Diffusion

Literature. J.D. Murray, "Mathematical Biology" Sec. 11.

Fickian diffusion

Let us consider some molecules (or small particles, or microbes, etc) with concentration c (concentration is the number of particles per unit volume). If we consider that all particles are on a line, the concentration, $c=c(x, t)$, is the number of particles per unit length.
Now, consider that they are in motion with flux $J(x, t)$ (flux is the number of particles passing across a certain point x per unit time).
In Fickian diffusion

$$
\begin{equation*}
J \sim \frac{\partial c}{\partial x} \Rightarrow J=-D \frac{\partial c}{\partial x} \tag{1}
\end{equation*}
$$

(The flux is proportional to the gradient of the concentration and particles flow from higher to lower concentration.)

Let us consider a region from x_{1} to x_{2} and consider the change in the number of particles

$$
\frac{\partial}{\partial t} \int_{x_{1}}^{x_{2}} c(x, t) d x=J\left(x_{1}, t\right)-J\left(x_{2}, t\right)
$$

Let us now consider an infinitesimal region $x_{2}-x_{1}=\Delta x \rightarrow 0$ to get

$$
\frac{\partial c}{\partial t} d x=J\left(x_{1}, t\right)-J\left(x_{2}, t\right) \Rightarrow \frac{\partial c}{\partial t}=-\frac{J\left(x_{2}, t\right)-J\left(x_{1}, t\right)}{d x} \Rightarrow \frac{\partial c}{\partial t}=-\frac{\partial J}{\partial x}
$$

Using Fick's law we obtain the Diffusion equation

$$
\frac{\partial c}{\partial t}=\frac{\partial}{\partial x}\left(D \frac{\partial c}{\partial x}\right)
$$

For constant D we have the simpler equation

$$
\begin{equation*}
\frac{\partial c}{\partial t}=D \frac{\partial^{2} c}{\partial x^{2}} \tag{2}
\end{equation*}
$$

This is a linear partial differential equation.

See this tool for solving the diffusion equation online.

The solution of the diffusion equation

Example. (a) Show that the following is a solution of the diffusion equation (2),

$$
c(x, t)=\frac{Q}{2(\pi D t)^{1 / 2}} e^{-x^{2} /(4 D t)}, t>0, \quad Q: \text { const } .
$$

(b) Plot the solution for various values of t. (See here.)
(c) Note that the boundary conditions satisfied by the above solution at $c(\pm \infty)=0$, and the initial condition is $c(x, t=0)=Q \delta(x) .(\delta$ is the Dirac delta-function.)

Let us consider an assemblage of objects (particles), for example, bacteria, animals, molecules etc. These may move around (e.g., animals in the woods, molecules in a chemical reaction, even people in a city) in an irregular way. Their motion is done in small steps, but, in the long run, they spread in the way of simple diffusion.

Solution by Fourier transform

We can find a solution $c(x, t)$ of (2) by starting from its Fourier transform

$$
\hat{c}(k, t)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{i k x} c(x, t) d x
$$

We have that (integrate by parts twice)
$\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{i k x} \frac{\partial^{2} c}{\partial x^{2}} d x=\frac{1}{\sqrt{2 \pi}}(-i k) \int_{-\infty}^{\infty} e^{i k x} \frac{\partial c}{\partial x} d x=-k^{2} \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{i k x} c(x, t) d x=-k^{2} \hat{c}(k, t)$
And
$\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{i k x} \frac{\partial c}{\partial t} d x=\frac{\partial \hat{c}}{\partial t}$
Using the last two equations, the diffusion equation gives

$$
\frac{\partial c}{\partial t}=D \frac{\partial^{2} c}{\partial x^{2}} \Rightarrow \frac{\partial \hat{c}}{\partial t}=-k^{2} D \hat{c}(k, t)
$$

that is, a differential equation with only time derivative.
We have to choose initial condition, and we choose $\hat{c}(k, t=0)=Q / \sqrt{2 \pi}$. We get the solution

$$
\hat{c}(x, t)=\frac{Q}{\sqrt{2 \pi}} e^{-k^{2} D t}
$$

We apply the inverse Fourier transform and have the solution of the diffusion equation

$$
c(x, t)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-i k x} \hat{c}(k, t) d k=\frac{Q}{2 \pi} \int_{-\infty}^{\infty} e^{-i k x} e^{-k^{2} D t} d k
$$

Exercise. Show that $k^{2} D t+i k x=D t\left(k+i \frac{x}{2 D t}\right)^{2}+\frac{x^{2}}{4 D t}$.

