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Abstract

We establish Liouville type results for weighted anisotropic elliptic equations in divergence form in
the strip RN−1 × (−1, 1), N ≥ 2. The weights depend on one variable and they include the case where
they are powers of the distance functions to the boundary of the strip.

1 Introduction and main results

In this work our interest is to prove Liouville type results for the anisotropic elliptic operator

Lu = w1∆x′u+ ∂λ(w1w2∂λu), (1.1)

where x = (x′, λ) ∈ S := RN−1 × (−1, 1), N ≥ 2 and wi(λ) = wi(|λ|) for i = 1, 2, are locally positive and
bounded weight functions. That is, we look for conditions on w1, w2 under which the only bounded weak
solutions of Lu = 0 are the constant solutions.

Let us recall the uniformly elliptic case

N∑
i,j=1

∂i(aij(x)∂ju) = 0,

with

c1|ξ|2 ≤
N∑

i,j=1

aij(x)ξiξj ≤ c2|ξ|2, ∀ξ ∈ RN , c1, c2 > 0.

The pioneering work of De Giorgi and Moser [DG, Mo1, Mo2], see also [HL], played a crucial role in
establishing many properties of weak solutions such as Harnack inequality, Liouville type results, Holder
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continuity etc. Several extensions of these results were made by various authors in a number of directions,
see e.g., [FKS, G, GSC].

To discuss the nonuniformly elliptic case we denote by a(x) the matrix with entries aij(x) and set

λ(x) := inf
ξ∈RN

ξ · a(x)ξ
|ξ|2

, µ(x) := sup
ξ∈RN

|a(x)ξ|2

ξ · a(x)ξ
.

Assume that for p, q ∈ (1,+∞], µ ∈ Lp
loc(R

N ), λ−1 ∈ Lq
loc(R

N ), and

lim sup
R→∞

|BR|
−
(

1
p
+ 1

q

)
∥µ∥Lp(BR) ∥λ−1∥Lq(BR) < ∞.

Under essentially these assumptions, and provided that

1

p
+

1

q
<

2

N
,

Trudinger [T], established Harnack inequality and Hölder continuity for nonnegative weak solutions, see
also [MS]. Quite recently the same results have been proved by Bella and Schäffner [BS] under the weaker
condition

1

p
+

1

q
<

2

N − 1
.

As a consequence, every bounded weak solution is constant, cf Corollary 4.4 of [BS] for the precise result
and the definition of weak solutions.

There is a recent interest in the study of anisotropic operators see e.g. [CL, HP, MNS1, MNS2]. Our
motivation for studying (1.1) comes from the work of Caffarelli and Cordoba [CC] in phase transition
analysis and is a continuation of [FMT2] and [M2]. In [FMT2] the aim was to establish various Sobolev
type inequalities for anisotropic weighted operators whereas in [M2], Liouville type Theorems for (1.1) are
presented, for particular choices of the weights.

We first consider the model anisotropic elliptic operator

Lα,νu = (1− |λ|)α∆x′u+ ∂λ((1− |λ|)α+ν∂λu) (1.2)

for (x′, λ) ∈ S := RN−1× (−1, 1). We focus our attention only in the case α > −1 and we state the results
in three cases, the subcritical one, that is ν < 2 and the critical or supercritical case corresponding to
ν = 2 and ν > 2 respectively. Then, our first result reads

Theorem 1.1 (Subcritical case) Let α > −1.

(a) If ν < 1− α then the function

u(λ) =

∫ λ

−1
(1− |t|)−α−νdt,

is a nonnegative (and bounded) weak solution of Lα,νu = 0 in S.

(b) If 1− α ≤ ν < 2 then any nonnegative weak solution of Lα,νu = 0 in S is constant.

When ν ≥ 2 our result reads

Theorem 1.2 (Critical and supercritical cases) Let α > −1 and ν ≥ 2. Every bounded weak solu-
tions of Lα,νu = 0 in S is constant.

2



-2 -1 1 2 3
α

-1

1

2

3
ν

Figure 1: For α > −1, the lines ν = 1 − α and ν = 2 define three regions in the plane α–ν. In the pink
region (subcritical) there exist nonnegative non constant solutions. In the purple region (also subcritical)
all nonnegative solutions are constants. Finally in the green region (supercritical) as well as in the case
ν = 2 (critical) all bounded solutions are constants.

The critical case ν = 2 in the case α = 1 was already treated in [M2]; in such a case the validity of
a Liouville type result entails a positive answer to De Giorgi conjecture under the additional assumption
that level sets are Lipschitz graphs, see also [BBG], [CC].

An operator like Lα,ν when ν = 2α and 0 < α ≤ 1 (which corresponds to the subcritical and critical
case in the present terminology) is naturally related to the phase transition analysis in [CC].

When 1 − α ≤ ν < 2 our result is stronger than establishing that the only bounded weak solutions
are the constant ones and is proved by means of a parabolic Harnack inequality up to the boundary.

We note that our results are outside the range of applicability of the ones by Bella and Schäffner [BS]
mentioned above.

We next consider the more general elliptic operator (1.1). We assume that wi(λ) = wi(|λ|), i = 1, 2,
−1 < λ < 1, and wi ∈ L∞

loc(−1, 1). We only consider the case w1 ∈ L1(0, 1) and we state the results in two

cases, the subcritical one, which corresponds to the case w
− 1

2
2 ∈ L1(0, 1) and the critical or supercritical

case which corresponds to the case w
− 1

2
2 /∈ L1(0, 1). The results then are the following

Theorem 1.3 (Subcritical case) Let w1 ∈ L1(0, 1) and (w2)
− 1

2 ∈ L1(0, 1).

(a) If (w1w2)
−1 ∈ L1(0, 1) then the function

u(λ) =

∫ λ

−1
(w1w2)

−1(t)dt

is a nonnegative (and bounded) weak solution of Lu = 0 in S .

