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Lecture 6a. A field with values on the sphere, u(s) ∈ S2

Assume a field u = u(s) defined in the real
space, s ∈ R, and taking values on the unit
sphere, u ∈ S2.
Such a field is realised by a vector u ∈ R3

with unit length u2 = 1. For any parameter
s we have

u2 = 1 ⇒ d
ds
(u · u) = 0 ⇒ u · du

ds
= 0.

Any derivative of u is perpendicular to u (it belongs to the tangent plane
of the sphere at u).

du
ds

= u× f, for some f.

Stavros Komineas Mathematical Modeling



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Application. A spin in an external field

The electrons in the atoms have an internal angular moment, called spin

The spin S of the atoms (electrons) is a vector of constant length.

The equation of motion for the spin in an
external field h

dS
dt

= S× h

S cos θ: Component of S parallel to h
(remains constant).

S sin θ: Projection of S on the plane
perpendicular to h (constant length).
The moment S performs precession
around h.
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Energy of a spin

The length of S is conserved during motion
Note that |S|2 = S · S. We have

d
dt
(S · S) = 2S · dS

dt
= 2S · (S× h) = 0.

Energy of S in an external magnetic field h

E = −S · h.

Since S = s is fixed, the only parameter is the angle θ between S and h,

E = −sh cos θ.

The energy is conserved during motion

dE
dt

=
dE
dS · dS

dt
= −h · (S× h) = 0.
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Exchange interaction

Ferromagnets
are materials that present non-zero net magnetization (at zero field). This
is due to spins of neighbouring electrons that interact and tend to be
aligned.

Neighbouring spins are aligned due to exchange interaction.

At the level of two individual spins S1, S2, the energy due to exchange
interaction is modelled as

−J S1 · S2, J : exchange constant.

For J > 0 and perfectly aligned spins the exchange energy has a
minimum.
• The exchange interaction induces magnetic order.

Antiferromagnets, Weak Ferromagnets, etc
are materials that present magnetic order (at zero field).
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Two spins

In the energy E = −JS1 · S2, each spin plays the role of an external field
for the other one. Therefore, the equations of motion are

Ṡ1 = J S1 × S2, Ṡ2 = J S2 × S1.

Note that, the change of the one spin affects the dynamics of the other
one. That means that we have a system of coupled equations.

We could loosely imagine that S1 is precessing around S2, while S2 is
precessing around S1.

S1 S2

Exercise (Dynamics of two spins)

Study the dynamics of two exchange-coupled spins S1, S2.
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A spin chain

Consider a chain of N spins Si, i = 1, 2, · · · ,N.

The energy of the system is

E = −J
N−1∑
i=1

Si · Si+1.

Each spin Sk interacts with two neighbours at k+ 1, k− 1.

Chain of aligned spins.

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

Chain of spins (not fully aligned).
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Dynamics of a spin chain

The equation of motion for every Sk(t) is

Ṡk = J Sk × (Sk+1 + Sk−1), k = 2, 3, · · · ,N− 1.

or
Ṡk = Sk × fk, fk = − ∂E

∂Sk
.

Exercise (Exchange-coupled spins)
Consider a spin chain and the corresponding system of equations. (a)
Specify possible initial conditions and (b) solve the initial value problem
numerically.
Consider the following.

All spins Si should have the same fixed length |Si| = s.
Try the uniform configuration Si = s for all i, where s is a constant
vector (for example s = sê3).
Try perturbations of the above uniform configuration.
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Lecture 6b. The magnetization vector

Consider a ferromagnet with aligned magnetic moments.
The magnetization is the density of magnetic moments (spin)

M =
∆µ

∆V
, µ ∼ S.

By applying a strong magnetic field we may align all magnetic moments
(”saturate” the magnetization) along the field direction and measure the
saturation magnetization Ms.

Magnetic domains a b
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The Bloch sphere

The magnetization vector takes values on the Bloch sphere, M2 = M2
s .

A ferromagnet is described by the magnetization vector M = M(x, t)
with (see, Landau, Lifshitz, Pitaevskii, “Statistical Physics II”)

|M| = Ms (=const.).

Magnetization configuration

Bloch sphere
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A continuous spin variable

Let us assume a chain of spins which may not be perfectly aligned. The
exchange energy depends on the neighbours of each spin Sα,

Eex = −J
∑

Sα · Sα+1 = − J
2

∑
Sα · (Sα+1 + Sα−1).

