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Life is definitely digital. The genetic code of all living organisms are repre-
sented by a long sequence of simple molecules called nucleotides, or bases, which
makes up the Deoxyribonucleic acid, better known as DNA. There are only four
such nucleotides, and the entire genetic code of a human can be seen as a simple,
though 3 billion long, string of the letters A, C, G, and T. Analyzing DNA data
to gain increased biological understanding is much about searching in (long)
strings for certain string patterns involving the letters A, C, G, and T. This is
an integral part of bioinformatics, a scientific discipline addressing the use of
computers to search for, explore, and use information about genes, nucleic acids,
and proteins.

1 Basic Bioinformatics Examples in Python
The instructions to the computer how the analysis is going to be performed are
specified using the Python1 programming language. The forthcoming examples
are simple illustrations of the type of problem settings and corresponding Python
implementations that are encountered in bioinformatics. However, the leading
Python software for bioinformatics applications is BioPython2 and for real-
world problem solving one should rather utilize BioPython instead of home-
made solutions. The aim of the sections below is to illustrate the nature of
bioinformatics analysis and introduce what is inside packages like BioPython.

We shall start with some very simple examples on DNA analysis that bring
together basic building blocks in programming: loops, if tests, and functions.
As reader you should be somewhat familiar with these building blocks in general
and also know about the specific Python syntax.

1http://python.org
2http://biopython.org
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1.1 Counting Letters in DNA Strings
Given some string dna containing the letters A, C, G, or T, representing the
bases that make up DNA, we ask the question: how many times does a certain
base occur in the DNA string? For example, if dna is ATGGCATTA and we
ask how many times the base A occur in this string, the answer is 3.

A general Python implementation answering this problem can be done in
many ways. Several possible solutions are presented below.

List Iteration. The most straightforward solution is to loop over the letters
in the string, test if the current letter equals the desired one, and if so, increase
a counter. Looping over the letters is obvious if the letters are stored in a list.
This is easily done by converting a string to a list:

>>> list(’ATGC’)
[’A’, ’T’, ’G’, ’C’]

Our first solution becomes

def count_v1(dna, base):
dna = list(dna) # convert string to list of letters
i = 0 # counter
for c in dna:

if c == base:
i += 1

return i

String Iteration. Python allows us to iterate directly over a string without
converting it to a list:

>>> for c in ’ATGC’:
... print c
A
T
G
C

In fact, all built-in objects in Python that contain a set of elements in a particular
sequence allow a for loop construction of the type for element in object.

A slight improvement of our solution is therefore to iterate directly over the
string:

def count_v2(dna, base):
i = 0 # counter
for c in dna:

if c == base:
i += 1

return i

dna = ’ATGCGGACCTAT’
base = ’C’
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n = count_v2(dna, base)

# printf-style formatting
print ’%s appears %d times in %s’ % (base, n, dna)

# or (new) format string syntax
print ’{base} appears {n} times in {dna}’.format(

base=base, n=n, dna=dna)

We have here illustrated two alternative ways of writing out text where the
value of variables are to be inserted in “slots” in the string.

Program Flow. It is fundamental for correct programming to understand how
to simulate a program by hand, statement by statement. Three tools are effective
for helping you reach the required understanding of performing a simulation by
hand:

1. printing variables and messages,

2. using a debugger,

3. using the Online Python Tutor3.

Inserting print statements and examining the variables is the simplest approach
to investigating what is going on:

def count_v2_demo(dna, base):
print ’dna:’, dna
print ’base:’, base
i = 0 # counter
for c in dna:

print ’c:’, c
if c == base:

print ’True if test’
i += 1

return i

n = count_v2_demo(’ATGCGGACCTAT’, ’C’)

An efficient way to explore this program is to run it in a debugger where we
can step through each statement and see what is printed out. Start ipython in
a terminal window and run the program count_v2_demo.py4 with a debugger:
run -d count_v2_demo.py. Use s (for step) to step through each statement,
or n (for next) for proceeding to the next statement without stepping through a
function that is called.

ipdb> s
> /some/disk/user/bioinf/src/count_v2_demo.py(2)count_v2_demo()
1 1 def count_v1_demo(dna, base):
----> 2 print ’dna:’, dna

3http://www.pythontutor.com/
4http://tinyurl.com/q4qpjbt/count_v2_demo.py
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3 print ’base:’, base

ipdb> s
dna: ATGCGGACCTAT
> /some/disk/user/bioinf/src/count_v2_demo.py(3)count_v2_demo()

2 print ’dna:’, dna
----> 3 print ’base:’, base

4 i = 0 # counter

Observe the output of the print statements. One can also print a variable
explicitly inside the debugger:

ipdb> print base
C

The Online Python Tutor5 is, at least for small programs, a splendid alterna-
tive to debuggers. Go to the web page, erase the sample code and paste in your
own code. Press Visual execution, then Forward to execute statements one by
one. The status of variables are explained to the right, and the text field below
the program shows the output from print statements. An example is shown in
Figure 1.

Figure 1: Visual execution of a program using the Online Python Tutor.
5http://www.pythontutor.com/
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Misunderstanding of the program flow is one of the most frequent sources of
programming errors, so whenever in doubt about any program flow, use one of
the three mentioned techniques to establish confidence!

Index Iteration. Although it is natural in Python to iterate over the letters
in a string (or more generally over elements in a sequence), programmers with
experience from other languages (Fortran, C and Java are examples) are used to
for loops with an integer counter running over all indices in a string or array:

def count_v3(dna, base):
i = 0 # counter
for j in range(len(dna)):

if dna[j] == base:
i += 1

return i

Python indices always start at 0 so the legal indices for our string become 0,
1, ..., len(dna)-1, where len(dna) is the number of letters in the string dna.
The range(x) function returns a list of integers 0, 1, ..., x-1, implying that
range(len(dna)) generates all the legal indices for dna.

While Loops. The while loop equivalent to the last function reads

def count_v4(dna, base):
i = 0 # counter
j = 0 # string index
while j < len(dna):

if dna[j] == base:
i += 1

j += 1
return i

Correct indentation is here crucial: a typical error is to fail indenting the j
+= 1 line correctly.

Summing a Boolean List. The idea now is to create a list m where m[i] is
True if dna[i] equals the letter we search for (base). The number of True values
in m is then the number of base letters in dna. We can use the sum function
to find this number because doing arithmetics with boolean lists automatically
interprets True as 1 and False as 0. That is, sum(m) returns the number of
True elements in m. A possible function doing this is

def count_v5(dna, base):
m = [] # matches for base in dna: m[i]=True if dna[i]==base
for c in dna:

if c == base:
m.append(True)

else:
m.append(False)

return sum(m)
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Inline If Test. Shorter, more compact code is often a goal if the compactness
enhances readability. The four-line if test in the previous function can be
condensed to one line using the inline if construction: if condition value1
else value2.

def count_v6(dna, base):
m = [] # matches for base in dna: m[i]=True if dna[i]==base
for c in dna:

m.append(True if c == base else False)
return sum(m)

Using Boolean Values Directly. The inline if test is in fact redundant in
the previous function because the value of the condition c == base can be used
directly: it has the value True or False. This saves some typing and adds clarity,
at least to Python programmers with some experience:

def count_v7(dna, base):
m = [] # matches for base in dna: m[i]=True if dna[i]==base
for c in dna:

m.append(c == base)
return sum(m)

List Comprehensions. Building a list with the aid of a for loop can often
be condensed to a single line by using list comprehensions: [expr for e in
sequence], where expr is some expression normally involving the iteration
variable e. In our last example, we can introduce a list comprehension

def count_v8(dna, base):
m = [c == base for c in dna]
return sum(m)

Here it is tempting to get rid of the m variable and reduce the function body
to a single line:

def count_v9(dna, base):
return sum([c == base for c in dna])

Using a Sum Iterator. The DNA string is usually huge - 3 billion letters
for the human species. Making a boolean array with True and False values
therefore increases the memory usage by a factor of two in our sample functions
count_v5 to count_v9. Summing without actually storing an extra list is
desirable. Fortunately, sum([x for x in s]) can be replaced by sum(x for
x in s), where the latter sums the elements in s as x visits the elements of s
one by one. Removing the brackets therefore avoids first making a list before
applying sum to that list. This is a minor modification of the count_v9 function:
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def count_v10(dna, base):
return sum(c == base for c in dna)

Below we shall measure the impact of the various program constructs on the
CPU time.

Extracting Indices. Instead of making a boolean list with elements expressing
whether a letter matches the given base or not, we may collect all the indices of
the matches. This can be done by adding an if test to the list comprehension:

def count_v11(dna, base):
return len([i for i in range(len(dna)) if dna[i] == base])

The Online Python Tutor6 is really helpful to reach an understanding of
this compact code. Alternatively, you may play with the constructions in an
interactive Python shell:

>>> dna = ’AATGCTTA’
>>> base = ’A’
>>> indices = [i for i in range(len(dna)) if dna[i] == base]
>>> indices
[0, 1, 7]
>>> print dna[0], dna[1], dna[7] # check
A A A

Observe that the element i in the list comprehension is only made for those i
where dna[i] == base.

Using Python’s Library. Very often when you set out to do a task in Python,
there is already functionality for the task in the object itself, in the Python
libraries, or in third-party libraries found on the Internet. Counting how many
times a letter (or substring) base appears in a string dna is obviously a very
common task so Python supports it by the syntax dna.count(base):

def count_v12(dna, base):
return dna.count(base)

def compare_efficiency():

1.2 Efficiency Assessment
Now we have 11 different versions of how to count the occurrences of a letter
in a string. Which one of these implementations is the fastest? To answer the
question we need some test data, which should be a huge string dna.

6http://www.pythontutor.com/
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Generating Random DNA Strings. The simplest way of generating a long
string is to repeat a character a large number of times:

N = 1000000
dna = ’A’*N

The resulting string is just ’AAA...A, of length N, which is fine for testing the
efficiency of Python functions. Nevertheless, it is more exciting to work with a
DNA string with letters from the whole alphabet A, C, G, and T. To make a
DNA string with a random composition of the letters we can first make a list of
random letters and then join all those letters to a string:

import random
alphabet = list(’ATGC’)
dna = [random.choice(alphabet) for i in range(N)]
dna = ’’.join(dna) # join the list elements to a string

The random.choice(x) function selects an element in the list x at random.
Note that N is very often a large number. In Python version 2.x, range(N)

generates a list of N integers. We can avoid the list by using xrange which
generates an integer at a time and not the whole list. In Python version 3.x,
the range function is actually the xrange function in version 2.x. Using xrange,
combining the statements, and wrapping the construction of a random DNA
string in a function, gives

import random

def generate_string(N, alphabet=’ACGT’):
return ’’.join([random.choice(alphabet) for i in xrange(N)])

dna = generate_string(600000)

The call generate_string(10) may generate something like AATGGCAGAA.