(b) If (w1w2)
−1 ̸∈ L1(0, 1) and there exists θ ≥ 1 and constants c1, c2 > 0 such that for any λ ∈ (−1, 1)

there holds

c1

(∫ 1

|λ|
w

− 1
2

2 (t)dt

)θ

≤ w1(|λ|)w
1
2
2 (|λ|) ≤ c2

(∫ 1

|λ|
w

− 1
2

2 (t)dt

)θ

, (1.3)

then any nonnegative weak solution of Lu = 0 in S is constant.

Also,
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Theorem 1.4 (Critical and supercritical cases) Let w1 ∈ L1(0, 1) and (w2)
− 1

2 ̸∈ L1(0, 1) and define

φ(λ) = 1 +

∫ |λ|

0
(w1w2)

−1(t)dt. (1.4)

We assume that there exists m > 2 such that φ− 1
mw

− 1
2

2 ∈ L1(0, 1) and θ > 0 such that for some constants
c1, c2 > 0 and any λ ∈ (−1, 1) there holds

c1

(∫ 1

|λ|
φ− 1

m (t)w
− 1

2
2 (t)dt

)θ

≤ w1(|λ|)w
1
2
2 (|λ|)φ

1
m (|λ|) ≤ c2

(∫ 1

|λ|
φ− 1

m (t)w
− 1

2
2 (t)dt

)θ

. (1.5)

Then any bounded weak solution of Lu = 0 in S is constant.

Notice that if w1 ∈ L1(0, 1) and (w2)
− 1

2 ̸∈ L1(0, 1) then necessarily (w1w2)
−1 ̸∈ L1(0, 1), as it follows

easily from the decomposition w
− 1

2
2 = w

1
2
1 (w1w2)

− 1
2 , whence

φ(λ) → +∞ as |λ| → 1.

The result of Theorem 1.4 is weaker than the one in Theorem 1.3(b). This is not due to our approach,
since if one considers the strip

S+ = RN−1 × (0, 1),

with w1, w2 as in Theorem 1.4 that is w1 ∈ L1(0, 1) and (w2)
− 1

2 ̸∈ L1(0, 1), then the function

φ(λ) = 1 +

∫ λ

0
(w1w2)

−1(t)dt,

is a nonnnegative weak solution of Lu = 0 in S+ which is actually unbounded. Hence the requirement of
boundedness of weak solutions in Theorem 1.4 cannot be replaced by the nonnegativity of weak solutions.

To prove Theorem 1.3(b) we establish a parabolic Harnack inequality up to the boundary for nonneg-
ative weak solutions u(x, t) of

∂u

∂t
=

1

w1
Lu in CR × (0, R2) . (1.6)

with
CR := {|x′| < R, |λ| < 1}.

Parabolic Harnack inequality follows once one establishes Poincaré and Sobolev inequalities as well as a
doubling volume growth condition as is shown in [FKS, CS]. See also [GSC, SC] for extensions on complete
Riemannian manifolds. In the present work we follow an adaptation made in [FMT1], cf Theorem 2.11
there. In particular the proper energy space is now given by the following norm

||u||2H1
w1,w2

(CR) :=

∫
CR

(
u2 + |∇x′u|2 + w2(∂λu)

2
)
w1dx

′dλ.

This is done in Section 2.
To prove Theorem 1.4 we make use of the oscillation decrease method, cf section 4.3 of [HL], as

adapted in Theorem 1.4 of [M2] to the anisotropic setting. This is done in Section 3.
In Section 4 we give the proofs of Theorems 1.1 and 1.2. We also discuss various extensions of our

results.
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2 Subcritical case: Proof of Theorem 1.3

In this section we give the proof of Theorem 1.3(b). This will be done by means of a parabolic Harnack
inequality up to the boundary, using the Moser iteration scheme, as adapted to isotropic degenerate
elliptic operators on bounded domains in [FMT1]. There is a difference in the cut off functions used here
as compared to the ones used in [FMT1]. In this work our cut off functions take into account the geometry
of the cylinder and they depend only on x′. We combine this with a density argument similar to [FMT1]
that takes care of the λ direction.

The three ingredients needed for the scheme to work are the doubling volume-growth condition, a
local weighted Sobolev inequality as well as a local weighted Poincaré inequality.

The doubling property follows easily from the fact that

V (CR) =

∫
CR

w1dx
′dλ =

(∫
B′

R

dx′

)∫ 1

−1
w1dλ = CRN−1, (2.1)

for some uniform constant C (independent from R) and any R > 0. Here we denote with B′
R the Euclidean

ball of radius R in RN−1.
Concerning the local weighted Sobolev inequality we have

Lemma 2.1 (local weighted Sobolev) Let w1 ∈ L1(0, 1), (w2)
− 1

2 ∈ L1(0, 1) and (w1w2)
−1 ̸∈ L1(0, 1).

In addition we suppose that there exists θ > 0 and some constants c1, c2 > 0 such that for any λ ∈ (−1, 1)
there holds

c1

(∫ 1

|λ|
w

− 1
2

2 (t)dt

)θ

≤ w1(|λ|)w
1
2
2 (|λ|) ≤ c2

(∫ 1

|λ|
w

− 1
2

2 (t)dt

)θ

. (2.2)

Then for q = 2(N+θ)
N−2+θ there exists a positive constant CS such that for any R ≥ 1 and for all f ∈ C∞

0 ({|x′| <
R}) there holds(∫

CR

|f |qw1dx
′dλ

) 2
q

≤ CSR
2(V (CR))

2
q
−1
∫
CR

(
|∇x′f |2 + w2(∂λf)

2
)
w1dx

′dλ. (2.3)

Proof: It is clear that it is enough to prove the inequality in the half cylinder,

C+
R = CR ∩ {λ > 0} = {|x′| < R, 0 < λ < 1}.

