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This paper is concerned with the blowup of positive solutions of the semilinear heat equation
W
w=Au i, onQlcR", l<p<——r0,
n—

with zero boundary conditions. The domain Q is supposed to be smooth, convex and
bounded. We first show that, under the assumption that the initial data are uniformly
monotone near the boundary, solutions that exist on the time interval (0, T) form a compact
family in a suitable topology. We then derive some localisation properties of these solutions.
In particular, we discuss a general criterion, independent of the initial data, which in some
cases ensures single-point blowup.

1. Introduction and main results
This work is concerned with positive, blowing-up solutions of

u,=Au+u", on Q<R
(1.1)
u(x,t)=0, onxedQ,
with u(x,0)=¢(x)=0 and 1 <p<(nfin—2)). The domain Q is supposed to be
bounded, convex and smooth.

For ¢ & H{(Q)~ L=(Q), it is well known (cf. [8, 24]) that there exists a unique
classical solution of (1.1) in (0, T) such that cither T= + ¢, or else T< + o0 and
| a(x, £) )l g~ — 4 oo as t - T. In the second case, we say that u(x, t) blows up in finite
time T. We say that b is a blowup point of the solution u, if there exist sequences
{x,}, and {¢,} such that x,—b, t,— T and |u(x,, 1,)] = + 0.

For a large class of initial values the solution blows up. For instance, if the energy
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E[¢] of the initial value g is negative, that is

1 1
E[p] =3 le(P!z*;jr—l jlﬂ”“ <0,

then the solution of (1.1) ceases 10 exist in finite time, see €.8. [17].

A lot of work has recently been done concerning the number of blowup poinis,
their possible location, the local properties of blowup solutions, etc. We refer 1o
[11,14] for detailed discussion and bibliography.

Let us for the moment restrict our attention to the one-dimensional case. in [25]
Weissler proves that for symmetric initial data with one maximum, (1.1) blows up
at a single point. Various authors have since proved the existence of solutions
blowing up at one or two points, depending on the shape of the initial data, sec ¢.2.
[6,11]. Chen and Matano [3] proved that, in fact, the number of blowup points is
always finite and not greater than the number of 'E)Lcal maxima of the initial data. Tt
turned out that this result is optimal in the following sense. In [18] Merle has shown
that given any k points situated in the interior of an interval I, there exist initial
values for which the solution of (1.1) in I blows up at exactly these points. The study
of the local behaviour of the solution near the blowup points is presented in [23].

An interesting question that has not been addressed so far, and which we intend
to discuss in the present work, is the following: is there any relation between the
aumber of oscillations in space and the blowup time? For instance, an examination
of the proof in [18] suggests that if Ty is the blowup time of a solution blowing up
at k points, then T, —0 as k tends 10 infinity. Is this a general fact?

In the general n-dimensional case, it is known that the blowup points of (1.1) are
contained in a compact subset of Q, see [6]. In other words, the blowup set stays
away from the boundary. Positive, radially symmetric initial data with one maximum
yield single-point blowup {cf. [19]). The method of [18] shows that, in the unit ball,
given any k numbers 0 < ay < 7 << 1, there exists @ radially symmetric blowup
solution for which the blowup set is exactly equal to R {xl=ad Moreover, the
same method shows that given any 5> 0 and any k point x;, there are solutions of
which the blowup set is contained in the union of the balls B,(x;) centred at the X8
with radius 8. In an earlier work, Giga and Kohn [11] have shown, in the case
where {2 = R", the existence of solutions blowing up at exactly an (n — 1)-dimensional
sphere. More recently, Velazquez [22] showed that the blowup set of (LD withQ=
R" has Hausdorfi dimension at most n—1. In view of the previous result, this
estimate is sharp.