Use the result of the last exercise to write

$$
\int_{-\infty}^{\infty} e^{-i k x} e^{-k^{2} D t} d k=e^{-x^{2} /(4 D t)} \int_{-\infty}^{\infty} e^{-D t\left(k+i \frac{x}{2 D t}\right)^{2}} d k=\sqrt{\frac{\pi}{D t}} e^{-x^{2} /(4 D t)} .
$$

Exercise. Show that (and use it in the above calculation) $\int_{-\infty}^{\infty} e^{-a z^{2}} d z=\sqrt{\frac{\pi}{a}}$.

Combining the results we find

$$
c(x, t)=\frac{Q}{\sqrt{4 \pi D t}} e^{-x^{2} /(4 D t)}
$$

[Thursday 9/4/2020]

Random walk

Suppose that a particle is released at $x=0$ at the time $t=0$ and let $p(x, t)$ the probability for the particle to be at position x at the time t. Suppose that our particle moves by Δx in a time interval Δt.
Let the particle be at position x at the time instance t. Then at the time $t-\Delta t$ it should have been either at $x-\Delta x$ or at $x+\Delta x$.
We suppose that the particle moves right with a probability a and left with a probability b. Of course, $a+b=1$.
We have

$$
p(x, t)=a p(x-\Delta x, t-\Delta t)+b p(x+\Delta x, t-\Delta t)
$$

We consider this random walk with $a=b=\frac{1}{2}$ (unbiased random walk).
Write the Taylor expansion

$$
p(x+\Delta x, t+\Delta t)=p(x, t)+\Delta t \frac{\partial p}{\partial t}+\Delta x \frac{\partial p}{\partial x}+\frac{1}{2}(\Delta t)^{2} \frac{\partial^{2} p}{\partial t^{2}}+\frac{1}{2}(\Delta x)^{2} \frac{\partial^{2} p}{\partial x^{2}}+\ldots
$$

We substitute and have

$$
\begin{gathered}
p(x, t)=a\left[p(x, t)-\Delta t \frac{\partial p}{\partial t}-\Delta x \frac{\partial p}{\partial x}+\frac{1}{2}(\Delta t)^{2} \frac{\partial^{2} p}{\partial t^{2}}+\frac{1}{2}(\Delta x)^{2} \frac{\partial^{2} p}{\partial x^{2}}\right]+b\left[p(x, t)-\Delta t \frac{\partial p}{\partial t}+\Delta x \frac{\partial p}{\partial x}+\frac{1}{2}(\Delta t)^{2} \frac{\partial^{2} p}{\partial t^{2}}+\frac{1}{2}(\Delta x\right. \\
p(x, t)=(a+b) p(x, t)-(a+b) \Delta t \frac{\partial p}{\partial t}+\frac{1}{2}(a+b)(\Delta t)^{2} \frac{\partial^{2} p}{\partial t^{2}}+(-a+b) \Delta x \frac{\partial p}{\partial x}+\frac{1}{2}(a+b)(\Delta x)^{2} \frac{\partial^{2} p}{\partial x^{2}} \Rightarrow \\
0=-\Delta t \frac{\partial p}{\partial t}+\frac{1}{2}(\Delta t)^{2} \frac{\partial^{2} p}{\partial t^{2}}+\frac{1}{2}(\Delta x)^{2} \frac{\partial^{2} p}{\partial x^{2}}
\end{gathered}
$$

We want to obtain a continuous model in space and time, and we thus let $\Delta x \rightarrow 0$, $\Delta t \rightarrow 0$.
We choose

$$
\lim _{\Delta x, \Delta t \rightarrow 0} \frac{(\Delta t)^{2}}{2 \Delta t}=D
$$

where we assume that D is a constant.
We obtain the diffusion equation for the probability p,

$$
-\frac{\partial p}{\partial t}+(\Delta t) \frac{\partial^{2} p}{\partial t^{2}}+\frac{(\Delta x)^{2}}{2 \Delta t} \frac{\partial^{2} p}{\partial x^{2}}=0 \Rightarrow \frac{\partial p}{\partial t}=D \frac{\partial^{2} p}{\partial x^{2}}
$$

Exercise. The solution of this equation is $p(x, t)=\frac{Q}{2 \sqrt{\pi D t}} e^{-x^{2} /(4 D t)}$. Show that

$$
\int_{-\infty}^{\infty} p(x, t) d x=Q
$$

for every time t. We can choose $Q=1$ when p is to be interpreted as probability. If $Q \neq 1$ we can interpret it as the number of particles released at $x=0$ at the time $t=0$.

Animal dispersal model

- Insect dispersal.
- Biological invasions of mammals, birds, insects and plants.
- Immigration of people.

There may be an increase in the animal dispersal due to population pressure

$$
J=-D(n) \partial_{x} n, \quad \frac{d D}{d n}>0
$$

that is, D is an increasing function of population density n.

