permalloy)

For Permalloy, A = 1.3 X 10_11]/m, M, = 0.69 x 108 A/m. We find a

typical length scale
loy = 6.59 M.

We find a typical time scale (y = 1.76 x 101t s=t 771,
po =41 x 107"NA=2 and T = N/(A - m))

1

oM = 6.5 x 10~ sec = 6.55 psec.
0/Vls

A corresponding frequency is

YioMs = 150 GHz.
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Lecture 3b. Quiz. Extra anisotropy in the equation.

Suppose a configuration m = m(x)é;. See in the notes the magnetostatic field
that this creates.

@ Write the Landau-Lifshitz equation (with an exchange, easy-axis anisotropy,
magnetostatic field).

@ We have seen a domain wall solution
my = sech(x) cos(¢g), ma = sech(x) sin(¢g), m3 = tanh(x).

For which @ is this a solution of the model including the magnetostatic
field?
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https://docs.google.com/forms/d/e/1FAIpQLSffl-UF_yBCRxntQl3WcdjPhA1hwqv0FR3NTKNa3NuFkBNP7w/viewform?usp=sf_link

Lecture 3b. Model for an infinitely thick film (1D)

We have seen that a configuration with my(x) # 0 would generate a
magnetostatic field h,, = —my (x) 1.
We expand our model to include such a magnetostatic field term.

An infinitely thick film

Om

or

o The magnetostatic field is modelled as anisotropy with a hard axis in the e;
direction (i.e., easy-plane yz).

= —m X (m” + K> mse3 — mlél)

@ The model now contains two anisotropy terms.

The domain wall is

my = sech(kx) cos g, mg = sech(kx)sin ¢y, m3 = tanh(kx)

It is a solution of the model for ¢g = :|:7r/2 (Bloch wall), i.e., m; = 0.
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Traveling waves

The Landau-Lifshitz equation

om
or

We added a parameter k; in the new term only to trace its effect.

=—m x (0;m + k* m3és — kI my &)

Traveling wave ansatz

Assume a wave propagating with velocity v. That is, we make the ansatz
m(x,7) — m(x — v7) for which 9, = m’, 9;m = —vm. The LL equation
becomes

vm’ =m X (m” + K2 msez — k% mlél) .
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Traveling domain walls

Propagating domain wall solutions with velocity ©

The propagating domain wall
my = sech(ef) cospg, my = sech(e€) sinpy, m3 = tanh(e)

where £ = x — 01, is a solution of the equation.

o The parameter ¢ is the “wall tilting” (fOr ¢g # =7 /2 the tilting is out of
the plane of the wall).

o The parameter € gives the domain wall width, 6 = 1/e.

A geodesic (meridion) on the sphere is connecting the poles mg = *£1.
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Traveling domain walls: Walker solution

Propagating domain wall solutions

The equation is satisfied only when the parameters are related by

in(2
v= -0 s ot g
€

We have a family of propagating domain walls with Velocity vs tilting angle
o] < 1/(20).

o Choose some tilting ¢q.

o Calculate the parameter € (|e| > k).

@ We now have the velocity of the wall. G oo
e Static walls (v = 0) 05
Bloch wall for g = +7m/2
Neéel wall for g = 0, 7. R T— 5 P n

o Maximum velocity for some 7/4 < ¢ < 7/2.
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Traveling domain walls: Walker solution (sketch)
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Traveling domain walls: Walker solution (role of ki)

Propagating domain wall solutions

The equation is satisfied only when the parameters are related by

sin(2
V= —k3 %, € = £/k? 4 k% cos? py.
€

We have a family of propagating domain walls with Velocity vs tilting angle

o] < 1/(2e).

o Choose some tilting ¢q.

1.0

0.5

o Calculate the parameter € (note |e| > k).

e We now have the velocity of the wall.

e Static walls (v = 0) 05
Bloch wall for g = £7m/2
Neéel wall for g = 0, 7. e T— 5 P n

o Maximum velocity for some 7/4 < ¢ < 7/2.
There are no propagating walls for k; = 0.
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Dzyaloshinskii-Moriya (DM) materials
Chiral domain walls

Add a chiral (Dzyaloshinskii-Moriya) term in the equation

= _—mx (fi‘fm—i—k2 mzes — 2\ e; X J,m) .

Static domain wall

For a Bloch wall (m; = 0) the DM term is identically zero, i.e., it is a solution
of the model including DM interaction (DMI).

Dynamical wall solutions

@ Propagating domain walls exist in this model.

@ Some issues on the problem of dynamics are open for chiral domain walls.
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