Measuring CPU Time. Our next goal is to see how much time the various
count_v* functions spend on counting letters in a huge string, which is to be
generated as shown above. Measuring the time spent in a program can be done
by the time module:

import time
...
t0 = time.clock()
# do stuff
t1 = time.clock()
cpu_time = t1 - t0

The time.clock() function returns the CPU time spent in the program since
its start. If the interest is in the total time, also including reading and writing
files, time.time() is the appropriate function to call.

Running through all our functions made so far and recording timings can be
done by
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import time
functions = [count_v1, count_v2, count_v3, count_v4,

count_v5, count_v6, count_v7, count_v8,
count_v9, count_v10, count_v11, count_v12]

timings = [] # timings[i] holds CPU time for functions[i]

for function in functions:
t0 = time.clock()
function(dna, ’A’)
t1 = time.clock()
cpu_time = t1 - t0
timings.append(cpu_time)

In Python, functions are ordinary objects so making a list of functions is no
more special than making a list of strings or numbers.

We can now iterate over timings and functions simultaneously via zip to
make a nice printout of the results:

for cpu_time, function in zip(timings, functions):
print ’{f:<9s}: {cpu:.2f} s’.format(

f=function.func_name, cpu=cpu_time)

Timings on a MacBook Air 11 running Ubuntu show that the functions using
list.append require almost the double of the time of the functions that work
with list comprehensions. Even faster is the simple iteration over the string.
However, the built-in count functionality of strings (dna.count(base)) runs
over 30 times faster than the best of our handwritten Python functions! The
reason is that the for loop needed to count in dna.count(base) is actually
implemented in C and runs very much faster than loops in Python.

A clear lesson learned is: google around before you start out to implement
what seems to be a quite common task. Others have probably already done it
for you, and most likely is their solution much better than what you can (easily)
come up with.

1.3 Verifying the Implementations
We end this section with showing how to make tests that verify our 12 counting
functions. To this end, we make a new function that first computes a certainly
correct answer to a counting problem and then calls all the count_* functions,
stored in the list functions, to check that each call has the correct result:

def test_count_all():
dna = ’ATTTGCGGTCCAAA’
exact = dna.count(’A’)
for f in functions:

if f(dna, ’A’) != exact:
print f.__name__, ’failed’

Here, we believe in dna.count(’A’) as the correct answer.
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We might take this test function one step further and adopt the conventions
in the pytest7 and nose8 testing frameworks for Python code.

These conventions say that the test function should

• have a name starting with test_;

• have no arguments;

• let a boolean variable, say success, be True if a test passes and be False
if the test fails;

• create a message about what failed, stored in some string, say msg;

• use the construction assert success, msg, which will abort the program
and write out the error message msg if success is False.

The pytest and nose test frameworks can search for all Python files in a
folder tree, run all test_*() functions, and report how many of the tests that
failed, if we adopt the conventions above. Our revised test function becomes

def test_count_all():
dna = ’ATTTGCGGTCCAAA’
exact = dna.count(’A’)
for f in functions:

success = f(dna, ’A’) == exact
msg = ’%s failed’ % f.__name__
assert success, msg

It is worth notifying that the name of a function f, as a string object, is given by
f.__name__, and we make use of this information to construct an informative
message in case a test fails.

It is a good habit to write such test functions since the execution of all tests
in all files can be fully automated. Every time you to a change in some file you
can with minimum effort rerun all tests.

The entire suite of functions presented above, including the timings and tests,
can be found in the file count.py9.

1.4 Computing Frequencies
Your genetic code is essentially the same from you are born until you die, and
the same in your blood and your brain. Which genes that are turned on and off
make the difference between the cells. This regulation of genes is orchestrated by
an immensely complex mechanism, which we have only started to understand. A
central part of this mechanism consists of molecules called transcription factors
that float around in the cell and attach to DNA, and in doing so turn nearby

7http://pytest.org
8https://nose.readthedocs.org
9http://tinyurl.com/q4qpjbt/count.py
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genes on or off. These molecules bind preferentially to specific DNA sequences,
and this binding preference pattern can be represented by a table of frequencies
of given symbols at each position of the pattern. More precisely, each row in
the table corresponds to the bases A, C, G, and T, while column j reflects how
many times the base appears in position j in the DNA sequence.

For example, if our set of DNA sequences are TAG, GGT, and GGG, the
table becomes

base 0 1 2
A 0 1 0
C 0 0 0
G 2 2 2
T 1 0 1

From this table we can read that base A appears once in index 1 in the DNA
strings, base C does not appear at all, base G appears twice in all positions, and
base T appears once in the beginning and end of the strings.

In the following we shall present different data structures to hold such a table
and different ways of computing them. The table is known as a frequency matrix
in bioinformatics and this is the term used here too.

Separate Frequency Lists. Since we know that there are only four rows in
the frequency matrix, an obvious data structure would be four lists, each holding
a row. A function computing these lists may look like

def freq_lists(dna_list):
n = len(dna_list[0])
A = [0]*n
T = [0]*n
G = [0]*n
C = [0]*n
for dna in dna_list:

for index, base in enumerate(dna):
if base == ’A’:

A[index] += 1
elif base == ’C’:

C[index] += 1
elif base == ’G’:

G[index] += 1
elif base == ’T’:

T[index] += 1
return A, C, G, T

We need to initialize the lists with the right length and a zero for each element,
since each list element is to be used as a counter. Creating a list of length n
with object x in all positions is done by [x]*n. Finding the proper length is
here carried out by inspecting the length of the first element in dna_list, the
list of all DNA strings to be counted, assuming that all elements in this list have
the same length.
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In the for loop we apply the enumerate function, which is used to extract
both the element value and the element index when iterating over a sequence.
For example,

>>> for index, base in enumerate([’t’, ’e’, ’s’, ’t’]):
... print index, base
...
0 t
1 e
2 s
3 t

Here is a test,

dna_list = [’GGTAG’, ’GGTAC’, ’GGTGC’]
A, C, G, T = freq_lists(dna_list)
print A
print C
print G
print T

with output
[0, 0, 0, 2, 0]
[0, 0, 0, 0, 2]
[3, 3, 0, 1, 1]
[0, 0, 3, 0, 0]

Nested List. The frequency matrix can also be represented as a nested list M
such that M[i][j] is the frequency of base i in position j in the set of DNA
strings. Here i is an integer, where 0 corresponds to A, 1 to T, 2 to G, and 3
to C. The frequency is the number of times base i appears in position j in a
set of DNA strings. Sometimes this number is divided by the number of DNA
strings in the set so that the frequency is between 0 and 1. Note that all the
DNA strings must have the same length.

The simplest way to make a nested list is to insert the A, C, G, and T lists
into another list:

>>> frequency_matrix = [A, C, G, T]
>>> frequency_matrix[2][3]
2
>>> G[3] # same element
2

Alternatively, we can illustrate how to compute this type of nested list
directly:

def freq_list_of_lists_v1(dna_list):
# Create empty frequency_matrix[i][j] = 0
# i=0,1,2,3 corresponds to A,T,G,C
# j=0,...,length of dna_list[0]
frequency_matrix = [[0 for v in dna_list[0]] for x in ’ACGT’]
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for dna in dna_list:
for index, base in enumerate(dna):

if base == ’A’:
frequency_matrix[0][index] +=1

elif base == ’C’:
frequency_matrix[1][index] +=1

elif base == ’G’:
frequency_matrix[2][index] +=1

elif base == ’T’:
frequency_matrix[3][index] +=1

return frequency_matrix

As in the case with individual lists we need to initialize all elements in the
nested list to zero.

A call and printout,

dna_list = [’GGTAG’, ’GGTAC’, ’GGTGC’]
frequency_matrix = freq_list_of_lists_v1(dna_list)
print frequency_matrix

results in
[[0, 0, 0, 2, 0], [0, 0, 0, 0, 2], [3, 3, 0, 1, 1], [0, 0, 3, 0, 0]]

Dictionary for More Convenient Indexing. The series of if tests in the
Python function freq_list_of_lists_v1 are somewhat cumbersome, especially
if we want to extend the code to other bioinformatics problems where the alphabet
is larger. What we want is a mapping from base, which is a character, to the
corresponding index 0, 1, 2, or 3. A Python dictionary may represent such
mappings:

>>> base2index = {’A’: 0, ’C’: 1, ’G’: 2, ’T’: 3}
>>> base2index[’G’]
2

With the base2index dictionary we do not need the series of if tests and the
alphabet ’ATGC’ could be much larger without affecting the length of the code:

def freq_list_of_lists_v2(dna_list):
frequency_matrix = [[0 for v in dna_list[0]] for x in ’ACGT’]
base2index = {’A’: 0, ’C’: 1, ’G’: 2, ’T’: 3}
for dna in dna_list:

for index, base in enumerate(dna):
frequency_matrix[base2index[base]][index] += 1

return frequency_matrix
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Numerical Python Array. As long as each sublist in a list of lists has the
same length, a list of lists can be replaced by a Numerical Python (numpy) array.
Processing of such arrays is often much more efficient than processing of the
nested list data structure. To initialize a two-dimensional numpy array we need to
know its size, here 4 times len(dna_list[0]). Only the first line in the function
freq_list_of_lists_v2 needs to be changed in order to utilize a numpy array:

import numpy as np

def freq_numpy(dna_list):
frequency_matrix = np.zeros((4, len(dna_list[0])), dtype=np.int)
base2index = {’A’: 0, ’C’: 1, ’G’: 2, ’T’: 3}
for dna in dna_list:

for index, base in enumerate(dna):
frequency_matrix[base2index[base]][index] += 1

return frequency_matrix

The resulting frequency_matrix object can be indexed as [b][i] or [b,i],
with integers b and i. Typically, b will be something line base2index[’C’].