A continuum approximation
Consider a small parameter ϵ and define (ϵ can be defined in different
ways)

A space variable x = ϵα where α is an integer index (ϵ may be the
spacing between atoms).

A continuous field S(x) such that Sα = S(x) at the position of
each spin α.

The continuous field S(x) is connecting the discrete spins (atoms) of the
material.
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Taylor expansion

The advantage of the continuous field is that we can make a

Taylor approximation
When the distance ϵ between spins is small, we have (Taylor expansion)

Sα±1 ≈ S± ϵ∂xS+
ϵ2

2
∂2
x S, Sα → S.

This assumes that

There is a continuous field S(x).
Neighbouring spins differ only a little.

Example (Use the Taylor approximation in the expression for the
exchange energy)

Eex = − J
2

∑
Sα · (Sα+1 + Sα−1) ≈ · · ·
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Exchange energy (continuum)

Exchange energy
Use the Taylor expansion in the exchange energy

Eex = −J
∑(

|S|2 + ϵ2

2
S · ∂2

x S
)

→ − J
2
ϵ

∫
S · ∂2

x S dx

SinceM ∼ S we have Eex ∼ −
∫

M · ∂2
xM dx

and this gives, by a partial integration

Eex =
A
M2

s

∫
∂xM · ∂xM dx.

A is the exchange constant (parameter).
Eex is non-negative.
Its minimum (perfect alignment, ∂xM = 0) lies at zero.

All directions in space, for M, are equivalent.
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The nonlinear σ-model

A system with the energy Eex and M2 = const. is called the nonlinear
σ-model.

Exercise (O(3) invariance of Eex)

(a) Write Eex using the components M = (M1,M2,M3). (b) Consider a
uniform rotation for M and show that Eex remains invariant.
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Magnetocrystalline anisotropy

Materials are anisotropic in a natural way, e.g., due to the crystal
structure. Anisotropic contributions come from relativistic effects.
Some types of anisotropy are simply modelled.

Easy-plane anisotropy
The energy term (K > 0 the anisotropy parameter)

Ea =
K
M2

s

∫
(M3)

2 dx

favours the states where M lies on the plane (12), i.e., M3 = 0.

Easy-axis anisotropy

Ea =
K
M2

s

∫
(M2

s −M2
3) dx

favours the states where M is fully aligned along the third axis, i.e.,
M3 = ±Ms or M = (0, 0,±Ms).
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Examples. Minima of anisotropy energy.

Exercise (Easy-plane anisotropy)
(a) For the easy-plane anisotropy, give all minimum energy solutions.

(b) Show that the energy is invariant with respect to rotations of the
vector M in the (12) plane.

Exercise (Easy-axis anisotropy)
(a) Write the easy-axis anisotropy formula in a manifestly non-negative
form to show that Ea ≥ 0.

(b) Give all minimum energy solutions (based on that formula).
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Energy and length scales

In three-dimensions (3D), we have the exchange energy

Eex =
A
M2

s

∫
∂µM · ∂µM d3x, µ = 1, 2, 3.

Question (Write explicitly the exchange energy density)
Note that summation is implied for the repeated index µ.

Total energy
In a simple model we assume a ferromagnet with exchange and
anisotropy energy. For a 3D magnet,

E = Eex + Ea =
A
M2

s

∫
∂µM · ∂µM d3x+

K
M2

s

∫
(M2

s −M2
3) d

3x.

Units for the physical constants A : J/m, K : J/m3.
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Dimensional analysis

The length scale of this model
The two energy terms indicate a natural length scale

ℓDW =

√
A
K
.

Example (For A = 10−11 J/m,Ms = 106A/m,K = 4× 105 J/m3)

We calculate ℓDW = 5× 10−9m = 5nm.

We define the dimensionless magnetization according to

m =
M
Ms

, m2 = 1

and we have the energy

E = A
∫

∂m
∂xµ

· ∂m
∂xµ

d3x+ K
∫

(1− m2
3) d

3x

= K
[
ℓ2DW

∫
∂m
∂xµ

· ∂m
∂xµ

d3x+
∫
(1− m2

3) d
3x
]
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Dimensionless form of energy

We define dimensionless space variables (i.e., scale space by ℓDW)

xµ = ξµ ℓDW

and have the energy

E = (Kℓ3DW)

[∫
∂µm · ∂µm d3ξ +

∫
(1− m2

3) d
3ξ

]
.