The existing examples where the blowup set is exactly known (single points, or
union of lower-dimensional spheres) are based on the study of the evolution of very
special (radially symmetric) initial data. In general, much more complicated structures
are expected to exist (cf. [217) but these are not easily to be constructed. As a matier
of fact, single-point blowup is the generic behaviour (cf. [157) in the sense that it is
stable with respect to small perturbations of the initial data, as opposed to other
blowup patterns which can be destroyed by small perturbations.

In the present work, we discuss a general criterion, independent of the initial data,
which in some cases enables us to locate the blowup set.
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Our first step towards the study of the localisation properties of the positive
blowing-up solutions of {1.1) is the proof of a compactness property of solutions of
(1.1) under the hypotheses that the initial data are uniformly monotone near the
boundary. To state this last hypothesis in a more rigorous way, we need to introduce
first some notation.

Let Q, dentote the fubular neighbourhood of 72 of thickness ¢. Q, is homeomorphic
to @€ % {0, £) and is contained in €. (The fact that for Q smooth and & sufficiently
small, such a neighbourhood exists is standard; see, e.g. [ 4, Proposition 0.2].) Now,
if u is a differentiable function on €, we can extend the normal derivative of u to the
whole tubular neighbourhood by

a
a—; (x + 1) = 0+ Vaulx + mp(x)),

where x € 3Q, 0 <t <¢, and #(x) is the outward normal at the point x. We then say
that, for a non-negative function g € C*{Q),

2
peMQ) if ai’:(x—i-m(x))<0forallxe09, te[0,e).

Remark 1.1. Consider the one-dimensional case, with, say, @ =(—1,1). Then p e M,
simply means that ¢, >0for xe[—1, —1, +¢) and ¢, <0 for xe (1 —&,1].

Remark 1.2. The existence of functions ¢ € M, is rather trivial. For instance, take
any ¢ € L™ and solve (1.1) in (0, ty) for any t,> 0. It is an easy consequence of the
Hopf Maximum Principle that #(x, to) € M, for some ¢; see, e.g. [6] or [20].

We denote by u(x, t; ¢) the solution of (1.1) with initial value ¢. We then have the
following theorem:

THEOREM 1.3. Suppose that n=1,2 or, if n==3 then p < (nf(n —2)). Let ¢, be a family
of functions from M,(Q). Assume that u,=u(x,t; ¢,) solves (1.1) and that either it
exists for all time or else it blows up at time T, 2 T > 0. We then have:

(1) (boundedness) there holds

jteg(x, )| gz +Ba 82 3 < Cs inQrs= Qx[8,T—45],

for any 8€(0, T/2) and some B (0, 1), with the constant C; independent of o and
depending only on 8, T, n, p, Q and (possibly) on &

(i) (compactness) from the family {u,} we can select a sequence {u,} such that, as
n— + o,

Uy (%, )=t (%, 8) i C2HQr,),
where u,, satisfies (1.1) in Qr 5.

REMARK 1.4. Althcugh the hypothesis that g, € M,() is used in the proof, the exact
dependence of C; on ¢ is not clear. As a matter of fact, we suspect that this hypothesis
is probably not needed, but we have not been able to remove it so far. (See also
Section 4.)

Consider now the one-dimensional case, with Q = I =(—1, 1). Tt is easy to see that
we can find solutions which blow up at arbitrarily small or large times. For instance,
if u(x, 1} is a solution which blows up at time T, then, by taking as initial value
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@(x) = u(x, T — &), the resulting solution blows up at time ¢. Also, by taking as initial
value ¢ a function which is very close to the solution of the corresponding stationary
problem of (1.1), we obtain solutions with arbitrarily large blowup times.
However, il we look at one-dimensional solutions of (1.1) which have a given
number of maxima for all times prior to blowup, then the blowup time can no longer
be arbitrarily big. To make this mare precise, let us first introduce some notation.

NoOTATION 1.5, T, = {sup T®: T%® is the blowup time of u, = u(x, 1; ), @, c M (),
where u, is a solution of (1.1) with at least k local maxima for all t < T®}.