Dictionary of Lists. Instead of going from a character to an integer index
via base2index, we may prefer to index frequency_matrix by the base name
and the position index directly, like in [’C’][14]. This is the most natural
syntax for a user of the frequency matrix. The relevant Python data structure is
then a dictionary of lists. That is, frequency_matrix is a dictionary with keys
’A’, ’C’, ’G’, and ’T’. The value for each key is a list. Let us now also extend
the flexibility such that dna_list can have DNA strings of different lengths.
The lists in frequency_list will have lengths equal to the longest DNA string.
A relevant function is

def freq_dict_of_lists_v1(dna_list):
n = max([len(dna) for dna in dna_list])
frequency_matrix = {

’A’: [0]*n,
’C’: [0]*n,
’G’: [0]*n,
’T’: [0]*n,
}

for dna in dna_list:
for index, base in enumerate(dna):

frequency_matrix[base][index] += 1

return frequency_matrix

Running the test code

frequency_matrix = freq_dict_of_lists_v1(dna_list)
import pprint # for nice printout of nested data structures
pprint.pprint(frequency_matrix)

results in the output
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{’A’: [0, 0, 0, 2, 0],
’C’: [0, 0, 0, 0, 2],
’G’: [3, 3, 0, 1, 1],
’T’: [0, 0, 3, 0, 0]}

The initialization of frequency_matrix in the above code can be made more
compact by using a dictionary comprehension:

dict = {key: value for key in some_sequence}

In our example we set

frequency_matrix = {base: [0]*n for base in ’ACGT’}

Adopting this construction in the freq_dict_of_lists_v1 function leads to a
slightly more compact version:

def freq_dict_of_lists_v2(dna_list):
n = max([len(dna) for dna in dna_list])
frequency_matrix = {base: [0]*n for base in ’ACGT’}
for dna in dna_list:

for index, base in enumerate(dna):
frequency_matrix[base][index] += 1

return frequency_matrix

As an additional comment on computing the maximum length of the DNA
strings can be made as there are several alternative ways of doing this. The
classical use of max is to apply it to a list as done above:

n = max([len(dna) for dna in dna_list])

However, for very long lists it is possible to avoid the memory demands of storing
the result of the list comprehension, i.e., the list of lengths. Instead max can
work with the lengths as they are computed:

n = max(len(dna) for dna in dna_list)

It is also possible to write

n = max(dna_list, key=len)

Here, len is applied to each element in dna_list, and the maximum of the
resulting values is returned.

Dictionary of Dictionaries. The dictionary of lists data structure can alter-
natively be replaced by a dictionary of dictionaries object, often just called a
dict of dicts object. That is, frequency_matrix[base] is a dictionary with key
i and value equal to the added number of occurrences of base in dna[i] for
all dna strings in the list dna_list. The indexing frequency_matrix[’C’][i]
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and the values are exactly as in the last example; the only difference is whether
frequency_matrix[’C’] is a list or dictionary.

Our function working with frequency_matrix as a dict of dicts is written as

def freq_dict_of_dicts_v1(dna_list):
n = max([len(dna) for dna in dna_list])
frequency_matrix = {base: {index: 0 for index in range(n)}

for base in ’ACGT’}
for dna in dna_list:

for index, base in enumerate(dna):
frequency_matrix[base][index] += 1

return frequency_matrix

Using Dictionaries with Default Values. The manual initialization of each
subdictionary to zero,

frequency_matrix = {base: {index: 0 for index in range(n)}
for base in ’ACGT’}

can be simplified by using a dictionary with default values for any key. The con-
struction defaultdict(lambda: obj) makes a dictionary with obj as default
value. This construction simplifies the previous function a bit:

from collections import defaultdict

def freq_dict_of_dicts_v2(dna_list):
n = max([len(dna) for dna in dna_list])
frequency_matrix = {base: defaultdict(lambda: 0)

for base in ’ACGT’}
for dna in dna_list:

for index, base in enumerate(dna):
frequency_matrix[base][index] += 1

return frequency_matrix

Remark. Dictionary comprehensions were new in Python 2.7 and 3.1, but
can be simulated in earlier versions by making (key, value) tuples via list
comprehensions. A dictionary comprehension

d = {key: value for key in sequence}

is then constructed as

d = dict([(key, value) for key in sequence])
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Using Arrays and Vectorization. The frequency_matrix dict of lists for
can easily be changed to a dict of numpy arrays: just replace the initialization
[0]*n by np.zeros(n, dtype=np.int). The indexing remains the same:

def freq_dict_of_arrays_v1(dna_list):
n = max([len(dna) for dna in dna_list])
frequency_matrix = {base: np.zeros(n, dtype=np.int)

for base in ’ACGT’}
for dna in dna_list:

for index, base in enumerate(dna):
frequency_matrix[base][index] += 1

return frequency_matrix

Having frequency_matrix[base] as a numpy array instead of a list does not
give any immediate advantage, as the storage and CPU time is about the same.
The loop over the dna string and the associated indexing is what consumes all
the CPU time. However, the numpy arrays provide a potential for increasing
efficiency through vectorization, i.e., replacing the element-wise operations on
dna and frequency_matrix[base] by operations on the entire arrays at once.

Let us use the interactive Python shell to explore the possibilities of vector-
ization. We first convert the string to a numpy array of characters:

>>> dna = ’ACAT’
>>> dna = np.array(dna, dtype=’c’)
>>> dna
array([’A’, ’C’, ’A’, ’T’],

dtype=’|S1’)

For a given base, say A, we can in one vectorized operation find which locations
in dna that contain A:

>>> b = dna == ’A’
>>> b
array([ True, False, True, False], dtype=bool)

By converting b to an integer array i we can update the frequency counts for all
indices by adding i to frequency_matrix[’A’]:

>>> i = np.asarray(b, dtype=np.int)
>>> i
array([1, 0, 1, 0])
>>> frequency_matrix[’A’] = frequency_matrix[’A’] + i

This recipe can be repeated for all bases:

for dna in dna_list:
dna = np.array(dna, dtype=’c’)
for base in ’ACGT’:

b = dna == base
i = np.asarray(b, dtype=np.int)
frequency_matrix[base] = frequency_matrix[base] + i

17



It turns out that we do not need to convert the boolean array b to an
integer array i, because doing arithmetics with b directly is possible: False is
interpreted as 0 and True as 1 in arithmetic operations. We can also use the +=
operator to update all elements of frequency_matrix[base] directly, without
first computing the sum of two arrays frequency_matrix[base] + i and then
assigning this result to frequency_matrix[base]. Collecting all these ideas in
one function yields the code

def freq_dict_of_arrays_v2(dna_list):
n = max([len(dna) for dna in dna_list])
frequency_matrix = {base: np.zeros(n, dtype=np.int)

for base in ’ACGT’}
for dna in dna_list:

dna = np.array(dna, dtype=’c’)
for base in ’ACCT’:

frequency_matrix[base] += dna == base

return frequency_matrix

This vectorized function runs almost 10 times as fast as the (scalar) counterpart
freq_list_of_arrays_v1!

1.5 Analyzing the Frequency Matrix
Having built a frequency matrix out of a collection of DNA strings, it is time to
use it for analysis. The short DNA strings that a frequency matrix is built out
of, is typically a set of substrings of a larger DNA sequence, which shares some
common purpose. An example of this is to have a set of substrings that serves as
a kind of anchors/magnets at which given molecules attach to DNA and perform
biological functions (like turning genes on or off). With the frequency matrix
constructed from a limited set of known anchor locations (substrings), we can
now scan for other similar substrings that have the potential to perform the
same function. The simplest way to do this is to first determine the most typical
substring according to the frequency matrix, i.e., the substring having the most
frequent nucleotide at each position. This is referred to as the consensus string
of the frequency matrix. We can then look for occurrences of the consensus
substring in a larger DNA sequence, and consider these occurrences as likely
candidates for serving the same function (e.g., as anchor locations for molecules).

For instance, given three substrings ACT, CCA and AGA, the frequency
matrix would be (list of lists, with rows corresponding to A, C, G, and T):

[[2, 0, 2]
[1, 2, 0]
[0, 1, 0]
[0, 0, 1]]

We see that for position 0, which corresponds to the left-most column in the
table, the symbol A has the highest frequency (2). The maximum frequencies
for the other positions are seen to be C for position 1, and A for position 2.
The consensus string is therefore ACA. Note that the consensus string does not
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need to be equal to any of the substrings that formed the basis of the frequency
matrix (this is indeed the case for the above example).

List of Lists Frequency Matrix. Let frequency_matrix be a list of lists.
For each position i we run through the rows in the frequency matrix and keep
track of the maximum frequency value and the corresponding letter. If two or
more letters have the same frequency value we use a dash to indicate that this
position in the consensus string is undetermined.

The following function computes the consensus string:

def find_consensus_v1(frequency_matrix):
base2index = {’A’: 0, ’C’: 1, ’G’: 2, ’T’: 3}
consensus = ’’
dna_length = len(frequency_matrix[0])

for i in range(dna_length): # loop over positions in string
max_freq = -1 # holds the max freq. for this i
max_freq_base = None # holds the corresponding base

for base in ’ATGC’:
if frequency_matrix[base2index[base]][i] > max_freq:

max_freq = frequency_matrix[base2index[base]][i]
max_freq_base = base

elif frequency_matrix[base2index[base]][i] == max_freq:
max_freq_base = ’-’ # more than one base as max

consensus += max_freq_base # add new base with max freq
return consensus

Since this code requires frequency_matrix to be a list of lists we should
insert a test and raise an exception if the type is wrong:

def find_consensus_v1(frequency_matrix):
if isinstance(frequency_matrix, list) and \

isinstance(frequency_matrix[0], list):
pass # right type

else:
raise TypeError(’frequency_matrix must be list of lists’)

...

Dict of Dicts Frequency Matrix. How must the find_consensus_v1 func-
tion be altered if frequency_matrix is a dict of dicts?

1. The base2index dict is no longer needed.

2. Access of sublist, frequency_matrix[0], to test for type and length of
the strings, must be replaced by frequency_matrix[’A’].

The updated function becomes
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def find_consensus_v3(frequency_matrix):
if isinstance(frequency_matrix, dict) and \

isinstance(frequency_matrix[’A’], dict):
pass # right type

else:
raise TypeError(’frequency_matrix must be dict of dicts’)

consensus = ’’
dna_length = len(frequency_matrix[’A’])

for i in range(dna_length): # loop over positions in string
max_freq = -1 # holds the max freq. for this i
max_freq_base = None # holds the corresponding base

for base in ’ACGT’:
if frequency_matrix[base][i] > max_freq:

max_freq = frequency_matrix[base][i]
max_freq_base = base

elif frequency_matrix[base][i] == max_freq:
max_freq_base = ’-’ # more than one base as max

consensus += max_freq_base # add new base with max freq
return consensus

Here is a test:

frequency_matrix = freq_dict_of_dicts_v1(dna_list)
pprint.pprint(frequency_matrix)
print find_consensus_v3(frequency_matrix)

with output
{’A’: {0: 0, 1: 0, 2: 0, 3: 2, 4: 0},
’C’: {0: 0, 1: 0, 2: 0, 3: 0, 4: 2},
’G’: {0: 3, 1: 3, 2: 0, 3: 1, 4: 1},
’T’: {0: 0, 1: 0, 2: 3, 3: 0, 4: 0}}

Consensus string: GGTAC

Let us try find_consensus_v3 with the dict of defaultdicts as input (freq_dicts_of_dicts_v2).
The code runs fine, but the output string is just G! The reason is that dna_length
is 1, and therefore that the length of the A dict in frequency_matrix is 1. Print-
ing out frequency_matrix yields

{’A’: defaultdict(X, {3: 2}),
’C’: defaultdict(X, {4: 2}),
’G’: defaultdict(X, {0: 3, 1: 3, 3: 1, 4: 1}),
’T’: defaultdict(X, {2: 3})}

where our X is a short form for text like

‘<function <lambda> at 0xfaede8>‘

We see that the length of a defaultdict will only count the nonzero entries. Hence,
to use a defaultdict our function must get the length of the DNA string to build
as an extra argument:
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def find_consensus_v4(frequency_matrix, dna_length):
...

