Diffusion

Literature. J.D. Murray, "Mathematical Biology" Sec. 11.

Fickian diffusion

Let us consider some molecules (or small particles, or microbes, etc) with concentration c (concentration is the number of particles per unit volume). If we consider that all particles are on a line, the concentration, c = c(x, t), is the number of particles per unit length.

Now, consider that they are in motion with flux J(x, t) (flux is the number of particles passing across a certain point x per unit time).

In Fickian diffusion

$$J \sim \frac{\partial c}{\partial x} \Rightarrow J = -D \frac{\partial c}{\partial x}$$
 (1)

(The flux is proportional to the gradient of the concentration and particles flow from higher to lower concentration.)

Let us consider a region from x_1 to x_2 and consider the change in the number of particles

$$\frac{\partial}{\partial t}\int_{x_1}^{x_2} c(x,t) dx = J(x_1,t) - J(x_2,t)$$

Let us now consider an infinitesimal region $x_2 - x_1 = \Delta x \rightarrow 0$ to get

$$\frac{\partial c}{\partial t}dx = J(x_1, t) - J(x_2, t) \implies \frac{\partial c}{\partial t} = -\frac{J(x_2, t) - J(x_1, t)}{dx} \implies \frac{\partial c}{\partial t} = -\frac{\partial a}{\partial t}$$

Using Fick's law we obtain the Diffusion equation

$$\frac{\partial c}{\partial t} = \frac{\partial}{\partial x} \left(D \frac{\partial c}{\partial x} \right)$$

For constant D we have the simpler equation

$$\frac{\partial c}{\partial t} = D \frac{\partial^2 c}{\partial x^2}$$
 (2)

This is a linear partial differential equation.

See this tool for solving the diffusion equation online.

The solution of the diffusion equation

Example. (a) Show that the following is a solution of the diffusion equation (2),

$$c(x,t) = \frac{Q}{2(\pi Dt)^{1/2}} e^{-x^2/(4Dt)}, t > 0, Q : const.$$

(b) Plot the solution for various values of *t*. (See <u>here</u>.)

(c) Note that the boundary conditions satisfied by the above solution at $c(\pm \infty) = 0$, and the initial condition is $c(x, t = 0) = Q\delta(x)$. (δ is the Dirac delta-function.)

Let us consider an assemblage of objects (particles), for example, bacteria, animals, molecules etc. These may move around (e.g., animals in the woods, molecules in a chemical reaction, even people in a city) in an irregular way. Their motion is done in small steps, but, in the long run, they spread in the way of simple diffusion.

Solution by Fourier transform

We can find a solution c(x, t) of (2) by starting from its Fourier transform

$$\hat{c}(k,t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{ikx} c(x,t) \, dx$$

We have that (integrate by parts twice)

$$\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}e^{ikx}\frac{\partial^2 c}{\partial x^2}dx = \frac{1}{\sqrt{2\pi}}(-ik)\int_{-\infty}^{\infty}e^{ikx}\frac{\partial c}{\partial x}dx = -k^2\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}e^{ikx}c(x,t)\,dx = -k^2\,\hat{c}(k,t)$$

And

$$\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}e^{ikx}\frac{\partial c}{\partial t}dx = \frac{\partial \hat{c}}{\partial t}$$

Using the last two equations, the diffusion equation gives

$$\frac{\partial c}{\partial t} = D \frac{\partial^2 c}{\partial x^2} \Rightarrow \frac{\partial \hat{c}}{\partial t} = -k^2 D \ \hat{c}(k,t)$$

that is, a differential equation with only time derivative. We have to choose initial condition, and we choose $\hat{c}(k, t = 0) = Q/\sqrt{2\pi}$. We get the solution

$$\hat{c}(x,t) = \frac{Q}{\sqrt{2\pi}} e^{-k^2 D t}$$

We apply the inverse Fourier transform and have the solution of the diffusion equation

$$c(x,t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-ikx} \hat{c}(k,t) dk = \frac{Q}{2\pi} \int_{-\infty}^{\infty} e^{-ikx} e^{-k^2 Dt} dk$$

Exercise. Show that $k^2Dt + ikx = Dt(k + i\frac{x}{2Dt})^2 + \frac{x^2}{4Dt}$.