We then have the following theorem:

THEOREM 1.6. (i) Suppose n=1 and Q=1=(—1, 1). There holds:
(@ +o=T>LzTGhz - zLzT, z ;
(b) T, -0, as k— + 0. -

(i) Suppose n=1,2, or if n2 3, then p<(nfin — 2)). Let u(x, t; ¢) be a solution of
(1.1) with ¢ € M (), and assume that Q is a ball or an ellipsoid centred at the origin.
Then, there exists a constant T depending only on Q, n, p, and (possibly) on ¢, such
that, if u blows up at time T='T, then u blows up at a single point b. Moreover, b
tends to zero as T goes to infinity.

RemMARk 1.7. Part (i} of the above theorem is true not only for I =(—1, 1) but for
any bounded interval I — R, as one can easily sce by using scaling. In general, the
constants T, depend on I, p and (possibly) on & The dependence on ¢ is ‘inherited’
from Theorem 1.3, since the proof of Theorem 1.6 uses the results of Theorem 1.3.

Thus, in the one-dimensional case, the blowup time of solutions with k-oscillations
in space is bounded above by a constant T, which is finite if k# 1. Moreover,
solutions that blow up with many space oscillations should necessarily have ‘small’
blowup time. In contrast, if we know that a solution has a ‘big’ blowup time T
(T = T,), then it cannot arrive at blowup with more than one oscillation and therefore
blows up at a single point.

This last property is generalised in part (ii) of Theorem 1.6 in higher dimensions.
Thus, if € is a ball centred at the origin, solutions of (1.1) with ‘big’ blowup time
blow up at a single point near the origin. In fact, it will follow from the proof that
such a solution cannot have critical points outside a small neighbourhoed of the
origin, and that this neighbourhood shrinks to a point (the origin) as the blowup
time goes to infinity.

A few words about notation. Al integrals are meant to be taken over 1 unless
otherwise specified. We denote by C, a generic positive constant, not necessarily the
same in each occurrence, which depends on § and possibly on other parameters as
well, but is always independent of the initial values ¢.

Theorem 1.3 is proved in Section 2, whereas Theorem 1.6 is proved in Section 3.
In Section 4 we discuss some conjectures based on the present work.

2. A compactness property of positive blowing-up solutions

In this section, we will give the proof of Theorem 1.3. We may divide the proof in
the following four steps:
(i) We first obtain a uniform L! bound for the solutions of (1.1) that exist in (0, T).
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(i) Next, we obtain upper and lower bounds for the energy E[u,](1).

(iii) Using the results of the first two steps, we bound various integral norms of
the solution. All the bounds we have obtained so far are valid for times prior to
blowup time.

(iv) In the final step, we use standard parabolic theory to obtain L™ and higher-
norm bounds.

Before starting the main proof, we recall some ideas and results from [7] that we
will use in the derivation of the uniform L' bound. Given a bounded smooth domain
Qand a direction y € R", consider the hyperplanes T; given by x+y= /. For large
positive Z, T, is disjoint from €, and as 4 decreases, eventually a value 4, = A,(y, ()
is reached such that T, ndQ +# . For 4 < 4, and near 4,, the hyperplane cuts off a
piece of  which is denoted by Z(4,%). Define £'(4, ) to be the reflection of Z(4, 7).
As 4 is further decreased, we eventually reach a value 2, = 4,(y, £2) such that either
T'(4, y) is internally tangent to 8Q or else T intersects 6Q somewhere orthogonally.
For 2 € [4,, Ao}, we call Z(4, y) a cap corresponding to the direction . FOT any x € R,
we denote by x* the reflection of x across T,.

PrOPOSITION 2.1. Let Q be bounded, smooth, and u be a non-negative classical solution
of (1.1) on [0, T] with u(,(x)e CYS). Fix a direction y and define the caps L(4,7y)} as
above, for Ae[Ay, Ag). Let e {4y, 2s) and

Holx) < up{x*) and Vuy-y <0, forall xeZ(Ly)
then for all x e Z(4,7), and 0 =t = T, we have
u(x, t)y <u(x* t) and Voulx1)-y<0.