Exercise 3 suggests to make a unified find_consensus function which works
with all of the different representations of frequency_matrix that we have used.

The functions making and using the frequency matrix are found in the file
freq.py10.

1.6 Dot Plots from Pair of DNA Sequences
Dot plots are commonly used to visualize the similarity between two protein
or nucleic acid sequences. They compare two sequences, say d1 and d2, by
organizing d1 along the x-axis and d2 along the y-axis of a plot. When d1[i] ==
d2[j] we mark this by drawing a dot at location i,j in the plot. An example is

1 0 0 1 0 0 0 1 0 0 0 1
0 1 1 0 0 0 0 0 0 1 1 0
0 1 1 0 0 0 0 0 0 1 1 0
1 0 0 1 0 0 0 1 0 0 0 1
0 0 0 0 1 0 0 0 1 0 0 0
0 0 0 0 0 1 1 0 0 0 0 0
0 0 0 0 0 1 1 0 0 0 0 0
1 0 0 1 0 0 0 1 0 0 0 1
0 0 0 0 1 0 0 0 1 0 0 0
0 1 1 0 0 0 0 0 0 1 1 0
0 1 1 0 0 0 0 0 0 1 1 0
1 0 0 1 0 0 0 1 0 0 0 1

The origin is in the upper left corner, which means that the first string has its
indices running to the right 0, 1, 2, and so forth, while the second string has its
indices running down, row by row.

In the forthcoming examples, a dot is represented by 1. No presence at a
given location is represented by 0. A dot plot can be manually read to find
common patterns between two sequences that has undergone several insertions
and deletions, and it serves as a conceptual basis for algorithms that align
two sequences in order to find evolutionary origin or shared functional parts.
Such alignment of biological sequences is a particular variant of finding the edit
distance between strings, which is a general technique, also used for, e.g., spell
correction in search engines.

The dot plot data structure must mimic a table. The "x" direction is along
rows, while the "y" direction is along columns. First we need to initialize the
whole data structure with zeros. Then, for each for each position in the "x
string" we run through all positions in the "y string" and mark those where
the characters match with 1. The algorithm will be clear when presented with
specific Python code.

Using Lists of Lists. Since the plot is essentially a table, a list of lists is
therefore a natural data structure. The following function creates the list of lists:

10http://tinyurl.com/q4qpjbt/freq.py
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def dotplot_list_of_lists(dna_x, dna_y):
dotplot_matrix = [[’0’ for x in dna_x] for y in dna_y]
for x_index, x_value in enumerate(dna_x):

for y_index, y_value in enumerate(dna_y):
if x_value == y_value:

dotplot_matrix[y_index][x_index] = ’1’
return dotplot_matrix

To view the dot plot we need to print out the list of lists. Here is a possible
way:

dna_x = ’TAATGCCTGAAT’
dna_y = ’CTCTATGCC’

M = dotplot_list_of_lists(dna_x, dna_x)
for row in M:

for column in row:
print column,

print

The output becomes
1 0 0 1 0 0 0 1 0 0 0 1
0 1 1 0 0 0 0 0 0 1 1 0
0 1 1 0 0 0 0 0 0 1 1 0
1 0 0 1 0 0 0 1 0 0 0 1
0 0 0 0 1 0 0 0 1 0 0 0
0 0 0 0 0 1 1 0 0 0 0 0
0 0 0 0 0 1 1 0 0 0 0 0
1 0 0 1 0 0 0 1 0 0 0 1
0 0 0 0 1 0 0 0 1 0 0 0
0 1 1 0 0 0 0 0 0 1 1 0
0 1 1 0 0 0 0 0 0 1 1 0
1 0 0 1 0 0 0 1 0 0 0 1

One can, alternatively, translate the list of lists to a multi-line string contain-
ing the whole plot as a string object. This implies joining all the characters in
each row and then joining all the rows:

rows = [’ ’.join(row) for row in dotplot_matrix]
plot = ’\n’.join(rows)
# or combined
plot = ’\n’.join([’ ’.join(row) for row in dotplot_matrix])

The construction ’d’.join(l) joints all the string elements of the list l and
inserts d as delimiter: ’x’.join([’A’,’B’,’C’]) becomes ’AxBxC’. We use a
space as delimiter among the characters in a row since this gives a nice layout
when printing the string. All rows are joined with newline as delimiter such that
the rows appear on separate lines when printing the string. To really understand
what is going on, a more comprehensive code could be made so that each step
can be examined:

def make_string_expanded(dotplot_matrix):
rows = []
for row in dotplot_matrix:

row_string = ’ ’.join(row)
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rows.append(row_string)
plot = ’\n’.join(rows)
return plot

M2 = [[’1’, ’1’, ’0’, ’1’],
[’1’, ’1’, ’1’, ’1’],
[’0’, ’0’, ’1’, ’0’],
[’0’, ’0’, ’0’, ’1’]]

s = make_string_expanded(M2)

Unless the join operation as used here is well understood, it is highly recom-
mended to paste the above code into the Online Python Tutor11, step through
the code, and watch how variables change their content. Figure 2 shows a
snapshot of this type of code investigation.

Figure 2: Illustration of how join operations work (using the Online Python
Tutor).

Using Numerical Python Arrays. A Numerical Python array, with integer
elements that equal 0 or 1, is well suited as data structure to hold a dot plot.

def dotplot_numpy(dna_x, dna_y):
dotplot_matrix = np.zeros((len(dna_y), len(dna_x)), np.int)
for x_index, x_value in enumerate(dna_x):

for y_index, y_value in enumerate(dna_y):
if x_value == y_value:

dotplot_matrix[y_index,x_index] = 1
return dotplot_matrix

print dotplot_numpy(dna_x, dna_y)

The two dot plot functions are available in the file dotplot.py12.
11http://www.pythontutor.com/
12http://tinyurl.com/q4qpjbt/dotplot.py
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1.7 Finding Base Frequencies
DNA consists of four molecules called nucleotides, or bases, and can be repre-
sented as a string of the letters A, C, G, and T. But this does not mean that all
four nucleotides need to be similarly frequent. Are some nucleotides more fre-
quent than others, say in yeast, as represented by the first chromosome of yeast?
Also, DNA is really not a single thread, but two threads wound together. This
wounding is based on an A from one thread binding to a T of the other thread,
and C binding to G (that is, A will only bind with T, not with C or G). Could
this fact force groups of the four symbol frequencies to be equal? The answer is
that the A-T and G-C binding does not in principle force certain frequencies to
be equal, but in practice they usually become so because of evolutionary factors
related to this pairing.

Our first programming task now is to compute the frequencies of the bases
A, C, G, and T. That is, the number of times each base occurs in the DNA
string, divided by the length of the string. For example, if the DNA string is
ACGGAAA, the length is 7, A appears 4 times with frequency 4/7, C appears
once with frequency 1/7, G appears twice with frequency 2/7, and T does not
appear so the frequency is 0.

From a coding perspective we may create a function for counting how many
times A, C, G, and T appears in the string and then another function for
computing the frequencies. In both cases we want dictionaries such that we can
index with the character and get the count or the frequency out. Counting is
done by

def get_base_counts(dna):
counts = {’A’: 0, ’T’: 0, ’G’: 0, ’C’: 0}
for base in dna:

counts[base] += 1
return counts

This function can then be used to compute the base frequencies:

def get_base_frequencies_v1(dna):
counts = get_base_counts(dna)
return {base: count*1.0/len(dna)

for base, count in counts.items()}

Since we learned at the end of Section 1.2 that dna.count(base) was much
faster than the various manual implementations of counting, we can write a
faster and simpler function for computing all the base frequencies:

def get_base_frequencies_v2(dna):
return {base: dna.count(base)/float(len(dna))

for base in ’ATGC’}

A little test,
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dna = ’ACCAGAGT’
frequencies = get_base_frequencies_v2(dna)

def format_frequencies(frequencies):
return ’, ’.join([’%s: %.2f’ % (base, frequencies[base])

for base in frequencies])

print "Base frequencies of sequence ’%s’:\n%s" % \
(dna, format_frequencies(frequencies))

gives the result
Base frequencies of sequence ’ACCAGAGT’:
A: 0.38, C: 0.25, T: 0.12, G: 0.25

The format_frequencies function was made for nice printout of the frequencies
with 2 decimals. The one-line code is an effective combination of a dictionary, list
comprehension, and the join functionality. The latter is used to get a comma
correctly inserted between the items in the result. Lazy programmers would
probably just do a print frequencies and live with the curly braces in the
output and (in general) 16 disturbing decimals.

We can try the frequency computation on real data. The file
http://hplgit.github.com/bioinf-py/data/yeast_chr1.txt

contains the DNA for yeast. We can download this file from the Internet by

urllib.urlretrieve(url, filename=name_of_local_file)

where url is the Internet address of the file and name_of_local_file is a string
containing the name of the file on the computer where the file is downloaded. To
avoid repeated downloads when the program is run multiple times, we insert a
test on whether the local file exists or not. The call os.path.isfile(f) returns
True if a file with name f exists in the current working folder.

The appropriate download code then becomes

import urllib, os
urlbase = ’http://hplgit.github.com/bioinf-py/data/’
yeast_file = ’yeast_chr1.txt’
if not os.path.isfile(yeast_file):

url = urlbase + yeast_file
urllib.urlretrieve(url, filename=yeast_file)

A copy of the file on the Internet is now in the current working folder under the
name yeast_chr1.txt.