Use the result of the last exercise to write

$$\int_{-\infty}^{\infty} e^{-ikx} e^{-k^2 Dt} dk = e^{-x^2/(4Dt)} \int_{-\infty}^{\infty} e^{-Dt(k+i\frac{x}{2Dt})^2} dk = \sqrt{\frac{\pi}{Dt}} e^{-x^2/(4Dt)}.$$

Exercise. Show that (and use it in the above calculation) $\int_{-\infty}^{\infty} e^{-az^2} dz = \sqrt{\frac{\pi}{a}}$.

Combining the results we find

$$c(x,t) = \frac{Q}{\sqrt{4\pi Dt}} e^{-x^2/(4Dt)}$$

[Thursday 9/4/2020]

Random walk

Suppose that a particle is released at x = 0 at the time t = 0 and let p(x, t) the probability for the particle to be at position x at the time t. Suppose that our particle moves by Δx in a time interval Δt .

Let the particle be at position x at the time instance t. Then at the time $t - \Delta t$ it should have been either at $x - \Delta x$ or at $x + \Delta x$.

We suppose that the particle moves right with a probability a and left with a probability b. Of course, a + b = 1.

We have

$$p(x,t) = a p(x - \Delta x, t - \Delta t) + b p(x + \Delta x, t - \Delta t)$$

We consider this random walk with $a = b = \frac{1}{2}$ (unbiased random walk). Write the Taylor expansion

$$p(x + \Delta x, t + \Delta t) = p(x, t) + \Delta t \frac{\partial p}{\partial t} + \Delta x \frac{\partial p}{\partial x} + \frac{1}{2} (\Delta t)^2 \frac{\partial^2 p}{\partial t^2} + \frac{1}{2} (\Delta x)^2 \frac{\partial^2 p}{\partial x^2} + \dots$$

We substitute and have

 $p(x,t) = a \left[p(x,t) - \Delta t \frac{\partial p}{\partial t} - \Delta x \frac{\partial p}{\partial x} + \frac{1}{2} (\Delta t)^2 \frac{\partial^2 p}{\partial t^2} + \frac{1}{2} (\Delta x)^2 \frac{\partial^2 p}{\partial x^2} \right] + b \left[p(x,t) - \Delta t \frac{\partial p}{\partial t} + \Delta x \frac{\partial p}{\partial x} + \frac{1}{2} (\Delta t)^2 \frac{\partial^2 p}{\partial t^2} + \frac{1}{2} (\Delta x)^2 \frac{\partial^2 p}{\partial t^2} + (-a+b)\Delta x \frac{\partial p}{\partial x} + \frac{1}{2} (a+b)(\Delta x)^2 \frac{\partial^2 p}{\partial x^2} \Rightarrow 0 = -\Delta t \frac{\partial p}{\partial t} + \frac{1}{2} (\Delta t)^2 \frac{\partial^2 p}{\partial t^2} + \frac{1}{2} (\Delta x)^2 \frac{\partial^2 p}{\partial x^2}$

We want to obtain a *continuous* model in space and time, and we thus let $\Delta x \rightarrow 0$, $\Delta t \rightarrow 0$.

We choose

$$\lim_{\Delta x, \Delta t \to 0} \frac{\left(\Delta x\right)^2}{2\Delta t} = D$$

where we assume that D is a constant.

We obtain the diffusion equation for the probability p,

$$-\frac{\partial p}{\partial t} + (\Delta t) \frac{\partial^2 p}{\partial t^2} + \frac{(\Delta x)^2}{2\Delta t} \frac{\partial^2 p}{\partial x^2} = 0 \implies \frac{\partial p}{\partial t} = D \frac{\partial^2 p}{\partial x^2}$$

Exercise. The solution of this equation is $p(x, t) = \frac{Q}{2\sqrt{\pi Dt}} e^{-x^2/(4Dt)}$. Show that $\int_{-\infty}^{\infty} p(x, t) dx = Q$

for every time *t*. We can choose Q = 1 when *p* is to be interpreted as probability. If $Q \neq 1$ we can interpret it as the number of particles released at x = 0 at the time t = 0.

Animal dispersal model

- Insect dispersal.
- Biological invasions of mammals, birds, insects and plants.
- Immigration of people.

There may be an increase in the animal dispersal due to population pressure

$$U = -D(n) \partial_x n, \quad \frac{dD}{dn} > 0$$

that is, D is an increasing function of population density n.

Let us choose

$$D(n) = D_0(\frac{n}{n_0})^m, \quad D_0, n_0 > 0 \text{ and } m > 0 \text{ integer.}$$

Question. What phenomena does the above form take into account? (Population pressure has an effect faster than linear.)