The above formulation is taken from [20, Proposition 6]. The proof of this
proposition is based on the maximum principle and is given in [7].
We now derive the uniform L' bound.

ProprosITION 2.2, Under the assumptions of Theorem 1.3, we have that, given any
de(0, T/2),

ju,[x,t}dx<(j,,, 1e[0, T=4], (2.1)

T=a
I [0, D)l dt < Cys, (2.2)
0

where Cz denotes a positive constant independent of o.
Proof. Let g, be the first eigenfunction of the Laplacian in €, that is
Ap, = —4A,¢,, onQ,
o, =0, on ¢Q.
We know that 4, >0, g, > 0. Multiplying the u equation by ¢,, we get

d
m JW’L A J“?l + Ju"ﬁ"r (2.3)
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Using the inequality

fene (o) (o (o)

¥ = J ugp, dx. (2.4)

and setting

we have that
V= —ay+eey

Using Lemma 2.3 (see below), we get that
)= ’(.u,(x, Dgyfxydx < C;, te[0,T—46], (2.5)
with C, independent of «. Integrating (2.3) in time and using (2.5), we get

=8
f j W(x, 1)p, dx dt < Cs. (2.6)
1]

To complete the proof, we need to remove ¢, from (2.5) and (2.6)."At this point
the assumption ¢, € M, (€} will be used. Our argument makes use of Proposition 2.1
and is essentially the same as the one presented in [20, p. 113] to which we refer for
more details.

Using the fact that ¢, € M,(), Proposition 2.1 and arguing as in [20] we conclude
that u.(x, t) & M, (), uniformly in o for all r =0 and some &"€ (0, &). (For instance,
in the one-dimensional case we can take & = £/2.)

Arguing once more as in [20], we then get that

j tlx, )dxZ(m+1) { u(x, 1) dx,
¥} {43

where m is a positive integer, and €, is a domain strictly contained in Q. Both m
and Q, are independent of ». Using (2.5). it then follows that

mil m+ 1
u(x, ) dx 2 —— | w(x g (x)dx = —— G,
Q 4o  Ja ag

where a,=inf, . q, ¢ (x)>0. Hence, (2.1) has been proved. The proof of (2.2) is
similar, O

We still have to justify (2.5). We do so in the following elementary lemma.
LemMa 2.3, Let y(t) be a positive C* function satisfving
V= =4y +oph

where i, and ¢, are positive constants. Assume that y(t) either exists for all time or it
blows up after T. We then have

.

A\ n ) T .
U (1— ¢ Thr=l)-e=1n, (2.7)

0
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Moreover, it follows from (2.7) that
W EC,y, for021=T—6.

The constant C; is the same as the constant appearing in the right-hand side of (2.7}
with & replacing T. (In particular, C; is independent of T.)

Proof. Let x =e™'y. Then x salisfies the differential inequality

di 1

We sel x(0) = x,,. Integrating the above inequality from 0 to 1, we get

x» ';( -2 e-w-'"})_'.

x§ A

Hengce, if x(t) blows up, it should blow up before the time T, given by
1 <o

-1 =T
x§ A

“ e—).jip—l}'i',.." ) {28}

We now distinguish two cases. If y(0)=x, is such that x§ '<A,/e,, then (2.7)
follows immediately. If x2 ! > 4, /¢, we can solve (2.8) for T, to get

1 Ay
T .= —] 1-— .
m T (p—1) ( rnxg'l)

By hypothesis, we have that T< T,,,; therefore, after some easy calculations, we
obtain

ﬂ(] ‘,—T'iltp—lj}—l‘
Co

YO =xp s

and (2.7) follows. 0O

We now proceed to obtain the upper and lower bounds for the energy E[u ](1).
Qur first step towards the upper bound is the following lemma:
Lemma 2.4, Suppose that n=1,2 or if 23, then p <(nf(n — 2)). Assume that u,=
ulx, t; p,) with ¢, € M.(Q); either it exists for all time or else it blows up at time
T, = T=0. Then for any & €(0, T/2) there exists a time t, € (3/2, 6} such that

j|Vu,,(x,I,)|2dx<Cé (2.9)