The yeast_chr1.txt files contains the DNA string split over many lines.
We therefore need to read the lines in this file, strip each line to remove the
trailing newline, and join all the stripped lines to recover the DNA string:

def read_dnafile_v1(filename):
lines = open(filename, ’r’).readlines()
# Remove newlines in each line (line.strip()) and join
dna = ’’.join([line.strip() for line in lines])
return dna
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As usual, an alternative programming solution can be devised:

def read_dnafile_v2(filename):
dna = ’’
for line in open(filename, ’r’):

dna += line.strip()
return dna

dna = read_dnafile_v2(yeast_file)
yeast_freq = get_base_frequencies_v2(dna)
print "Base frequencies of yeast DNA (length %d):\n%s" % \

(len(dna), format_frequencies(yeast_freq))

The output becomes
Base frequencies of yeast DNA (length 230208):
A: 0.30, C: 0.19, T: 0.30, G: 0.20

The varying frequency of different nucleotides in DNA is referred to as
nucleotide bias. The nucleotide bias varies between organisms, and have a range
of biological implications. For many organisms the nucleotide bias has been
highly optimized through evolution and reflects characteristics of the organisms
and their environments, for instance the typical temperature the organism is
adapted to. The interested reader can, e.g., find more details in this article13.

The functions computing base frequencies are available in the file basefreq.
py14.

1.8 Translating Genes into Proteins
An important usage of DNA is for cells to store information on their arsenal of
proteins. Briefly, a gene is, in essence, a region of the DNA, consisting of several
coding parts (called exons), interspersed by non-coding parts (called introns).
The coding parts are concatenated to form a string called mRNA, where also
occurrences of the letter T in the coding parts are substituted by a U. A triplet
of mRNA letters code for a specific amino acid, which are the building blocks of
proteins. Consecutive triplets of letters in mRNA define a specific sequence of
amino acids, which amounts to a certain protein.

Here is an example of using the mapping from DNA to proteins to create
the Lactase protein (LPH), using the DNA sequence of the Lactase gene (LCT)
as underlying code. An important functional property of LPH is in digesting
Lactose, which is found most notably in milk. Lack of the functionality of LPH
leads to digestive problems referred to as lactose intolerance. Most mammals
and humans lose their expression of LCT and therefore their ability to digest
milk when they stop receiving breast milk.

The file
http://hplgit.github.com/bioinf-py/doc/src/data/genetic_code.tsv

contains a mapping of genetic codes to amino acids. The file format looks like
13http://www.nature.com/embor/journal/v6/n12/full/7400538.html
14http://tinyurl.com/q4qpjbt/basefreq.py
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UUU F Phe Phenylalanine
UUC F Phe Phenylalanine
UUA L Leu Leucine
UUG L Leu Leucine
CUU L Leu Leucine
CUC L Leu Leucine
CUA L Leu Leucine
CUG L Leu Leucine
AUU I Ile Isoleucine
AUC I Ile Isoleucine
AUA I Ile Isoleucine
AUG M Met Methionine (Start)

The first column is the genetic code (triplet in mRNA), while the other columns
represent various ways of expressing the corresponding amino acid: a 1-letter
symbol, a 3-letter name, and the full name.

Downloading the genetic_code.tsv file can be done by this robust function:

def download(urlbase, filename):
if not os.path.isfile(filename):

url = urlbase + filename
try:

urllib.urlretrieve(url, filename=filename)
except IOError as e:

raise IOError(’No Internet connection’)
# Check if downloaded file is an HTML file, which
# is what github.com returns if the URL is not existing
f = open(filename, ’r’)
if ’DOCTYPE html’ in f.readline():

raise IOError(’URL %s does not exist’ % url)

We want to make a dictionary of this file that maps the code (first column)
on to the 1-letter name (second column):

def read_genetic_code_v1(filename):
infile = open(filename, ’r’)
genetic_code = {}
for line in infile:

columns = line.split()
genetic_code[columns[0]] = columns[1]

return genetic_code

Downloading the file, reading it, and making the dictionary are done by

urlbase = ’http://hplgit.github.com/bioinf-py/data/’
genetic_code_file = ’genetic_code.tsv’
download(urlbase, genetic_code_file)
code = read_genetic_code_v1(genetic_code_file)

Not surprisingly, the read_genetic_code_v1 can be made much shorter by
collecting the first two columns as list of 2-lists and then converting the 2-lists
to key-value pairs in a dictionary:

def read_genetic_code_v2(filename):
return dict([line.split()[0:2] for line in open(filename, ’r’)])
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Creating a mapping of the code onto all the three variants of the amino
acid name is also of interest. For example, we would like to make look ups like
[’CUU’][’3-letter’] or [’CUU’][’amino acid’]. This requires a dictionary
of dictionaries:

def read_genetic_code_v3(filename):
genetic_code = {}
for line in open(filename, ’r’):

columns = line.split()
genetic_code[columns[0]] = {}
genetic_code[columns[0]][’1-letter’] = columns[1]
genetic_code[columns[0]][’3-letter’] = columns[2]
genetic_code[columns[0]][’amino acid’] = columns[3]

return genetic_code

An alternative way of writing the last function is

def read_genetic_code_v4(filename):
genetic_code = {}
for line in open(filename, ’r’):

c = line.split()
genetic_code[c[0]] = {

’1-letter’: c[1], ’3-letter’: c[2], ’amino acid’: c[3]}
return genetic_code

To form mRNA, we need to grab the exon regions (the coding parts) of
the lactase gene. These regions are substrings of the lactase gene DNA string,
corresponding to the start and end positions of the exon regions. Then we must
replace T by U, and combine all the substrings to build the mRNA string.

Two straightforward subtasks are to load the lactase gene and its exon
positions into variables. The file lactase_gene.txt, at the same Internet
location as the other files, stores the lactase gene. The file has the same
format as yeast_chr1.txt. Using the download function and the previously
shown read_dnafile_v1, we can easily load the data in the file into the string
lactase_gene.

The exon regions are described in a file lactase_exon.tsv, also found at
the same Internet site as the other files. The file is easily transferred to your
computer by calling download. The file format is very simple in that each line
holds the start and end positions of an exon region:

0 651
3990 4070
7504 7588
13177 13280
15082 15161

We want to have this information available in a list of (start, end) tuples. The
following function does the job:

def read_exon_regions_v1(filename):
positions = []
infile = open(filename, ’r’)
for line in infile:
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start, end = line.split()
start, end = int(start), int(end)
positions.append((start, end))

infile.close()
return positions

Readers favoring compact code will appreciate this alternative version of the
function:

def read_exon_regions_v2(filename):
return [tuple(int(x) for x in line.split())

for line in open(filename, ’r’)]

lactase_exon_regions = read_exon_regions_v2(lactase_exon_file)

For simplicity’s sake, we shall consider mRNA as the concatenation of exons,
although in reality, additional base pairs are added to each end. Having the
lactase gene as a string and the exon regions as a list of (start, end) tuples, it is
straightforward to extract the regions as substrings, replace T by U, and add all
the substrings together:

def create_mRNA(gene, exon_regions):
mrna = ’’
for start, end in exon_regions:

mrna += gene[start:end].replace(’T’,’U’)
return mrna

mrna = create_mRNA(lactase_gene, lactase_exon_regions)

We would like to store the mRNA string in a file, using the same format
as lactase_gene.txt and yeast_chr1.txt, i.e., the string is split on multiple
lines with, e.g., 70 characters per line. An appropriate function doing this is

def tofile_with_line_sep_v1(text, filename, chars_per_line=70):
outfile = open(filename, ’w’)
for i in xrange(0, len(text), chars_per_line):

start = i
end = start + chars_per_line
outfile.write(text[start:end] + ’\n’)

outfile.close()

It might be convenient to have a separate folder for files that we create.
Python has good support for testing if a folder exists, and if not, make a folder:

output_folder = ’output’
if not os.path.isdir(output_folder):

os.mkdir(output_folder)
filename = os.path.join(output_folder, ’lactase_mrna.txt’)
tofile_with_line_sep_v1(mrna, filename)

Python’s term for folder is directory, which explains why isdir is the function
name for testing on a folder existence. Observe especially that the combination
of a folder and a filename is done via os.path.join rather than just inserting

29



a forward slash, or backward slash on Windows: os.path.join will insert the
right slash, forward or backward, depending on the current operating system.

Occasionally, the output folder is nested, say

output_folder = os.path.join(’output’, ’lactase’)

In that case, os.mkdir(output_folder)may fail because the intermediate folder
output is missing. Making a folder and also all missing intermediate folders
is done by os.makedirs. We can write a more general file writing function
that takes a folder name and file name as input and writes the file. Let us also
add some flexibility in the file format: one can either write a fixed number of
characters per line, or have the string on just one long line. The latter version is
specified through chars_per_line=’inf’ (for infinite number of characters per
line). The flexible file writing function then becomes

def tofile_with_line_sep_v2(text, foldername, filename,
chars_per_line=70):

if not os.path.isdir(foldername):
os.makedirs(foldername)

filename = os.path.join(foldername, filename)
outfile = open(filename, ’w’)

if chars_per_line == ’inf’:
outfile.write(text)

else:
for i in xrange(0, len(text), chars_per_line):

start = i
end = start + chars_per_line
outfile.write(text[start:end] + ’\n’)

outfile.close()

To create the protein, we replace the triplets of the mRNA strings by the
corresponding 1-letter name as specified in the genetic_code.tsv file.

def create_protein(mrna, genetic_code):
protein = ’’
for i in xrange(len(mrna)/3):

start = i * 3
end = start + 3
protein += genetic_code[mrna[start:end]]

return protein

genetic_code = read_genetic_code_v1(’genetic_code.tsv’)
protein = create_protein(mrna, genetic_code)
tofile_with_line_sep_v2(protein, ’output’,

Unfortunately, this first try to simulate the translation process is incorrect.
The problem is that the translation always begins with the amino acid Methionine,
code AUG, and ends when one of the stop codons is met. We must thus check
for the correct start and stop criteria. A fix is
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def create_protein_fixed(mrna, genetic_code):
protein_fixed = ’’
trans_start_pos = mrna.find(’AUG’)
for i in range(len(mrna[trans_start_pos:])/3):

start = trans_start_pos + i*3
end = start + 3
amino = genetic_code[mrna[start:end]]
if amino == ’X’:

break
protein_fixed += amino

return protein_fixed

protein = create_protein_fixed(mrna, genetic_code)
tofile_with_line_sep_v2(protein, ’output’,

’lactase_protein_fixed.txt’, 70)

print ’10 last amino acids of the correct lactase protein: ’, \
protein[-10:]

print ’Lenght of the correct protein: ’, len(protein)

The output, needed below for comparison, becomes
10 last amino acids of the correct lactase protein: QQELSPVSSF
Lenght of the correct protein: 1927

1.9 Some Humans Can Drink Milk, While Others Cannot
One type of lactose intolerance is called Congenital lactase deficiency. This
is a rare genetic disorder that causes lactose intolerance from birth, and is
particularly common in Finland. The disease is caused by a mutation of the
base in position 30049 (0-based) of the lactase gene, a mutation from T to A.
Our goal is to check what happens to the protein if this base is mutated. This is
a simple task using the previously developed tools:

def congential_lactase_deficiency(
lactase_gene,
genetic_code,
lactase_exon_regions,
output_folder=os.curdir,
mrna_file=None,
protein_file=None):

pos = 30049
mutated_gene = lactase_gene[:pos] + ’A’ + lactase_gene[pos+1:]
mutated_mrna = create_mRNA(mutated_gene, lactase_exon_regions)

if mrna_file is not None:
tofile_with_line_sep_v2(

mutated_mrna, output_folder, mrna_file)

mutated_protein = create_protein_fixed(
mutated_mrna, genetic_code)

if protein_file:
tofile_with_line_sep_v2(

mutated_protein, output_folder, protein_file)
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return mutated_protein

mutated_protein = congential_lactase_deficiency(
lactase_gene, genetic_code, lactase_exon_regions,
output_folder=’output’,
mrna_file=’mutated_lactase_mrna.txt’,
protein_file=’mutated_lactase_protein.txt’)

print ’10 last amino acids of the mutated lactase protein:’, \
mutated_protein[-10:]

print ’Lenght of the mutated lactase protein:’, \
len(mutated_protein)

The output, to be compared with the non-mutated gene above, is now
10 last amino acids of the mutated lactase protein: GFIWSAASAA
Lenght of the mutated lactase protein: 1389

As we can see, the translation stops prematurely, creating a much smaller protein,
which will not have the required characteristics of the lactase protein.