Let us choose

$$
D(n)=D_{0}\left(\frac{n}{n_{0}}\right)^{m}, \quad D_{0}, n_{0}>0 \quad \text { and } \quad m>0 \text { integer } .
$$

Question. What phenomena does the above form take into account? (Population pressure has an effect faster than linear.)

Let us see the diffusion equation in one dimension

$$
\frac{\partial n}{\partial t}=D_{0} \frac{\partial}{\partial x}\left[\left(\frac{n}{n_{0}}\right)^{m} \frac{\partial n}{\partial x}\right]
$$

This has an analytic solution

$$
n(x, t)=\frac{n_{0}}{\lambda(t)}\left[1-\left(\frac{x}{r_{0} \lambda(t)}\right)^{2}\right]^{1 / m}, \quad|x| \leq r_{0} \lambda(t) \text { and } n(x, t)=0, \quad|x|>r_{0} \lambda(t)
$$

where

$$
\lambda(t)=\left(t / t_{0}\right)^{1 /(2+m)}, \quad r_{0}>0, \quad t_{0}=\frac{r_{0}{ }^{2} m}{2 D_{0}(m+2)}
$$

For $m=1$ we have

$$
n(x, t)=\frac{n_{0}}{\lambda(t)}\left[1-\left(\frac{x}{r_{0} \lambda(t)}\right)^{2}\right], \quad \lambda(t)=\left(t / t_{0}\right)^{1 / 3}, t_{0}=\frac{r_{0}^{2}}{6 D_{0}}, \quad r_{0}>0
$$

For $m=2$ we have

$$
n(x, t)=\frac{n_{0}}{\lambda(t)}\left[1-\left(\frac{x}{r_{0} \lambda(t)}\right)^{2}\right]^{1 / 2}, \lambda(t)=\left(t / t_{0}\right)^{1 / 4}, t_{0}=\frac{r_{0}^{2}}{4 D_{0}}, r_{0}>0
$$

Exercise. Plot $n(x, t)$ for successive values of t.
(a) For $m=1$. Let us choose $D_{0}=1, n_{0}=100$ and $r_{0}^{2}=48$ thus $t_{0}=8, \lambda(t)=t^{1 / 3} / 2$. For these values, the end of the front is at $x_{f}=r_{0} \lambda(t)=2 \sqrt{3} \cdot t^{1 / 3}$. Graph.
(b) For $m=2$. Let us choose $D_{0}=1, n_{0}=10$ and $r_{0}{ }^{2}=8$ thus $t_{0}=2, \lambda=(t / 2)^{1 / 4}$. For these values, the end of the front is at $x_{f}=\sqrt{8}(t / 2)^{1 / 4}$.

Graph.

Note that

- The population extends up to $x_{f}=r_{0} \lambda(t)$, it is zero for $x>r_{0} \lambda(t)$.
- The solution represents a wave with front at $x=r_{0} \lambda(t)$.
- The derivative of n_{f} is discontinuous at the end of the front.
- The propagation speed of the front is $d x_{f} / d t=d x_{f} / d t=r_{0} d \lambda / d t$. Note that this will be a decreasing function of time.

Remark. The dispersal patterns for grasshoppers exhibit a behavior similar to this model.

Exercise. Verify the solution for the above model for $m=1$.

Question. In which cases would we expect higher values of the integer m in the animal dispersion model?

Diffusion in 3D

In the 3D space we write the law of conservation of mass in a volume V as

$$
\frac{\partial}{\partial t} \int_{V} c(\vec{r}, t) d v=-\int_{S} \vec{J} \cdot d \vec{s}
$$

where S is the surface enclosing the volume V (on the left side is the rate of change of the mass and on the right side is the flux through the surface).
We apply the divergence theorem (*) to the surface integral and have the volume integral $\int_{S} \vec{J} \cdot d \vec{s}=\int_{V} \vec{\nabla} \cdot \vec{J} d v$.
Using the latter result, we obtain

$$
\int_{V} \frac{\partial c}{\partial t} d v=-\int_{V} \vec{\nabla} \cdot \vec{J} d v \Rightarrow \int_{V}\left(\frac{\partial c}{\partial t}+\vec{\nabla} \cdot \vec{J}\right) d v=0
$$

Since the volume V is arbitrary the integrand must be zero (we obtain a continuity equation)

$$
\frac{\partial c}{\partial t}+\vec{\nabla} \cdot \vec{J}=0 .
$$

Fick's law in 3D would be

$$
\vec{J}=-D \vec{\nabla} c
$$

Substitute this in the continuity equation and obtain the Diffusion equation in 3D

$$
\frac{\partial c}{\partial t}=\vec{\nabla}(D \vec{\nabla} c)
$$

or

$$
\frac{\partial c}{\partial t}=D \Delta c, \quad \text { if } D \text { is constant. }
$$

Example. (Animal dispersal)
Let n the population density.
There may be an increase in dispersion due to population pressure

$$
\vec{J}=-D(n) \vec{\nabla} n, \quad \frac{d D}{d n}>0
$$

that is D is an increasing function of population density n.
Let us choose

$$
D(n)=D_{0}\left(\frac{n}{n_{0}}\right)^{m}, \quad D_{0}, n_{0}>0 \text { and } m>0 \text { integer } .
$$

Exercise. Write the animal dispersal model for grasshoppers that disperse radially on the plane. Give the solution of the model.