Thus, we will prove that for any f ∈ C∞
0 ({|x′| < R})(∫

C+
R

|f |qw1dx
′dλ

) 2
q

≤ CSR
2V (C+

R )
2
q
−1
∫
C+

R

(
|∇x′f |2 + w2(∂λf)

2
)
w1dx

′dλ . (2.4)

We change variables by defining

s = s(λ) =

(∫ 1

λ
w

− 1
2

2 (t)dt

)(∫ 1

0
w

− 1
2

2 (t)dt

)−1

, g(x′, s) = f(x′, λ). (2.5)

With this change of variables and taking into account (2.2), inequality (2.4) takes the following equivalent
form (∫

C+
R

|g|qsθdx′ds

) 2
q

≤ CS R2V
2
q
−1

(C+
R )

∫
C+
R

(
|∇x′g|2 + (∂sg)

2
)
sθdx′ds, (2.6)
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with C+
R = {|x′| < R, 0 < s < 1} and V (C+

R ) = cNRN−1 . For R = 1 the above inequality is written(∫
C+
1

|g|qsθdx′ds

) 2
q

≤ CS V
2
q
−1

(C+
1 )

∫
C+
1

(
|∇x′g|2 + (∂sg)

2
)
sθdx′ds. (2.7)

This is true by Proposition 2.1 of [FMT2] with QB = 2A = θ there. As a consequence q = 2(N+θ)
N−2+θ .

To establish (2.6), after a rescaling in the x′ variables the inequality takes the form(∫
C+
1

|g|qsθdx′ds

) 2
q

≤ CS V
2
q
−1

(C+
1 )

∫
C+
1

(
|∇x′g|2 +R2 (∂sg)

2
)
sθdx′ds.

This is true by (2.7) and the fact that R ≥ 1. This completes the proof.
2

We next consider the local weighted Poincare iequality. If

f̄ :=
1

V (CR)

∫
CR

f(x′, λ) w1dx
′dλ ,

we have

Lemma 2.2 (local weighted Poincare) Let w1 ∈ L1(0, 1), (w2)
− 1

2 ∈ L1(0, 1) and (w1w2)
−1 ̸∈ L1(0, 1).

In addition we suppose that there exists θ > 0 and some constants c1, c2 > 0 such that for any λ ∈ (−1, 1)
there holds

c1

(∫ 1

|λ|
w

− 1
2

2 (t)dt

)θ

≤ w1(|λ|)w
1
2
2 (|λ|) ≤ c2

(∫ 1

|λ|
w

− 1
2

2 (t)dt

)θ

. (2.8)

Then there exist positive constant CP such that for any R ≥ 1 and for all f ∈ C1(CR) there holds∫
CR

|f − f̄ |2w1dx
′dλ ≤ CPR

2

∫
CR

(
|∇x′f |2 + w2(∂λf)

2
)
w1dx

′dλ, (2.9)

Proof: The result will follow once we establish that for any f ∈ C1(CR) we have the following inequality
in the upper half cylinder C+

R ,∫
C+

R

|f − ξ|2w1dx
′dλ ≤ CPR

2

∫
C+

R

(
|∇x′f |2 + w2(∂λf)

2
)
w1dx

′dλ (2.10)

for some positive constant CP (independent on R), with the choice

ξ =

∫
|x′|<R f(x′, 0)dx′

ωN−1RN−1
.

A similar inequality will hold in the lower half cylinder C−
R with the same choice of ξ. Then, since∫

CR

|f − f̄ |2w1dx
′dλ = min

ξ∈R

∫
CR

|f − ξ|2w1dx
′dλ,

the required inequality in CR will follow.
Making use of the change of variables (2.5) and taking into account (2.8) inequality (2.10) takes the

following equivalent form (modulo absolute constants)
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∫
{|x′|<R, 0<s<1}

|g − ξ|2sθdx′ds ≤ CPR
2

∫
{|x′|<R, 0<s<1}

(
|∇x′g|2 + (∂sg)

2
)
sθdx′ds. (2.11)

We note that

ξ =

∫
{|x′|<R} g(x

′, 1)dx′

ωN−1RN−1
.

Once again it is enough to establish the result for R = 1. The general case then follows by scaling in x′

and using the fact that R ≥ 1, as it was done in the proof of (2.6).
For s ∈ [0, 1] we define

ḡ(s) =

∫
{|x′|<1} g(x

′, s)dx′

ωN−1
,

and note that ξ = ḡ(1). There holds∫
{|x′|<1, 0<s<1}

|g(x′, s)− ξ|2sθdx′ds

≤ 2

∫
{|x′|<1, 0<s<1}

|g(x′, s)− ḡ(s)|2sθdx′ds+ 2

∫
{|x′|<1, 0<s<1}

|ḡ(s)− ḡ(1)|2sθdx′ds . (2.12)

We next consider the first integral on the right hand side. By Poincaré in the x′ variables we have∫
{|x′|<1, 0<s<1}

|g(x′, s)− ḡ(s)|2sθdx′ds =

∫ 1

0
sθ

(∫
|x′|<1

|g(x′, s)− ḡ(s)|2dx′
)
ds

≤ C

∫
{|x′|<1, 0<s<1}

|∇x′g(x′, s)|2sθ dx′ds. (2.13)

Concerning the second integral on the right hand side of (2.12) we have the following one dimensional
Poincaré∫ 1

0
|ḡ(s)− ḡ(1)|2sθ ds =

∫ 1

0
|ḡ(s)− ḡ(1)|2

(
sθ+1

θ + 1

)′

ds = − 2

θ + 1

∫ 1

0
(ḡ(s)− ḡ(1))ḡ′(s)sθ+1 ds

≤ 2

θ + 1

(∫ 1

0
(ḡ(s)− ḡ(1))2sθ+2 ds

) 1
2
(∫ 1

0
ḡ
′2(s)sθ ds

) 1
2

≤ 2

θ + 1

(∫ 1

0
(ḡ(s)− ḡ(1))2sθ ds

) 1
2
(∫ 1

0
ḡ
′2(s)sθ ds

) 1
2

,

whence, ∫ 1

0
|ḡ(s)− ḡ(1)|2sθ ds ≤ 4

(θ + 1)2

∫ 1

0
ḡ
′2(s)sθ ds,

from which it follows that∫
{|x′|<1, 0<s<1}

|ḡ(s)− ḡ(1)|2sθdx′ds ≤ 4

(θ + 1)2

∫
{|x′|<1, 0<s<1}

(∂sg)
2sθdx′ds. (2.14)