A couple of mutations in a region for LCT located in front of LCT (actually
in the introns of another gene) is the reason for the common lactose intolerance.
That is, the one that sets in for adults only. These mutations control the
expression of the LCT gene, i.e., whether that the gene is turned on or off.
Interestingly, different mutations have evolved in different regions of the world,
e.g., Africa and Northern Europe. This is an example of convergent evolution:
the acquisition of the same biological trait in unrelated lineages. The prevalence
of lactose intolerance varies widely, from around 5% in northern Europe, to close
to 100% in south-east Asia.

The functions analyzing the lactase gene are found in the file genes2proteins.
py15.

1.10 Random Mutations of Genes
A Simple Mutation Model. Mutation of genes is easily modeled by replacing
the letter in a randomly chosen position of the DNA by a randomly chosen
letter from the alphabet A, C, G, and T. Python’s random module can be used
to generate random numbers. Selecting a random position means generating
a random index in the DNA string, and the function random.randint(a, b)
generates random integers between a and b (both included). Generating a
random letter is easiest done by having a list of the actual letters and using
random.choice(list) to pick an arbitrary element from list. A function for
replacing the letter in a randomly selected position (index) by a random letter
among A, C, G, and T is most straightforwardly implemented by converting the
DNA string to a list of letters, since changing a character in a Python string is
impossible without constructing a new string. However, an element in a list can
be changed in-place:

15http://tinyurl.com/q4qpjbt/genes2proteins.py
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import random

def mutate_v1(dna):
dna_list = list(dna)
mutation_site = random.randint(0, len(dna_list) - 1)
dna_list[mutation_site] = random.choice(list(’ATCG’))
return ’’.join(dna_list)

Using get_base_frequencies_v2 and format_frequencies from Section 1.7,
we can easily mutate a gene a number of times and see how the frequencies of
the bases A, C, G, and T change:

dna = ’ACGGAGATTTCGGTATGCAT’
print ’Starting DNA:’, dna
print format_frequencies(get_base_frequencies_v2(dna))

nmutations = 10000
for i in range(nmutations):

dna = mutate_v1(dna)

print ’DNA after %d mutations:’ % nmutations, dna
print format_frequencies(get_base_frequencies_v2(dna))

Here is the output from a run:
Starting DNA: ACGGAGATTTCGGTATGCAT
A: 0.25, C: 0.15, T: 0.30, G: 0.30
DNA after 10000 mutations: AACCAATCCGACGAGGAGTG
A: 0.35, C: 0.25, T: 0.10, G: 0.30

Vectorized Version. The efficiency of the mutate_v1 function with its sur-
rounding loop can be significantly increased up by performing all the mutations
at once using numpy arrays. This speed-up is of interest for long dna strings
and many mutations. The idea is to draw all the mutation sites at once, and
also all the new bases at these sites at once. The np.random module provides
functions for drawing several random numbers at a time, but only integers and
real numbers can be drawn, not characters from the alphabet A, C, G, and T.
We therefore have to simulate these four characters by the numbers (say) 0, 1,
2, and 3. Afterwards we can translate the integers to letters by some clever
vectorized indexing.

Drawing N mutation sites is a matter of drawing N random integers among
the legal indices:

import numpy as np
mutation_sites = np.random.random_integers(0, len(dna)-1, size=N)

Drawing N bases, represented as the integers 0-3, is similarly done by

new_bases_i = np.random.random_integers(0, 3, N)

Converting say the integers 1 to the base symbol C is done by picking out the
indices (in a boolean array) where new_bases_i equals 1, and inserting the
character ’C’ in a companion array of characters:
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new_bases_c = np.zeros(N, dtype=’c’)
indices = new_bases_i == 1
new_bases_c[indices] = ’C’

We must do this integer-to-letter conversion for all four integers/letters. There-
after, new_bases_c must be inserted in dna for all the indices corresponding to
the randomly drawn mutation sites,

dna[mutation_sites] = new_bases_c

The final step is to convert the numpy array of characters dna back to a stan-
dard string by first converting dna to a list and then joining the list elements:
”.join(dna.tolist()).

The complete vectorized functions can now be expressed as follows:

import numpy as np
# Use integers in random numpy arrays and map these
# to characters according to
i2c = {0: ’A’, 1: ’C’, 2: ’G’, 3: ’T’}

def mutate_v2(dna, N):
dna = np.array(dna, dtype=’c’) # array of characters
mutation_sites = np.random.random_integers(

0, len(dna) - 1, size=N)
# Must draw bases as integers
new_bases_i = np.random.random_integers(0, 3, size=N)
# Translate integers to characters
new_bases_c = np.zeros(N, dtype=’c’)
for i in i2c:

new_bases_c[new_bases_i == i] = i2c[i]
dna[mutation_sites] = new_bases_c
return ’’.join(dna.tolist())

It is of interest to time mutate_v2 versus mutate_v1. For this purpose we
need a long test string. A straightforward generation of random letters is

def generate_string_v1(N, alphabet=’ACGT’):
return ’’.join([random.choice(alphabet) for i in xrange(N)])

A vectorized version of this function can also be made, using the ideas
explored above for the mutate_v2 function:

def generate_string_v2(N, alphabet=’ACGT’):
# Draw random integers 0,1,2,3 to represent bases
dna_i = np.random.random_integers(0, 3, N)
# Translate integers to characters
dna = np.zeros(N, dtype=’c’)
for i in i2c:

dna[dna_i == i] = i2c[i]
return ’’.join(dna.tolist())

The time_mutate function in the file mutate.py16 performs timing of the
generation of test strings and the mutations. To generate a DNA string of length

16http://tinyurl.com/q4qpjbt/mutate.py
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100,000 the vectorized function is about 8 times faster. When performing 10,000
mutations on this string, the vectorized version is almost 3000 times faster!
These numbers stay approximately the same also for larger strings and more
mutations. Hence, this case study on vectorization is a striking example on
the fact that a straightforward and convenient function like mutate_v1 might
occasionally be very slow for large-scale computations.

A Markov Chain Mutation Model. The observed rate at which mutations
occur at a given position in the genome is not independent of the type of nucleotide
(base) at that position, as was assumed in the previous simple mutation model.
We should therefore take into account that the rate of transition depends on the
base.

There are a number of reasons why the observed mutation rates vary between
different nucleotides. One reason is that there are different mechanisms generating
transitions from one base to another. Another reason is that there are extensive
repair process in living cells, and the efficiency of this repair mechanism varies
for different nucleotides.

Mutation of nucleotides may be modeled using distinct probabilities for
the transitions from each nucleotide to every other nucleotide. For example,
the probability of replacing A by C may be prescribed as (say) 0.2. In total
we need 4× 4 probabilities since each nucleotide can transform into itself (no
change) or three others. The sum of all four transition probabilities for a given
nucleotide must sum up to one. Such statistical evolution, based on probabilities
for transitioning from one state to another, is known as a Markov process or
Markov chain.

First we need to set up the probability matrix, i.e., the 4 × 4 table of
probabilities where each row corresponds to the transition of A, C, G, or T into
A, C, G, or T. Say the probability transition from A to A is 0.2, from A to C is
0.1, from A to G is 0.3, and from A to T is 0.4.

Rather than just prescribing some arbitrary transition probabilities for test
purposes, we can use random numbers for these probabilities. To this end, we
generate three random numbers to divide the interval [0, 1] into four intervals
corresponding to the four possible transitions. The lengths of the intervals give
the transition probabilities, and their sum is ensured to be 1. The interval limits,
0, 1, and three random numbers must be sorted in ascending order to form the
intervals. We use the function random.random() to generate random numbers
in [0, 1):

slice_points = sorted(
[0] + [random.random() for i in range(3)] + [1])

transition_probabilities = [slice_points[i+1] - slice_points[i]
for i in range(4)]

The transition probabilities are handy to have available as a dictionary:
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markov_chain[’A’] = {’A’: ..., ’C’: ..., ’G’: ..., ’T’: ...}

which can be computed by

markov_chain[’A’] = {base: p for base, p in
zip(’ACGT’, transition_probabilities)}

To select a transition, we need to draw a random letter (A, C, G, or T)
according to the probabilities markov_chain[b] where b is the base at the
current position. Actually, this is a very common operation, namely drawing a
random value from a discrete probability distribution (markov_chain[b]). The
natural approach is therefore write a general function for drawing from any
discrete probability distribution given as a dictionary:

def draw(discrete_probdist):
"""
Draw random value from discrete probability distribution
represented as a dict: P(x=value) = discrete_probdist[value].
"""
# Method:
# http://en.wikipedia.org/wiki/Pseudo-random_number_sampling
limit = 0
r = random.random()
for value in discrete_probdist:

limit += discrete_probdist[value]
if r < limit:

return value

Basically, the algorithm divides [0, 1] into intervals of lengths equal to the
probabilities of the various outcomes and checks which interval is hit by a random
variable in [0, 1]. The corresponding value is the random choice.