In the solutions that we studied, the total population remains constant, $\int_{V} n d v=N$.

Gauss' divergence theorem (*)

[Marsden, Tromba, Sec. 8.4]
Let W be a symmetric elementary region in space. Denote by ∂W the oriented closed surface that bounds W. Let \vec{F} be a smooth vector field defined on W. Then

$$
\int_{W}(\vec{\nabla} \cdot \vec{F}) d V=\int_{\partial W} \vec{F} \cdot d \vec{S} .
$$

(Elements of the proof.)
Let $\vec{F}=P \vec{i}+Q \hat{j}+R \hat{k}$, thus $\vec{\nabla} \cdot \vec{F}=\frac{\partial Q}{\partial x}+\frac{\partial P}{\partial y}+\frac{\partial R}{\partial z}$.
Assume a cubic volume V and let two parts of the surface S_{1} and S_{2} that have opposite orientations, for example, $\hat{k} S_{1}=-\hat{k} S_{2}$.
We have the following

$$
\iiint_{V} \frac{\partial R}{\partial z} d x d y d z=\int_{S}\left(R_{1}-R_{2}\right) d x d y=\int_{S_{1}} R d x d y+\int_{S_{2}} R d x d y=\int_{S} \vec{F} \cdot \hat{k} d S=\int_{S} \vec{F} \cdot d \vec{S} .
$$

where $d \vec{S}=\hat{k} S_{1}$ on S_{1} and $d \vec{S}_{2}=-\hat{k} S_{2}$ on S_{2}.

Reaction-Diffusion equations

Derivation

When mass can be created or annihilated in the volume V, then the law conservation of mass is

$$
\frac{\partial}{\partial t} \int_{V} c(\vec{r}, t) d v=-\int_{S} \vec{J} \cdot d \vec{s}+\int_{V} f d v
$$

where f is a source of mass (for example, for $f=1$ and $J=0$, we have $d c / d t=1$, i.e., constant increase of concentration).
In general, $f=f(c, \vec{x}, t)$.
We apply the divergence theorem (*) to the surface integral and have the volume integral

$$
\int_{V}\left(\frac{\partial c}{\partial t}+\vec{\nabla} \cdot \vec{J}-f\right) d v=0
$$

Since the volume V is arbitrary the integrand must be zero

$$
\frac{\partial c}{\partial t}+\vec{\nabla} \cdot \vec{J}=f
$$

Thus, we have a more general differential law of mass conservation.
If we assume Fick's law, then we obtain

$$
\frac{\partial c}{\partial t}=f+\vec{\nabla}(D \vec{\nabla} c)
$$

Example. We have applications in the following.

- In an ecological context, where c is the population density, f could represent the birth and death processes.
- In an epidemic, c may be the infected and f could represent the new infections and the recoverings.
- In cancer models involving mutating cancer cells.
- In animal dispersal models.

Make sure you understand the parameters of the problem. Consider that (and explain why)

- D can be a function of \vec{r} and c.
- f can be a function of \vec{r}, t and c, that is, $f=f(c, \vec{r}, t)$.

Generalization. We can imagine a system with many species and the respective concentrations c_{i}, so that the concentration is a vector \vec{c}. We then have a system of equations as a reaction diffusion system. Note that, in this case, D is a matrix.

Fisher-Kolmogorov equation

For logistic growth of a population n,

$$
\frac{d n}{d t}=f(n), \quad f(n)=r n\left(1-\frac{n}{K}\right)
$$

where r is the linear reproduction rate and K is the carrying capacity of the environment.

Exercise. Plot the solution of the logistic model and show graphically its dependence on r, K.
The solution is $n(t)=\frac{n_{0} K e^{r t}}{K+n_{0}\left(e^{t t}-1\right)}$. Note that $n(t=0)=n_{0} . \underline{\text { Graph. }}$

Let us consider a model with diffusion where the population follows the logistic growth. For diffusion parameter D and for f giving logistic growth we have the reaction-diffusion model

$$
\frac{\partial n}{\partial t}=r n\left(1-\frac{n}{K}\right)+D \Delta n, \quad n=n(\vec{r}, t)
$$

known as the Fisher-Kolmogorov equation (Fisher (1937) proposed the one-dimensional version as a model for the spread of an advantageous gene in a population and Kolmogorov et al (1937) studied the equation).