Proof. Whenever there is no danger of confusion, we drop the subscript « for
convenicnce. We have that for ¢ = 6/2

u(l._]:e{:—éfz)."\u((sfz)+ J P xmup[s) ds. (2]0)

a2

We will use the estimate

nfl 1
el < Ct ") fllpm, 9=5(— - —) =0,
m
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withm=1 and 1 <r<(n/n - 2) so that § < 1. From (2.10}, we get

(e} ey = Cle— 8/2)7° | u(d/2) | +Cj (t=5) [ 1(s) | ds.

&f2

Integrating the above Irom t=d/2 to t = T— 4, we get

T4 T4
J flu(t)];-dt £C j' (t—3/2) *dt|{u(5/2) ||,

302 3(2

1=T-4 st
+C [ j (£ —=35)" 1w (s)]| 2 ds dt. (2.11)

Ji=a2 =42

Using Proposition 2.2, the first term of the right-hand side is easily seen to be
bounded above by some constant (. To estimate the second term, we write

t1=T-4 e=1t
f J (1 —5)"*u(s) |2 ds de
r=a/2 5=48j2
s T—-4 m=T-a
gf j It — 517 lu(s) | dt ds
5=38/1 1=3a/2

=T d fe=T-4
= f | 6(3) | (J lt—s|7° dr) ds<C,,
s=4i2 t=d(2

where we used (2.2) of Proposition 2.2
Thus, so far, we have shown that for any r < (n/f{n — 2)) we have

T-5
J lu(t) ], dt = C,.
é

2
el 2
=€\2'3

n
(W e = Ca r<—. (2.12)
n-—2

It follows that there exists a time

such that

To conclude the proof, we now use standard local-in-time existence theory for the
semilinear heat equation, following e.g. [8]. We first note that, since p < (n/(n — 2)),
we also have that p > 3(p — 1)n. We next pick an r such that

" {(p— n
Sr>p> :
27"k z

{2.13)

this is of course always possible. It follows from (2.12), (2.13) and [8,
Theorem 1(i}, (i1)] that the equation (1.1) with wu,(x, t*) as initial data has a solution
in (tF,t¥ +tp), with ¢, independent of x. Moreover, this solution is unique ([ 8,
Theorem 1(iv)] and classical (cf. [8, the Remark after Theorem 37). Since it is unique,
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it should coincide with the solution at hand w,(x, t). Thus, we can bound any norm
of u, in the time interval (t¥, t¥ + 1,) with bounds independent of «. (The bounds
depend on Q, n, p, and the constant C, appearing in {2.12)) In particular, by
bounding the H' norm, we obtain that for some t, € (6/2, 8) (¥, t* + t,)

JIVu.,{x, )P dx < Cy,

and this completes the prool. L]

Using Lemma 2.4, we now derive the upper bound for the energy £, We recall

that the energy is defined by

E[n]{f):éj’WuP—ﬁ (‘u"”, (2.14)

‘We have the following lemma:
LemMA 2.5. Under the assumptions of Lemma 2.4, we huve that
E[u,](1)<Cs, for tc[6, T,]. (2.15)

Proof. It is known that E[u](t) is a monotically decreasing function of ¢. To see
that, we just multiply the u equation by u, and integrate by parts to get

d :
o E[u](t)= — juf dt < (.

From Lemma 2.4 and the definition of E, it follows that for any « we have
Elu, (1)< Cs, for some 1, €(d/2, 8),
and (2.15) follows from the monotonic character of E. [
We next derive a lower bound for the energy.
LeEMMA 2.6. Under the assumptions of Lemma 2.4, we have that
E[w)()> —C, forte[0. T,—4&]. (2.16)

Proof. We will work as in [11, Lemma 5.5]. We know that E 1s monotonically
decreasing in t. Therefore, if E[u_](z,) = 0 for some r; € [0, T— d], then {2.16) follows
atonce for0 =1 =1,.