We write Kℓ3DW = AℓDW, and re-instate the usual variable ξ → x to get

E = (2AℓDW)

[
1

2

∫
∂µm · ∂µm d3x+

1

2

∫
(1− m2

3) d
3x
]
.

The natural energy scale is (2AℓDW)

Remark
This scaled energy form has no free parameter.
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(*) Energy minima

A virial theorem (due to Derrick and Pohozaev) is derived by exploiting
the different space scalings of the energy terms.
Assume a D-dimensional space (D = 1, 2, 3) and let m = m(x)
correspond to a minimum of the energy. Then, the magnetization
configuration m(λx) is scaled (dilated or shrunk) with respect to the
energy minimum configuration. For the scaled magnetization we have the
energy

E(λ) =
1

2

∫
∂µm(λx) · ∂µm(λx) dDx+

k2

2

∫ [
1− m2

3(λx)
]
dDx

=λ2−D 1

2

∫
∂µm · ∂µm dDx+ λ−D k2

2

∫
(1− m2

3) d
Dx

Since E is an extremum, it should, in particular, be an extremum with
respect to scale transformations, when varying λ, at λ = 1,

d
dλ

E(λ)
∣∣
λ=1

= 0 ⇒ (2− D)Eex = DEa.
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(*) Virial relation

Result from Derrick scaling argument

(2− D)Eex = DEa.

Since Eex, Ea are positive definite, we conclude
For D = 1, every energy minimum should satisfy Eex = Ea.
For D = 2, only such energy minima exist for which Ea = 0, i.e.,
the solutions are m = (0, 0,±1).

For D = 3, the equation −Eex = Ea does not allow for any energy
minimum.

The Derrick-Pohozaev argument only applies to states which give finite
energy terms
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Lecture 6c. Static configurations. Derivation of equation.

The field equation is obtained as the Euler-Lagrange equation for the
action, with the constraint

m2 = 1

imposed via a Lagrange multiplier. [Raj, Sec. 3.3][FG, Sec. 12.2]
For a demonstration, we consider the exchange interaction and extremize

L[m] =

∫
d3x

[
1
2∂µm · ∂µm+ λ(x)

2 (1−m2)
]

︸ ︷︷ ︸
L

.

The Euler-Lagrange equation is

− δL
δm = 0 ⇒ d

dxµ

(
∂L
∂µm

)
− ∂L

∂m = 0.
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The Landau-Lifshitz equation - pure exchange

We calculate

∂µ∂µm+ λm = 0 or ∆m+ λm = 0.

We multiply the above by m to obtain the Lagrange multiplier

λm ·m+m ·∆m = 0 ⇒ λ(x) = −m ·∆m

and we use this to eliminate λ in the field equation

∆m− (m ·∆m)m = 0 ⇒ m× (m×∆m) = 0.

The latter is equivalent to

m×∆m = 0.

Question
Note that m×∆m and m× (m×∆m) are both on the plane
perpendicular to m. The two vectors are perpendicular to each other.
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The Landau-Lifshitz equation - static sector

Form of the Landau-Lifshitz equation

Let us assume an energy functional E(m). Hamilton’s equations are

m× f = 0, f = − δE
δm .

For f = h we recover the standard equation of magnetism for a
magnetic moment m in an external magnetic field h.
Solutions for m are such that m ∥ f(m).

Landau-Lifshitz equation for exchange and easy-axis anisotropy

m×
(
∆m+ k2m3ê3

)
= 0.

Note: This may also be called a nonlinear σ-model.

Stavros Komineas Mathematical Modeling



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

One space dimension. A magnetic domain wall.

Domain pattern
Sketch of domain wall

Exercise (Magnetic domain wall formula)
Prove that the configuration

m1 = 0, m2 =
1

cosh(λx) , m3 = tanh(λx)

satisfies the 1D Landau-Lifshitz equation with exchange and easy-axis
anisotropy for a specific λ.
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Two space dimensions (films). A magnetic skyrmion.

A magnetic skyrmion Bloch sphere

Experimental observation

a b
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