Combining (2.12), (2.13) and (2.14) we obtain (2.11) with R = 1 and this completes the proof.
2
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For the Moser iteration scheme to work, we will also need the analogue of Theorem 2.11 of [FMT1].
We first introduce the following norm

||u||2H1
w1,w2

(CR) :=

∫
CR

(
u2 + |∇x′u|2 + w2(∂λu)

2
)
w1dx

′dλ.

We next define the following two Hilbert spaces: H1
w1,w2

(CR) is the completion of C∞(CR) under the
above norm, whereas H1

0,w1,w2
(CR) is the completion under the same norm, of functions that have compact

support in λ ∈ (−1, 1), that is

H1
0,w1,w2

(CR) = C∞
0 (RN−1 × (−1, 1))

||·||
H1
w1,w2

(CR) .

We then have

Proposition 2.3 (Density) Let w1 ∈ L1(0, 1), (w2)
− 1

2 ∈ L1(0, 1) and (w1w2)
−1 ̸∈ L1(0, 1). In addition

we suppose that there exists θ > 0 and some constants c1, c2 > 0 such that for any λ ∈ (−1, 1) there holds

c1

(∫ 1

|λ|
w

− 1
2

2 (t)dt

)θ

≤ w1(|λ|)w
1
2
2 (|λ|) ≤ c2

(∫ 1

|λ|
w

− 1
2

2 (t)dt

)θ

. (2.15)

If θ ≥ 1, then
H1

w1,w2
(CR) = H1

0,w1,w2
(CR).

Proof: Once again we change variables by (2.5) and work in the half cylinder

C+
R = {|x′| < R, 0 < s < 1}.

We recall that λ = 1 corresponds to s = 0. The norm now takes the form

||u||2
H1(C+

R ,sθdx′ds)
:=

∫
C+
R

(
u2 + |∇x′u|2 + (∂su)

2
)
sθdx′ds,

and the corresponding function spaces are now H1(C+
R , s

θdx′ds) and H1
0 (C

+
R , s

θdx′ds). We need to prove
that any function in H1(C+

R , s
θdx′ds) can be approximated by functions in H1

0 (C
+
R , s

θdx′ds).

By Theorem 7.2 of [K] it is known that the set C∞(C+
R ) is dense in H1(C+

R , s
θdx′ds). Hence for any

v ∈ H1(C+
R , s

θdx′ds) and any ε > 0, there exists w ∈ C∞(C+
R ) such that ||v − w||H1 ≤ ϵ. We then define

the function

φk(λ) =


0 if s ≤ 1

k2
,

1 + ln(ks)
ln(k) if 1

k2
< s < 1

k ,

1 if s ≥ 1
k ,

and set
wk := wφk ∈ C0,1

0 ({s > 0})
∣∣∣
C+
R

.

Then,

||w − wk||2H1 = ||w(1− φk)||2H1

≤ 2

∫
C+
R

(w2 + |∇x′w|2 + (∂sw)
2)(1− φk)

2sθdx′ds+ 2

∫
C+
R

w2(∂sφk)
2sθdx′ds

≤ 2

∫
{|x′|<R, 0<s< 1

k
}
(w2 + |∇x′w|2 + (∂sw)

2) sθdx′ds+ CRN−1||w||2
L∞(C+

R )

∫
1
k2

<s< 1
k

1

s2(ln(k))2
sθds.
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For θ > 1 there holds ∫
1
k2

<s< 1
k

1

s2(ln(k))2
sθds ≤ 1

θ − 1

(
1

k

)θ−1 1

(ln(k))2
,

whereas for θ = 1, ∫
1
k2

<s< 1
k

1

s2(ln(k))2
sθds =

1

(ln(k))2

∫
1
k2

<s< 1
k

1

s
ds ≤ 1

ln(k)
.

Thus, for θ ≥ 1 and k large enough we have ||v − wk||H1 ≤ 2ϵ and the result follows.
2

We are now ready to study positive weak solutions u(x′, λ, t) of the parabolic problem

∂u

∂t
=

1

w1
Lu in CR × (0, R2) . (2.16)

To this end we first have

Definition 2.4 A weak solution u(x′, λ, t) of (2.16) is a function

u ∈ C1((0, R2);L2(CR, w1dx
′dλ) ∩ C0((0, R2);H1

w1,w2
(CR))

such that for any Φ ∈ C0((0, R2);C∞
0 (CR)) and any 0 < t1 < t2 < R2 we have∫ t2

t1

∫
CR

{
∂u

∂t
Φ+ < ∇x′u,∇x′Φ > +∂λu ∂λΦ w2

}
w1 dx′dλ dt = 0 .

Thus, the Moser iteration scheme entails the following result

Theorem 2.5 (Parabolic Harnack inequality up to the boundary). Let N ≥ 2, w1 ∈ L1(0, 1),

(w2)
− 1

2 ∈ L1(0, 1) and (w1w2)
−1 ̸∈ L1(0, 1). In addition we suppose that there exists θ ≥ 1 and some

constants c1, c2 > 0 such that for any λ ∈ (−1, 1) there holds

c1

(∫ 1

|λ|
w

− 1
2

2 (t)dt

)θ

≤ w1(|λ|)w
1
2
2 (|λ|) ≤ c2

(∫ 1

|λ|
w

− 1
2

2 (t)dt

)θ

. (2.17)

Then, there exists a positive constant CH such that for any R ≥ 1 and any positive weak solution u(x′, λ, t)
of (2.16), the following estimate holds true

ess sup
(x′,λ,t)∈CR

2
×(R

2

4
,R

2

2
)

u(x′, λ, t) ≤ CH ess inf (x′,λ,t)∈CR
2
×( 3

4
R2,R2) u(x′, λ, t) .

As a consequence of Theorem 2.5, the only nonnegative stationary weak solutions of the parabolic
problem (2.16) are the constants and this proves Theorem 1.3(b).