Assume now that E[u,]{t,) <0 for some ¢, < T — é. Multiplying the u-equation
by 1 and integrating by parts, we get

1dy

2dr +1

v(t) = Jui dx.

—2E[w, () + :;;l fug*l dx, (217)

with
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Using the monotonicity of E and Holder’s inequality, we get
d}’ + 12
d Z —4E[u, (1) +ey'P Tz (2.18)

Since we have assumed E[u,](1;) <0, this inequality forces finite-time blowup, and
the blowup time T* is estimated above by

- ” dy ,
B £1§£ 4]_5;(;1]|+(_.},{,,Hm=C|E(IIJ| g

with y=(p—1)/{p+1) and C = C(n, p) depending only on n and p.
Since T, £ T*, we also have that

E e (=)< (£ m-i(E i
e =1Eas (m—) (7o) =(5) -

Thus, (2.16) has been proved in all cases. [

Using the results we have obtained so far, we can now bound various integral
norms of the solution.

PROPOSITION 2.7. Suppose that n=1,2 or if n 2 3, then p <{(n/(n— 2)). Assume that
u,(x,t) either exists for all time or else it blows up at time T, z T. We then have:

Ty~ d
J Juf,dx dt < Cy, (2.19)
a8

J‘ui dx<C; forallte[d T—4d], (2.20)

T3 2
j (J.ttf,’“dx) dt < C;, (2.21)
&
T4 2
.[ (I|Vum|2(1.x) di < Cj. (2.22)
&

Proof. We will argue as in [10, Proposition 2.27 {see also [ 11, Proposition 3.1]).
Whenever there is no danger of confusion we drop the subscript « for convenience.
We first recall the identity

d
— E[u J(t)= — _[uf;dx, (2.23)
dt
Integrating (2.23) in time, we get
T~ &
J Juir dx dt = E[1,1(8) — E[u, ](T;, — ),
&

and (2.19) follows since, by Lemmas 2.5 and 2.6, E[u,] is uniformly bounded from
above and from below.
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In order to prove (2.20) we sel (so that we match the notation of [107)

g(t)y= ( j-uz dx)!.

We now look for an L™ estimate for g(z). Working as in the derivation of (2.18), we
obtain

2E[u](8)+gé = cgmt!,
whence
cither g(r} <1 or cg” < g+ 2E[u](5).

In particular,
=6 T-4
-[ gr(s)ds<T—20 +c'3j (21217 + 8E*[1](8)) ds. (2.24)
& i

Also, from the definition of g(t), we have that

+
i<g 1Juu,dx§(fufdx) ]
T-5 T-a
I g% ds < j jtafrfx:lfgcé,
s g

Thus, the right-hand side of (2.24) is bounded by some constant C; independent of
«. To conclude the proof of (2.20), we finally use the Sobolev inequality

Using (2.19), we get

lglly==CllIgle+ gl gl a=—-—,
p+1
valid for functions g(t} in (5, T— 8).

The proofl of the remaining two bounds is simpler. In order to prove (2.21), we
Jjust integrate (2.23) in time and use standard inequalities. Finally, (2.22) follows
from the definition of the energy (2.14) and the previous bounds. We omit further
details. [J