A complete function creating all the transition probabilities and storing them
in a dictionary of dictionaries takes the form

def create_markov_chain():
markov_chain = {}
for from_base in ’ATGC’:

# Generate random transition probabilities by dividing
# [0,1] into four intervals of random length

slice_points = sorted(
[0] + [random.random()for i in range(3)] + [1])

transition_probabilities = \
[slice_points[i+1] - slice_points[i] for i in range(4)]

markov_chain[from_base] = {base: p for base, p
in zip(’ATGC’, transition_probabilities)}

return markov_chain

mc = create_markov_chain()
print mc
print mc[’A’][’T’] # probability of transition from A to T

It is natural to develop a function for checking that the generated probabilities
are consistent. The transition from a particular base into one of the four bases
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happens with probability 1, which means that the probabilities in a row must
sum up to 1:

def check_transition_probabilities(markov_chain):
for from_base in ’ATGC’:

s = sum(markov_chain[from_base][to_base]
for to_base in ’ATGC’)

if abs(s - 1) > 1E-15:
raise ValueError(’Wrong sum: %s for "%s"’ % \

(s, from_base))

Another test is to check that draw actually draws random values in accordance
with the underlying probabilities. To this end, we draw a large number of values,
N, count the frequencies of the various values, divide by N and compare the
empirical normalized frequencies with the probabilities:

def check_draw_approx(discrete_probdist, N=1000000):
"""
See if draw results in frequencies approx equal to
the probability distribution.
"""
frequencies = {value: 0 for value in discrete_probdist}
for i in range(N):

value = draw(discrete_probdist)
frequencies[value] += 1

for value in frequencies:
frequencies[value] /= float(N)

print ’, ’.join([’%s: %.4f (exact %.4f)’ % \
(v, frequencies[v], discrete_probdist[v])
for v in frequencies])

This test is only approximate, but does bring evidence to the correctness of the
implementation of the draw function.

A vectorized version of draw can also be made. We refer to the source code
file mutate.py17 for details (the function is relatively complicated).

Now we have all the tools needed to run the Markov chain of transitions for
a randomly selected position in a DNA sequence:

def mutate_via_markov_chain(dna, markov_chain):
dna_list = list(dna)
mutation_site = random.randint(0, len(dna_list) - 1)
from_base = dna[mutation_site]
to_base = draw(markov_chain[from_base])
dna_list[mutation_site] = to_base
return ’’.join(dna_list)

Exercise 6 suggests some efficiency enhancements of simulating mutations via
these functions.

Here is a simulation of mutations using the method based on Markov chains:

17http://tinyurl.com/q4qpjbt/mutate.py
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dna = ’TTACGGAGATTTCGGTATGCAT’
print ’Starting DNA:’, dna
print format_frequencies(get_base_frequencies_v2(dna))

mc = create_markov_chain()
import pprint
print ’Transition probabilities:\n’, pprint.pformat(mc)
nmutations = 10000
for i in range(nmutations):

dna = mutate_via_markov_chain(dna, mc)

print ’DNA after %d mutations (Markov chain):’ % nmutations, dna
print format_frequencies(get_base_frequencies_v2(dna))

The output will differ each time the program is run unless random.seed(i)
is called in the beginning of the program for some integer i. This call makes
the sequence of random numbers the same every time the program is run and is
very useful for debugging. An example on the output may look like

Starting DNA: TTACGGAGATTTCGGTATGCAT
A: 0.23, C: 0.14, T: 0.36, G: 0.27
Transition probabilities:
{’A’: {’A’: 0.4288890546751146,

’C’: 0.4219086988655296,
’G’: 0.00668870644455688,
’T’: 0.14251354001479888},

’C’: {’A’: 0.24999667668640035,
’C’: 0.04718309085408834,
’G’: 0.6250440975238185,
’T’: 0.0777761349356928},

’G’: {’A’: 0.16022955651881965,
’C’: 0.34652746609882423,
’G’: 0.1328031742612512,
’T’: 0.3604398031211049},

’T’: {’A’: 0.20609823213950174,
’C’: 0.17641112746655452,
’G’: 0.010267621176125452,
’T’: 0.6072230192178183}}

DNA after 10000 mutations (Markov chain): GGTTTAAGTCAGCTATGATTCT
A: 0.23, C: 0.14, T: 0.41, G: 0.23

Note that the mutated DNA should contain more nucleotides of the type where
the total probability of transitioning into that particular nucleotide is largest.
The total probability of transitioning into a particular base can be computed by
a bit a probability algebra. Let X be the initial base at some position in the
DNA and let Y be the new base after mutation at this position. The probability
that P (Y = b), where b is some base (A, C, G, or T), is built up of four mutually
exclusive events:

P (Y = b) = P (X = A∪Y = b)+P (X = C∪Y = b)+P (X = G∪Y = b)+P (X = T∪Y = b)

A joint event can be expressed by the (conditional) transition probabilities, e.g.,

P (X = A ∪ Y = b) = P (Y = b|X = A)P (X = A)

leading to
P (Y = b) =

∑
i∈{A,C,G,T }

P (Y = b|X = i)P (X = i)
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The probabilities P (Y = b|X = i) correspond to a column in the transition
probability matrix. If each of the initial events P (X = i) are equally probable,
P (X = i) = 1/4, and P (Y = b) is then the sum of the probabilities in the
column corresponding to b, divided by 4. We can now compute P (Y = b) for b
as A, C, G, and T:

def transition_into_bases(markov_chain):
return {to_base: sum(markov_chain[from_base][to_base]

for from_base in ’ATGC’)/4.0
for to_base in ’ATGC’}

print transition_into_bases(mc)

The P (X = b) probabilities corresponding to the example run above reads

{’A’: 0.26, ’C’: 0.25, ’T’: 0.30, ’G’: 0.19}

Transition into T (P (Y = T )) has greatest probability (0.3) and this is also
confirmed by the greatest frequency (0.41).

The various functions performing mutations are located in the file mutate.
py18.

2 Classes for DNA Analysis
We shall here exemplify the use of classes for performing DNA analysis as
explained in the previous text. Basically, we create a class Gene to represent a
DNA sequence (string) and a class Region to represent a subsequence (substring),
typically an exon or intron.

2.1 Class for Regions
The class for representing a region of a DNA string is quite simple:

class Region:
def __init__(self, dna, start, end):

self._region = dna[start:end]

def get_region(self):
return self._region

def __len__(self):
return len(self._region)

def __eq__(self, other):
"""Check if two Region instances are equal."""
return self._region == other._region

def __add__(self, other):
"""Add Region instances: self + other"""
return self._region + other._region

18http://tinyurl.com/q4qpjbt/mutate.py
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def __iadd__(self, other):
"""Increment Region instance: self += other"""
self._region += other._region
return self

Besides storing the substring and giving access to it through get_region, we
have also included the possibility to

• say len(r) if r is a Region instance

• check if two Region instances are equal

• write r1 + r2 for two instances r1 and r2 of type Region

• perform r1 += r2

The latter two operations are convenient for making one large string out of all
exon or intron regions.

2.2 Class for Genes
The class for gene will be longer and more complex than class Region. We
already have a bunch of functions performing various types of analysis. The idea
of the Gene class is that these functions are methods in the class operating on
the DNA string and the exon regions stored in the class. Rather than recoding
all the functions as methods in the class we shall just let the class “wrap” the
functions. That is, the class methods call up the functions we already have.
This approach has two advantages: users can either choose the function-based
or the class-based interface, and the programmer can reuse all the ready-made
functions when implementing the class-based interface.

The selection of functions include

• generate_string for generating a random string from some alphabet

• download and read_dnafile (version read_dnafile_v1) for downloading
data from the Internet and reading from file

• read_exon_regions (version read_exon_regions_v2) for reading exon
regions from file

• tofile_with_line_sep (version tofile_with_line_sep_v2) for writing
strings to file

• read_genetic_code (version read_genetic_code_v2) for loading the map-
ping from triplet codes to 1-letter symbols for amino acids

• get_base_frequencies (version get_base_frequencies_v2) for finding
frequencies of each base

• format_frequencies for formatting base frequencies with two decimals
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• create_mRNA for computing an mRNA string from DNA and exon regions

• mutate for mutating a base at a random position

• create_markov_chain, transition, and mutate_via_markov_chain for
mutating a base at a random position according to randomly generated
transition probabilities

• create_protein_fixed for proper creation of a protein sequence (string)

The set of plain functions for DNA analysis is found in the file dna_functions.
py19, while dna_classes.py20 contains the implementations of classes Gene and
Region.

Basic Features of class Gene. Class Gene is supposed to hold the DNA
sequence and the associated exon regions. A simple constructor expects the exon
regions to be specified as a list of (start, end) tuples indicating the start and
end of each region:

class Gene:
def __init__(self, dna, exon_regions):

self._dna = dna

self._exon_regions = exon_regions
self._exons = []
for start, end in exon_regions:

self._exons.append(Region(dna, start, end))

# Compute the introns (regions between the exons)
self._introns = []
prev_end = 0
for start, end in exon_regions:

self._introns.append(Region(dna, prev_end, start))
prev_end = end

self._introns.append(Region(dna, end, len(dna)))

The methods in class Gene are trivial to implement when we already have the
functionality in stand-alone functions. Here are a few examples on methods:

from dna_functions import *

class Gene:
...

def write(self, filename, chars_per_line=70):
"""Write DNA sequence to file with name filename."""
tofile_with_line_sep(self._dna, filename, chars_per_line)

def count(self, base):
"""Return no of occurrences of base in DNA."""
return self._dna.count(base)

19http://tinyurl.com/q4qpjbt/dna_functions.py
20http://tinyurl.com/q4qpjbt/dna_classes.py
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def get_base_frequencies(self):
"""Return dict of base frequencies in DNA."""
return get_base_frequencies(self._dna)

def format_base_frequencies(self):
"""Return base frequencies formatted with two decimals."""
return format_frequencies(self.get_base_frequencies())

Flexible Constructor. The constructor can be made more flexible. First,
the exon regions may not be known so we should allow None as value and in
fact use that as default value. Second, exon regions at the start and/or end of
the DNA string will lead to empty intron Region objects so a proper test on
nonzero length of the introns must be inserted. Third, the data for the DNA
string and the exon regions can either be passed as arguments or downloaded
and read from file. Two different initializations of Gene objects are therefore

g1 = Gene(dna, exon_regions) # user has read data from file
g2 = Gene((urlbase, dna_file), (urlbase, exon_file)) # download

One can pass None for urlbase if the files are already at the computer. The
flexible constructor has, not surprisingly, much longer code than the first version.
The implementation illustrates well how the concept of overloaded constructors
in other languages, like C++ and Java, are dealt with in Python (overloaded
constructors take different types of arguments to initialize an instance):

class Gene:
def __init__(self, dna, exon_regions):