3 Critical and supercritical cases: Proof of Theorem 1.4

To obtain the result we make use of the oscillation decrease method, cf section 4.3 of [HL], as adapted in
Theorem 1.4 of [M2] to the anisotropic setting; we recall its statement for the convenience of the reader.

We first define a nondecreasing positive function γ = γ(R), R ≥ 1, that satisfies limR→∞ γ(R) = +∞
and in addition has the following property (level growth) :

9



For τ > 0, there exist two positive functions l(τ) and L(τ) such that

l(τ) ≤ γ(τR)

γ(R)
≤ L(τ) (3.1)

for all R ≥ 1 and limτ→0+ L(τ) = 0 .
For a positive and locally Lipschitz function φ = φ(x′, λ) we define

LR := LR,γ(R) = {(x′, λ) ∈ S : |x′| < R, φ < γ(R)} .

We assume that φ has the following two additional properties

(i) φ is an almost-supersolution, that is, there exist constants Cas ≥ 0, γ0 ≥ 0 and β > 0, such that

1

w1
Lφ ≤ Cas

γ(R)

R2+β
in LR \ LR,γ0 = {|x′| < R, γ0 ≤ φ < γ(R)},

for every R > 1 such that γ(R) > γ0.

(ii) (balancing property) As R → +∞,

K(R) :=
R

γ(R)
V − 1

2 (LR)

(∫
LR

(
|∇x′φ|2 + w2(∂λφ)

2
)
w1dx

′dλ

) 1
2

→ 0 .

In addition we ask for the following properties.

(iii) (volume doubling) There exists a positive constant CD (independent of R) such that

V (L2R) ≤ CDV (LR) ,

for every R > 1, where V (D) :=
∫
D w1dx

′dλ.

(iv) (local weighted Sobolev) For some q > 2 there exists a positive constant CS (independent of R) such
that, (

1

V (LR)

∫
LR

|f |qw1dx
′dλ

) 2
q

≤ CSR
2 1

V (LR)

∫
LR

(
|∇x′f |2 + w2(∂λf)

2
)
w1dx

′dλ,

for every R > 1 and f ∈ C∞
0 (LR).

(v) (local weighted Poincaré) There exists a positive constant CP (independent of R) such that, for every
R > 1 and every f ∈ C1(LR) satisfying f = 0 on {|x′| ≤ R, φ = γ(R)} and

V
(
{(x′, λ) ∈ LR : f(x′, λ) = 0}

)
≥ 1

2
V (LR),

there holds ∫
LR

f2(x′, λ)w1dx
′dλ ≤ CPR

2

∫
LR

(
|∇x′f |2 + w2(∂λf)

2
)
w1dx

′dλ.

Then, by Theorem 1.4 of [M2] it follows that if oscLR
u := supLR

u− infLR
u, then

(a) (Density theorem) Let u ∈ H1
w1,w2

(L2R), u ≥ 0, −L u ≥ 0 (weakly) in L2R, oscL2R
u ≤ 2 and

V
(
{(x′, λ) ∈ LR : u ≥ 1}

)
≥ 1

2
V (LR)

for R big enough. Then we have infLR
2

u ≥ δ , for some δ > 0 independent from R.

10



(b) (Oscillation decrease) Let u ∈ H1
w1,w2

(L2R), L u = 0 (weakly) in L2R for R big enough then for some
δ′ > 0 independent from R,

oscLR
2

u ≤ [1− δ′]oscL2R
u.

(c) (Liouville theorem) Any bounded (weak) solution of L u = 0 in S is constant.

In the sequel we take γ(R) = Rm for m > 2 and the function φ(λ) as defined in (1.4). Assuming that
w1, w2 satisfy the hypotheses of Theorem 1.4, we will verify properties (i)–(v). It is easily seen that γ
satisfies the level growth estimate (3.1).

Function φ(λ) is in fact a solution of L u = 0, in S away from λ = 0; moreover, since (w1w2)
−1 ̸∈

L1(0, 1), it is unbounded as |λ| → 1. Thus, the almost-supersolution property (i) is satisfied with Cas = 0.
Recall that

LR = {|x′| < R, φ < Rm}.

Since w1 ∈ L1(0, 1) for R large enough we have

d1R
N−1 ≤ V (LR) :=

∫
LR

w1dx
′dλ ≤ d2R

N−1,

for suitable positive constants d1, d2, therefore the volume doubling property (iii) is satisfied too.
Concerning the balancing property (ii), we compute∫

LR

(|∇x′φ|2 + w2(∂λφ)
2)w1dx

′dλ = CRN−1

∫
{φ<Rm}

w1w2(∂λφ)
2 dλ

≤ CRN−1

∫
{φ<Rm}

(w1w2)
−1 dλ ≤ CRN−1+m.

It follows that
K(R) ≤ CR1−mR−N−1

2 R
N−1

2 R
m
2 = CR1−m

2 ,

which tends to zero as R tends to +∞ since m > 2. Hence the balancing property (ii) is also satisfied.
It only remains to prove the local weighted Sobolev and Poincaré inequalities, which we believe are

of independent interest.