Let us see the diffusion equation in one dimension

$$\frac{\partial n}{\partial t} = D_0 \frac{\partial}{\partial x} \left[\left(\frac{n}{n_0} \right)^m \frac{\partial n}{\partial x} \right]$$

This has an analytic solution

$$n(x,t) = \frac{n_0}{\lambda(t)} [1 - (\frac{x}{r_0\lambda(t)})^2]^{1/m}, \quad |x| \le r_0\lambda(t) \text{ and } n(x,t) = 0, \quad |x| > r_0\lambda(t)$$

where

$$\lambda(t) = (t/t_0)^{1/(2+m)}, \quad r_0 > 0, \quad t_0 = \frac{r_0^{2m}}{2D_0(m+2)}$$

For m = 1 we have $n(x, t) = \frac{n_0}{\lambda(t)} [1 - (\frac{x}{r_0\lambda(t)})^2], \quad \lambda(t) = (t/t_0)^{1/3}, \quad t_0 = \frac{r_0^2}{6D_0}, \quad r_0 > 0$ For m = 2 we have $n(x, t) = \frac{n_0}{\lambda(t)} [1 - (\frac{x}{r_0\lambda(t)})^2]^{1/2}, \quad \lambda(t) = (t/t_0)^{1/4}, \quad t_0 = \frac{r_0^2}{4D_0}, \quad r_0 > 0$

Exercise. Plot n(x, t) for successive values of t.

(a) For m = 1. Let us choose $D_0 = 1$, $n_0 = 100$ and $r_0^2 = 48$ thus $t_0 = 8$, $\lambda(t) = t^{1/3}/2$. For these values, the end of the front is at $x_f = r_0\lambda(t) = 2\sqrt{3} \cdot t^{1/3}$. Graph. (b) For m = 2. Let us choose $D_0 = 1$, $n_0 = 10$ and $r_0^2 = 8$ thus $t_0 = 2$, $\lambda = (t/2)^{1/4}$. For these values, the end of the front is at $x_f = \sqrt{8} (t/2)^{1/4}$.

Graph.

Note that

- The population extends up to $x_f = r_0 \lambda(t)$, it is zero for $x > r_0 \lambda(t)$.
- The solution represents a wave with front at $x = r_0 \lambda(t)$.
- The derivative of n_f is discontinuous at the end of the front.
- The propagation speed of the front is $dx_f/dt = dx_f/dt = r_0 d\lambda/dt$. Note that this will be a decreasing function of time.

Remark. The dispersal patterns for grasshoppers exhibit a behavior similar to this model.

Exercise. Verify the solution for the above model for m = 1.

Question. In which cases would we expect higher values of the integer m in the animal dispersion model?

Diffusion in 3D

In the 3D space we write the law of conservation of mass in a volume V as

$$\frac{\partial}{\partial t} \int_{V} c(\vec{r}, t) dv = -\int_{S} \vec{J} \cdot d\vec{s}$$

where S is the surface enclosing the volume V (on the left side is the rate of change of the mass and on the right side is the flux through the surface).

We apply the divergence theorem (*) to the surface integral and have the volume

integral $\int_{S} \vec{J} \cdot d\vec{s} = \int_{V} \vec{\nabla} \cdot \vec{J} dv$.

Using the latter result, we obtain

$$\int_{V} \frac{\partial c}{\partial t} \, dv = -\int_{V} \vec{\nabla} \cdot \vec{J} \, dv \Rightarrow \int_{V} \left(\frac{\partial c}{\partial t} + \vec{\nabla} \cdot \vec{J} \right) \, dv = 0$$

Since the volume V is arbitrary the integrand must be zero (we obtain a continuity equation)

$$\frac{\partial c}{\partial t} + \vec{\nabla} \cdot \vec{J} = 0.$$

Fick's law in 3D would be

$$\vec{J} = -D \vec{\nabla} c$$

Substitute this in the continuity equation and obtain the Diffusion equation in 3D

$$\frac{\partial c}{\partial t} = \vec{\nabla} (D \vec{\nabla} c)$$

or

 $\frac{\partial c}{\partial t} = D \Delta c$, if D is constant.

Example. (Animal dispersal)

Let n the population density.

There may be an increase in dispersion due to population pressure

$$\vec{J} = -D(n) \ \vec{\nabla} n, \quad \frac{dD}{dn} > 0$$

that is D is an increasing function of population density n. Let us choose

$$D(n) = D_0(\frac{n}{n_0})^m$$
, $D_0, n_0 > 0$ and $m > 0$ integer.