"""
dna: string or (urlbase,filename) tuple
exon_regions: None, list of (start,end) tuples

or (urlbase,filename) tuple
In case of (urlbase,filename) tuple the file
is downloaded and read.
"""
if isinstance(dna, (list,tuple)) and \

len(dna) == 2 and isinstance(dna[0], str) and \
isinstance(dna[1], str):
download(urlbase=dna[0], filename=dna[1])
dna = read_dnafile(dna[1])

elif isinstance(dna, str):
pass # ok type (the other possibility)

else:
raise TypeError(

’dna=%s %s is not string or (urlbase,filename) ’\
’tuple’ % (dna, type(dna)))

self._dna = dna

er = exon_regions
if er is None:

self._exons = None
self._introns = None

else:
if isinstance(er, (list,tuple)) and \
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len(er) == 2 and isinstance(er[0], str) and \
isinstance(er[1], str):
download(urlbase=er[0], filename=er[1])
exon_regions = read_exon_regions(er[1])

elif isinstance(er, (list,tuple)) and \
isinstance(er[0], (list,tuple)) and \
isinstance(er[0][0], int) and \
isinstance(er[0][1], int):
pass # ok type (the other possibility)

else:
raise TypeError(

’exon_regions=%s %s is not list of (int,int) ’
’or (urlbase,filename) tuple’ % (er, type(era)))

self._exon_regions = exon_regions
self._exons = []
for start, end in exon_regions:

self._exons.append(Region(dna, start, end))

# Compute the introns (regions between the exons)
self._introns = []
prev_end = 0
for start, end in exon_regions:

if start - prev_end > 0:
self._introns.append(

Region(dna, prev_end, start))
prev_end = end

if len(dna) - end > 0:
self._introns.append(Region(dna, end, len(dna)))

Note that we perform quite detailed testing of the object type of the data
structures supplied as the dna and exon_regions arguments. This can well be
done to ensure safe use also when there is only one allowed type per argument.

Other Methods. A create_mRNA method, returning the mRNA as a string,
can be coded as

def create_mRNA(self):
"""Return string for mRNA."""
if self._exons is not None:

return create_mRNA(self._dna, self._exon_regions)
else:

raise ValueError(
’Cannot create mRNA for gene with no exon regions’)

Also here we rely on calling an already implemented function, but include
some testing whether asking for mRNA is appropriate.

Methods for creating a mutated gene are also included:

def mutate_pos(self, pos, base):
"""Return Gene with a mutation to base at position pos."""
dna = self._dna[:pos] + base + self._dna[pos+1:]
return Gene(dna, self._exon_regions)

def mutate_random(self, n=1):
"""
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Return Gene with n mutations at a random position.
All mutations are equally probable.
"""
mutated_dna = self._dna
for i in range(n):

mutated_dna = mutate(mutated_dna)
return Gene(mutated_dna, self._exon_regions)

def mutate_via_markov_chain(markov_chain):
"""
Return Gene with a mutation at a random position.
Mutation into new base based on transition
probabilities in the markov_chain dict of dicts.
"""
mutated_dna = mutate_via_markov_chain(

self._dna, markov_chain)
return Gene(mutated_dna, self._exon_regions)

Some “get” methods that give access to the fundamental attributes of the
class can be included:

def get_dna(self):
return self._dna

def get_exons(self):
return self._exons

def get_introns(self):
return self._introns

Alternatively, one could access the attributes directly: gene._dna, gene._exons,
etc. In that case we should remove the leading underscore as this underscore
signals that these attributes are considered “protected”, i.e., not to be directly
accessed by the user. The “protection” in “get” functions is more mental than
actual since we anyway give the data structures in the hands of the user and she
can do whatever she wants (even delete them).

Special methods for the length of a gene, adding genes, checking if two genes
are identical, and printing of compact gene information are relevant to add:

def __len__(self):
return len(self._dna)

def __add__(self, other):
"""self + other: append other to self (DNA string)."""
if self._exons is None and other._exons is None:

return Gene(self._dna + other._dna, None)
else:

raise ValueError(
’cannot do Gene + Gene with exon regions’)

def __iadd__(self, other):
"""self += other: append other to self (DNA string)."""
if self._exons is None and other._exons is None:

self._dna += other._dna
return self

else:
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raise ValueError(
’cannot do Gene += Gene with exon regions’)

def __eq__(self, other):
"""Check if two Gene instances are equal."""
return self._dna == other._dna and \

self._exons == other._exons

def __str__(self):
"""Pretty print (condensed info)."""
s = ’Gene: ’ + self._dna[:6] + ’...’ + self._dna[-6:] + \

’, length=%d’ % len(self._dna)
if self._exons is not None:

s += ’, %d exon regions’ % len(self._exons)
return s

Here is an interactive session demonstrating how we can work with class
Gene objects:

>>> from dna_classes import Gene
>>> g1 = Gene(’ATCCGTAATTGCGCA’, [(2,4), (6,9)])
>>> print g1
Gene: ATCCGT...TGCGCA, length=15, 2 exon regions
>>> g2 = g1.mutate_random(10)
>>> print g2
Gene: ATCCGT...TGTGCT, length=15, 2 exon regions
>>> g1 == g2
False
>>> g1 += g2 # expect exception
Traceback (most recent call last):
...
ValueError: cannot do Gene += Gene with exon regions
>>> g1b = Gene(g1.get_dna(), None)
>>> g2b = Gene(g2.get_dna(), None)
>>> print g1b
Gene: ATCCGT...TGCGCA, length=15
>>> g3 = g1b + g2b
>>> g3.format_base_frequencies()
’A: 0.17, C: 0.23, T: 0.33, G: 0.27’

2.3 Subclasses
There are two fundamental types of genes: the most common type that codes for
proteins (indirectly via mRNA) and the type that only codes for RNA (without
being further processed to proteins). The product of a gene, mRNA or protein,
depends on the type of gene we have. It is then natural to create two subclasses
for the two types of gene and have a method get_product which returns the
product of that type of gene.

The get_product method can be declared in class Gene:

def get_product(self):
raise NotImplementedError(

’Subclass %s must implement get_product’ % \
self.__class__.__name__)

45



The exception here will be triggered by an instance (self) of any subclass that
just inherits get_product from class Gene without implementing a subclass
version of this method.

The two subclasses of Gene may take this simple form:

class RNACodingGene(Gene):
def get_product(self):

return self.create_mRNA()

class ProteinCodingGene(Gene):
def __init__(self, dna, exon_positions):

Gene.__init__(self, dna, exon_positions)
urlbase = ’http://hplgit.github.com/bioinf-py/data/’
genetic_code_file = ’genetic_code.tsv’
download(urlbase, genetic_code_file)
code = read_genetic_code(genetic_code_file)
self.genetic_code = code

def get_product(self):
return create_protein_fixed(self.create_mRNA(),

self.genetic_code)

A demonstration of how to load the lactase gene and create the lactase
protein is done with

def test_lactase_gene():
urlbase = ’http://hplgit.github.com/bioinf-py/data/’
lactase_gene_file = ’lactase_gene.txt’
lactase_exon_file = ’lactase_exon.tsv’
lactase_gene = ProteinCodingGene(

(urlbase, lactase_gene_file),
(urlbase, lactase_exon_file))

protein = lactase_gene.get_product()
tofile_with_line_sep(protein, ’output’, ’lactase_protein.txt’)

Now, envision that the Lactase gene would instead have been an RNA-coding
gene. The only necessary changes would have been to exchange ProteinCodingGene
by RNACodingGene in the assignment to lactase_gene, and one would get out
a final RNA product instead of a protein.

Acknowledgments. The authors want to thank Sveinung Gundersen, Ksenia
Khelik, Halfdan Rydbeck, and Kai Trengereid for contributing to the examples
and their implementations.

3 Exercises
Exercise 1: Find pairs of characters
Write a function count_pairs(dna, pair) that returns the number of occur-
rences of a pair of characters (pair) in a DNA string (dna). For example, calling
the function with dna as ’ACTGCTATCCATT’ and pair as ’AT’ will return 2.
Filename: count_pairs.py.
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Exercise 2: Count substrings
This is an extension of Exercise 1: count how many times a certain string appears
in another string. For example, the function returns 3 when called with the
DNA string ’ACGTTACGGAACG’ and the substring ’ACG’.

Hint. For each match of the first character of the substring in the main string,
check if the next n characters in the main string matches the substring, where n
is the length of the substring. Use slices like s[3:9] to pick out a substring of s.
Filename: count_substr.py.

Exercise 3: Allow different types for a function argument
Consider the family of find_consensus_v* functions from Section 1.5. The
different versions work on different representations of the frequency matrix.
Make a unified find_consensus function that accepts different data structures
for the frequency_matrix. Test on the type of data structure and perform the
necessary actions. Filename: find_consensus.py.

Exercise 4: Make a function more robust
Consider the function get_base_counts(dna) from Section 1.7, which counts
how many times A, C, G, and T appears in the string dna:

def get_base_counts(dna):
counts = {’A’: 0, ’T’: 0, ’G’: 0, ’C’: 0}
for base in dna:

counts[base] += 1
return counts

Unfortunately, this function crashes if other letters appear in dna. Write an
enhanced function get_base_counts2 which solves this problem. Test it on a
string like ’ADLSTTLLD’. Filename: get_base_counts2.py.

Exercise 5: Find proportion of bases inside/outside exons
Consider the lactase gene as described in Sections 1.8 and 1.9. What is the
proportion of base A inside and outside exons of the lactase gene?

Hint. Write a function get_exons, which returns all the substrings of the
exon regions concatenated. Also write a function get_introns, which re-
turns all the substrings between the exon regions concatenated. The func-
tion get_base_frequencies from Section 1.7 can then be used to analyze the
frequencies of bases A, C, G, and T in the two strings.
Filename: prop_A_exons.py.
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Exercise 6: Speed up Markov chain mutation
The functions transition and mutate_via_markov_chain from Section 1.10
were made for being easy to read and understand. Upon closer inspection, we re-
alize that the transition function constructs the interval_limits every time
a random transition is to be computed, and we want to run a large number of
transitions. By merging the two functions, pre-computing interval limits for each
from_base, and adding a loop over N mutations, one can reduce the computation
of interval limits to a minimum. Perform such an efficiency enhancement. Mea-
sure the CPU time of this new function versus the mutate_via_markov_chain
function for 1 million mutations. Filename: markov_chain_mutation2.py.

Exercise 7: Extend the constructor in class Gene
Modify the constructor in class Gene from Section 2 such that giving no arguments
to the constructor makes the class call up the generate_string method (from
the dna_functionsmodule) which generates a random DNA sequence. Filename:
dna_classes2.py.
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