Lemma 3.1 (local weighted Sobolev) Let w1 ∈ L1(0, 1) and (w2)
− 1

2 ̸∈ L1(0, 1) and define

φ(λ) = 1 +

∫ |λ|

0
(w1w2)

−1(t)dt. (3.2)

We assume that there exists m > 2 such that φ− 1
mw

− 1
2

2 ∈ L1(0, 1) and θ > 0 such that for some constants
c1, c2 > 0 and any λ ∈ (−1, 1) there holds

c1

(∫ 1

|λ|
φ− 1

m (t)w
− 1

2
2 (t)dt

)θ

≤ w1(|λ|)w
1
2
2 (|λ|)φ

1
m (|λ|) ≤ c2

(∫ 1

|λ|
φ− 1

m (t)w
− 1

2
2 (t)dt

)θ

. (3.3)

Then for q = 2(N+θ)
N−2+θ there exists a positive constant CS such that for any R ≥ 1 and for all f ∈ C∞

0 (LR)
there holds (∫

LR

|f |qw1dx
′dλ

) 2
q

≤ CSR
2(V (LR))

2
q
−1
∫
LR

(
|∇x′f |2 + w2(∂λf)

2
)
w1dx

′dλ. (3.4)
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Proof: The proof is similar to the proof of Lemma 2.1, we therefore sketch it. By scaling in the x′–variables

x′ = Ry′, g(y′, λ) = f(y′R, λ) ∈ C∞
0 (|y′| < 1, φ < Rm),

estimate (3.4) takes the following equivalent form(∫
{|y′|<1, φ<Rm}

|g|qw1dy
′dλ

) 2
q

≤ CS

∫
{|y′|<1, φ<Rm}

(
|∇y′g|2 +R2w2(∂λg)

2
)
w1dy

′dλ;

Since φ(λ) < Rm is equivalent to φ
2
m (λ) < R2, it is enough to establish(∫

{|y′|<1, φ<Rm}
|g|qw1dy

′dλ

) 2
q

≤ CS

∫
{|y′|<1, φ<Rm}

(
|∇y′g|2 + φ

2
mw2(∂λg)

2
)
w1dy

′dλ;

In fact we will prove a stronger inequality, namely for g ∈ C∞
0 (|y′| < 1, |λ| < 1).(∫

{|y′|<1, |λ|<1}
|g|qw1dy

′dλ

) 2
q

≤ CS

∫
{|y′|<1, |λ|<1}

(
|∇y′g|2 + φ

2
mw2(∂λg)

2
)
w1dy

′dλ.

It is enough to prove the result in the upper half cylinder, that is for g ∈ C∞
0 (|y′| < 1, |λ| < 1),(∫

{|y′|<1, 0<λ<1}
|g|qw1dy

′dλ

) 2
q

≤ CS

∫
{|y′|<1, 0<λ<1}

(
|∇y′g|2 + φ

2
mw2(∂λg)

2
)
w1dy

′dλ. (3.5)

To do this we change variables by

s = s(λ) =

(∫ 1

λ
φ− 1

m (t)w
− 1

2
2 (t)dt

)(∫ 1

0
φ− 1

m (t)w
− 1

2
2 (t)dt

)−1

, h(y′, s) = g(y′, λ), λ ∈ (0, 1). (3.6)

Taking into account (3.3), inequality (3.5) takes the form(∫
{|y′|<1, 0<s<1}

|h|qsθdy′ds

) 2
q

≤ CS

∫
{|y′|<1, 0<s<1}

(
|∇y′h|2 + (∂sh)

2
)
sθdy′ds,

with h ∈ C∞
0 (|y′| < 1). Since θ > 0, this is true because of (2.7).

2

Next, after recalling that

f̄ :=
1

V (LR)

∫
LR

f(x′, λ) w1dx
′dλ ,

we have

Lemma 3.2 (local weighted Poincaré) Let w1 ∈ L1(0, 1) and (w2)
− 1

2 ̸∈ L1(0, 1) and define

φ(λ) = 1 +

∫ |λ|

0
(w1w2)

−1(t)dt. (3.7)

We assume that there exists m > 2 such that φ− 1
mw

− 1
2

2 ∈ L1(0, 1) and θ > 0 such that for some constants
c1, c2 > 0 and any λ ∈ (−1, 1) there holds

c1

(∫ 1

|λ|
φ− 1

m (t)w
− 1

2
2 (t)dt

)θ

≤ w1(|λ|)w
1
2
2 (|λ|)φ

1
m (|λ|) ≤ c2

(∫ 1

|λ|
φ− 1

m (t)w
− 1

2
2 (t)dt

)θ

. (3.8)
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Then there exists a positive constant CP (independent of R) such that, for every f ∈ C1(LR) satisfying
f = 0 on {|x′| ≤ R, φ = Rm}, there holds∫

LR

|f − f̄ |2w1dx
′dλ ≤ CPR

2

∫
LR

(
|∇x′f |2 + w2(∂λf)

2
)
w1dx

′dλ (3.9)

for every R > 1. Moreover, if in addition f is such that

V
(
{(x′, λ) ∈ LR : f(x′, λ) = 0}

)
≥ 1

2
V (LR),

then, for every R > 1, we also have∫
LR

f2(x′, λ)w1dx
′dλ ≤ CPR

2

∫
LR

(
|∇x′f |2 + w2(∂λf)

2
)
w1dx

′dλ. (3.10)

Proof: Assuming that (3.9) has been established, we first show that it implies (3.10). To this end we show
that if f satisfies V ({f = 0} ∩ LR) ≥ 1

2V (LR), we then have∫
LR

f2w1dx
′dλ ≤ 2

∫
LR

|f − f̄ |2w1dx
′dλ. (3.11)

Indeed (3.11) follows easily from the following computation:∫
LR

|f − f̄ |2w1dx
′dλ =

∫
LR

f2w1dx
′dλ−

(
∫
LR

fw1dx
′dλ)2

V (LR)

=

∫
LR

f2w1dx
′dλ−

(
∫
{f ̸=0}∩LR

fw1dx
′dλ)2

V (LR)

≥
∫
LR

f2w1dx
′dλ−

(∫
{f ̸=0}∩LR

f2w1dx
′dλ
)
V ({f ̸= 0} ∩ LR)