Exercise. Write the animal dispersal model for grasshoppers that disperse radially on the plane. Give the solution of the model.

In the solutions that we studied, the total population remains constant, $\int_{V} n \, dv = N$.

Gauss' divergence theorem (*)

[Marsden, Tromba, Sec. 8.4]

Let W be a symmetric elementary region in space. Denote by ∂W the oriented closed surface that bounds W. Let \vec{F} be a smooth vector field defined on W. Then

$$\int_{W} (\vec{\nabla} \cdot \vec{F}) \, dV = \int_{\partial W} \vec{F} \cdot d\vec{S}.$$

(Elements of the proof.)

Let $\vec{F} = P\vec{i} + Q\hat{j} + R\hat{k}$, thus $\vec{\nabla} \cdot \vec{F} = \frac{\partial Q}{\partial x} + \frac{\partial P}{\partial y} + \frac{\partial R}{\partial z}$.

Assume a cubic volume *V* and let two parts of the surface S_1 and S_2 that have opposite orientations, for example, $\hat{k}S_1 = -\hat{k}S_2$.

We have the following

$$\iint_{V} \frac{\partial R}{\partial z} dx \, dy \, dz = \int_{S} (R_1 - R_2) \, dx \, dy = \int_{S_1} R \, dx \, dy + \int_{S_2} R \, dx \, dy = \int_{S} \vec{F} \cdot \hat{k} \, dS = \int_{S} \vec{F} \cdot d\vec{S}.$$

where $d\vec{S} = \hat{k}S_1$ on S_1 and $d\vec{S}_2 = -\hat{k}S_2$ on S_2 .

Reaction-Diffusion equations

Derivation

When mass can be created or annihilated in the volume V, then the law conservation of mass is

$$\frac{\partial}{\partial t} \int_{V} c(\vec{r}, t) \, dv = -\int_{S} \vec{J} \cdot d\vec{s} + \int_{V} f \, dv$$

where *f* is a source of mass (for example, for f = 1 and J = 0, we have dc/dt = 1, i.e., constant increase of concentration).

In general, $f = f(c, \vec{x}, t)$.

We apply the divergence theorem (*) to the surface integral and have the volume integral

$$\int_{V} \left(\frac{\partial c}{\partial t} + \vec{\nabla} \cdot \vec{J} - f \right) dv = 0$$

Since the volume V is arbitrary the integrand must be zero

$$\frac{\partial c}{\partial t} + \vec{\nabla} \cdot \vec{J} = f$$

Thus, we have a more general differential law of mass conservation.

If we assume Fick's law, then we obtain

$$\frac{\partial c}{\partial t} = f + \vec{\nabla} (D \vec{\nabla} c)$$

Example. We have applications in the following.

- In an ecological context, where c is the population density, f could represent the birth and death processes.
- In an epidemic, *c* may be the infected and *f* could represent the new infections and the recoverings.
- In cancer models involving mutating cancer cells.
- In animal dispersal models.

Make sure you understand the parameters of the problem. Consider that (and explain why)

- D can be a function of \vec{r} and c.
- f can be a function of \vec{r} , t and c, that is, $f = f(c, \vec{r}, t)$.

Generalization. We can imagine a system with many species and the respective concentrations c_i , so that the concentration is a vector \vec{c} . We then have a system of equations as a reaction diffusion system. Note that, in this case, D is a matrix.

Fisher-Kolmogorov equation

For logistic growth of a population n,

 $\frac{dn}{dt} = f(n), \quad f(n) = r n \left(1 - \frac{n}{K}\right)$

where r is the linear reproduction rate and K is the carrying capacity of the environment.

Exercise. Plot the solution of the logistic model and show graphically its dependence on r, K.

The solution is $n(t) = \frac{n_0 K e^{rt}}{K + n_0(e^{rt}-1)}$. Note that $n(t = 0) = n_0$. Graph.

Let us consider a model with diffusion where the population follows the logistic growth. For diffusion parameter D and for f giving logistic growth we have the reaction-diffusion model

 $\frac{\partial n}{\partial t} = rn \left(1 - \frac{n}{K}\right) + D \Delta n, \quad n = n(\vec{r}, t)$

known as the Fisher-Kolmogorov equation (Fisher (1937) proposed the one-dimensional version as a model for the spread of an advantageous gene in a population and Kolmogorov et al (1937) studied the equation).