V (LR)

=

∫
LR

f2w1dx
′dλ−

(∫
LR

f2w1dx
′dλ
)
V ({f ̸= 0} ∩ LR)

V (LR)

≥ 1

2

∫
LR

f2w1dx
′dλ,

and (3.11) follows. In the sequel we will give the proof of (3.9).
Since ∫

LR

|f − f̄ |2w1dy
′dλ = min

ξ∈R

∫
LR

|f − ξ|2w1dy
′dλ,

it is enough to prove that for every f ∈ C1(LR) satisfying f = 0 on {|x′| ≤ R, φ = Rm}, the following
inequality holds ∫

LR

|f − ξ|2w1dx
′dλ ≤ CPR

2

∫
LR

(
|∇x′f |2 + w2(∂λf)

2
)
w1dx

′dλ, (3.12)

for a particular choice of the constant ξ that we will specify later.
Once again we rescale by

x′ = Ry′, g(y′, λ) = f(y′R, λ),

and (3.12) takes the following equivalent form∫
{|y′|<1, φ<Rm}

|g − ξ|2w1dy
′dλ ≤ CP

∫
{|y′|<1, φ<Rm}

(
|∇y′g|2 +R2w2(∂λg)

2
)
w1dy

′dλ
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for any g ∈ C1({|y′| < 1, φ < Rm}) such that g = 0 on {|y′| ≤ 1, φ = Rm}. This inequality will follow
after establishing∫

{|y′|<1, |λ|<1}
|g − ξ|2w1dy

′dλ ≤ CP

∫
{|y′|<1, |λ|<1}

(
|∇y′g|2 + φ

2
mw2(∂λg)

2
)
w1dy

′dλ (3.13)

for any g ∈ C1({|y′| < 1, |λ| < 1}).
To prove (3.13), once again we work in the upper half cylinder and choose

ξ =

∫
|y′|<1 g(y

′, 0)dy′

ωN−1
.

We will show that for every g ∈ C1({|y′| < 1, 0 < λ < 1}) there holds

∫
{|y′|<1, 0<λ<1}

|g − ξ|2w1dy
′dλ ≤ CP

∫
{|y′|<1, 0<λ<1}

(
|∇y′g|2 + φ

2
mw2(∂λg)

2
)
w1dy

′dλ, (3.14)

Using (3.8) and making the change of variables (3.6) we are lead to prove that for ξ =

∫
|y′|<1 h(y

′,1)dy′

ωN−1

and θ > 0 there holds,∫
{|y′|<1, 0<s<1}

|h− ξ|2sθdy′ds ≤ CP

∫
{|y′|<1, 0<s<1}

(
|∇y′h|2 + (∂sh)

2
)
sθdy′ds,

for any h ∈ C1({|y′| < 1, 0 < s < 1}). This inequality follows from (2.11) with R = 1.
2

4 The distance function weight and final remarks

In this section we first make specific choices of the weights w1, w2 and give the proof of Theorems 1.1 and
1.2. We next present some extensions of our results.

We make the following choices

w1(λ) = (1− |λ|)α and w2(λ) = (1− |λ|)ν .

Proof of Theorem 1.1: It is a consequence of Theorem 1.3. For part (a) we note that α > −1 is equivalent
to w1 ∈ L1(0, 1) and ν < 1 − α is equivalent to (w1w2)

−1 ∈ L1(0, 1). Since α > −1 and ν < 1 − α it

follows that ν < 2, which is equivalent to w
− 1

2
2 ∈ L1(0, 1). Similarly, for part (b) when 1−α ≤ ν < 2 then

(w1w2)
−1 /∈ L1(0, 1), and (1.3) is satisfied by choosing θ =

α+ ν
2

1− ν
2
≥ 1.

2

We next have

Proof of Theorem 1.2: It is a consequence of Theorem 1.4. As we have seen, α > −1 is equivalent to
w1 ∈ L1(0, 1). We next note that (w2)

− 1
2 ̸∈ L1(0, 1) corresponds to ν ≥ 2. Then,

φ(λ) = 1 +

∫ |λ|

0
(w1w2)

−1(t)dt = 1 +

∫ |λ|

0
(1− |t|)−α−νdt ∼ (1− |λ|)−(α+ν−1),

for |λ| ∼ 1. When α+ν−1
m − ν

2 + 1 > 0 ⇔ m(ν − 2) < 2(α+ ν − 1), then

φ− 1
m (λ)w

− 1
2

2 (λ) ∼ (1− |λ|)
α+ν−1

m
− ν

2 ∈ L1(0, 1).
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Moreover in this case ∫ 1

|λ|
φ− 1

m (t)w
− 1

2
2 (t)dt ∼ (1− |λ|)

α+ν−1
m

− ν
2
+1 .

It follows that (1.5) holds if we choose θ such that

θ

(
α+ ν − 1

m
− ν

2
+ 1

)
= α+

ν

2
− α+ ν − 1

m
. (4.1)

If m is such that
α+ ν − 1

2
>

α+ ν − 1

m
>

ν

2
− 1,

then, since α > −1 and ν ≥ 2 we have that α+ν−1
α+ ν

2
< 2 and it follows from (4.1) the positivity of θ. Hence,

all hypothesis of Theorem 1.4 are satisfied and the result follows.
2

Remark (i) Our Liouville type results in the supercritical case, that is α > −1 and ν > 2 of Theorem
1.2, can be transformed to Liouville type results for the isotropic equation of the form

div((1 + |s|)τ∇v(x′, s)) = 0, in RN for τ =
2α+ ν

2− ν
; (4.2)

here τ can be any number in the interval (−∞,−1). This can be done via the change of variables

s =

∫ λ

0
(1− |t|)−

ν
2 dt, v(x′, s) = u(x, λ).

It follows that every bounded weak solution of (4.2) is constant.
(ii) In the critical case, that is ν = 2, using the same change of variables, one can obtain Liouville type
results for the isotropic equation of the form

div(eτ |s|∇v(x′, s)) = 0 in RN , τ = −(1 + α),

here τ can be any number in the interval (−∞, 0).
We note that the above results do not follow by the ones by Bella and Schäffner [BS] but they do

follow from Theorem 2.1 in [M1].
(iii) Similarly, in the subcritical case, that is 1 − α ≤ ν < 2, one obtains Liouville type results as in
Theorem 1.1(b), for the equation

div((1− |s|)τ∇v(x′, s)) = 0, in RN−1 × (−1, 1), τ =
2α+ ν

2− ν
;

here τ can be any number in the interval [1,∞).

In an other direction, we note that the same results with Theorems 1.1 and 1.2 hold for more general
operators that can be thought of as perturbations of the operators we considered so far. More precisely,
let

L′
α,ν u := div(Bα,ν(x

′, λ)∇u)

=
N−1∑
i,j=1

∂

∂xi

(
Ai,j(1− |λ|)α ∂u

∂xj

)
+

∂

∂λ

(
AN,N (1− |λ|)α+ν ∂u

∂λ

)
(4.3)

+
N−1∑
j=1

∂

∂λ

(
AN,j(1− |λ|)α+

ν
2
∂u

∂xj

)
+

N−1∑
i=1

∂

∂xi

(
Ai,N (1− |λ|)α+

ν
2
∂u

∂λ

)
,
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in
S = RN−1 × (−1, 1) , N ≥ 2,

where the N ×N matrix A = (Ai,j) has bounded and measurable entries Ai,j = Ai,j(x
′, λ) for (x′, λ) ∈ S,

and it is symmetric and uniformly elliptic, that is, for some constants 0 < c0 ≤ C0 the following inequalities
hold true for any ξ = (ξ′, ξN ) ∈ RN−1 × R and (x′, λ) ∈ S:

c0|ξ|2 ≤
N∑

i,j=1

Ai,j(x
′, λ)ξiξj ≤ C0|ξ|2.

Equivalently, we have

c0(1− |λ|)α(|ξ′|2 + (1− |λ|)ν |ξN |2) ≤
N∑

i,j=1

(Bα,ν)i,j(x
′, λ)ξiξj ≤ C0(1− |λ|)α(|ξ′|2 + (1− |λ|)ν |ξN |2).

Clearly, the model operator Lα,ν , defined in (1.2), follows from L′
α,ν in the special case where Ai,j = δi,j ,

that is, when A is the identity matrix. By quite similar arguments one can prove

Theorem 4.1 Let α > −1.

(a) If in addition 1− α ≤ ν < 2, then any nonnegative weak solution of L′
α,νu = 0 in S is constant.

(b) If in addition ν ≥ 2 and

Ai,N do not depend on xi, i=1,2,. . . , N-1,

AN,N does not depend on λ,

every bounded weak solutions of L′
α,νu = 0 in S is constant.

We can also consider the more general operator

L′ u := div(B(x′, λ)∇u)

=

N−1∑
i,j=1

∂

∂xi

(
Ai,jw1

∂u

∂xj

)
+

∂

∂λ

(
AN,Nw1w2

∂u

∂λ

)
(4.4)

+
N−1∑
j=1

∂

∂λ

(
AN,jw1

√
w2

∂u

∂xj

)
+

N−1∑
i=1

∂

∂xi

(
Ai,Nw1

√
w2

∂u

∂λ

)
,

in
S = RN−1 × (−1, 1) , N ≥ 2

where the N ×N matrix A = (Ai,j) has bounded and measurable entries Ai,j = Ai,j(x
′, λ) for (x′, λ) ∈ S,

and it is symmetric and uniformly elliptic, that is, for some constants 0 < c0 ≤ C0 the following inequalities
hold true for any ξ = (ξ′, ξN ) ∈ RN−1 × R and for any (x′, λ) ∈ S:

c0|ξ|2 ≤
N∑

i,j=1

Ai,j(x
′, λ)ξiξj ≤ C0|ξ|2.

Equivalently

c0w1(|ξ′|2 + w2|ξN |2) ≤
N∑

i,j=1

Bi,j(x
′, λ)ξiξj ≤ C0w1(|ξ′|2 + w2|ξN |2).

We recall that wi = wi(|λ|), i = 1, 2. The model operator L in (1.1) follows from L′ in the special case
where A is the N ×N identity matrix. By quite similar arguments we have
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Theorem 4.2 Let w1 ∈ L1(0, 1).

(a) If (w2)
− 1

2 ∈ L1(0, 1), (w1w2)
−1 ̸∈ L1(0, 1) and there exists θ ≥ 1 and constants c1, c2 > 0 such that

for any λ ∈ (−1, 1) there holds

c1

(∫ 1

|λ|
w

− 1
2

2 (t)dt

)θ

≤ w1(|λ|)w
1
2
2 (|λ|) ≤ c2

(∫ 1

|λ|
w

− 1
2

2 (t)dt

)θ

,

then any nonnegative weak solution of L′u = 0 in S, is constant.

(b) Let (w2)
− 1

2 /∈ L1(0, 1). We define

φ(λ) = 1 +

∫ |λ|

0
(w1w2)

−1(t)dt.

We assume that there exists m > 2 such that φ− 1
mw

− 1
2

2 ∈ L1(0, 1) and θ > 0 such that for some constants
c1, c2 > 0 and any λ ∈ (−1, 1) there holds

c1

(∫ 1

|λ|
φ− 1

m (t)w
− 1

2
2 (t)dt

)θ

≤ w1(|λ|)w
1
2
2 (|λ|)φ

1
m (|λ|) ≤ c2

(∫ 1

|λ|
φ− 1

m (t)w
− 1

2
2 (t)dt

)θ

.

In addition,

Ai,N do not depend on xi, i=1,2,. . . , N-1,

AN,N does not depend on λ.

Then any bounded weak solution of L′u = 0 in S is constant.
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