We are now ready o give the proof of Theorem 1.3.
Proof of Theorem 1.3, We need to show that
[ x, )llcz+masnng, , < Cs. (2.25)
We will use standard parabolic regularity. Using (2.21) and Schwarz’s inequality, we
get
r—d
J ju’;' Vdx dt < C4 {2.26)
&

for some constant C; independent of & Now, u, solves the equation
Uy — Aty =uf, in Qr;=Qx[6T-6],
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with Dirichlet boundary conditions, and we have from (2.25) that uf, is bounded in
L#* Um0 ), the bound being independent of . Using L¢ regularity theory [16,
Chap. 4, p. 335] we conclude that u,,, Vu,, V?u, are in L#* "7(Q; ;). Therefore, by
Sobolev inequality [16, Chap. 2, Lemma 3.3, p. 80] we deduce that ] is bounded in
L(Qy s} for some r > (p+ 1)/n. By bootstrapping, we eventually get that , is Holder
continuous, so that Shauders’ estimates apply [5, Chap. 3, Theorem 5, p. 64]. We
finally conclude that u,, u,, Vu,, ¥*u, are Holder-continuous with, say, exponent
in @7 5, uniformly with respect to ¢ Thus, (2.25) has been proved. Part (ii) follows
easily from the uniform bound {(2.25) and the Arzela-Ascoli Theorem. [

3. Dependence of the blowup set by the blowup time

In this section, we will give the proof of Theorem 1.6. As before, we assume through-
out the section that the initial data are in M,(Q) for some ¢.
We begin by studying the one-dimensional problem in the interval I =(—1, 1)

u,=u, +uw, xel, u+l,)=0. (3.1)

We would like to show that the number of oscillations in space is bounded above
by a function of time only, independent of the initial values. To make this more
precise, we first introduce some notation.

NotaTion 3.1. We denote by n(z, ) the number of critical points of u,(x, t} (or,
equivalently, the number of zeros of u,,(x, t)) at time .

We then have the following proposition:

PROPOSITION 3.2. There exists a finite, positive, nonincreasing, integer-valued function
N(t) such that

nla, ) S N(t), forte(0,T). (3.2)

REMARK 3.3. We note that this is not true for an unbounded domain. Indeed, let
I =R and suppose that u(x, t} is a solution of (3.1) with, say, k maxima at time t,.
By rescaling, we have that u; = 2%®~Yy(ix, 2%1) is also a solution of (3.1) with k
maxima at time f,; = t,/4%, and t,; can he made arbitrarily large by taking 4
suitably small.

Proof of Proposition 3.2. It is a consequence of our compactness Theorem 1.3 and
the results of Angenent [ 1] about the zeroset of parabolic equatiens. The fact that
N(t} is positive and integer-valued is obvious.

We now prove (3.2). We will prove it by contradiction. Suppose that (3.2) is not
true. Then, for some time f,, and for every m=1,2,... there exists a solution of
(1.1) u,,(x, t), having at least m critical points at t =t,. Let v,, = u,,.. Then s, satisfies
the equation

Uy = Mypyx + pl‘r‘:;lvm » in[—1L1]1x{8.T) (3.3)

with pu2~ ' = L (0, T L*(—1, 1)). From the Maximum Principle, we also have that
t(—1,1)> 0 and v,,(1,2)<0 for all re(0, T}. We conclude from [ 1, Theorem D]
that v,(x, t} has at least m zeros for any £ (0, t,).

Using our Theorem 1.3, we can extract a subsequence, still denoted by {u,,}, such
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that
Up X, 1) > Ug(x, 1), asmToo, in C3(—=1,1) % (0, T). (3.4)

1t follows from (3.4) and the properties of u,, that v (X, 1) = la,(x, 1) has either
infinitely many zeros, or else (at least) a multiple zero for any t €(0, tg).

From (3.3) and (3.4), it follows that ., solves the equation (3.3) with u,, replacing
u,,. Using again [1, Theorem D] we get that u,, cannot have infinitely many zeros
for any . It is also an easy consequence of [1, Theorem D], that v, (x, ) cannot
have a multiple zero for infinitely many times (cf. e.g. [3, Lemma 2.4(i1)]). Thus, we
have reached a contradiction, and this completes the proof. Finally, by the results
of [17, N(t) is finite and nonincreasing. [

Let us recall the definition of T, from the Introduction,

DeFintTIoN 3.4. T, = {sup {T®: T® is the blowup time of u(x, t; ¢,), where u(x, r; ¢,)
is a solution of (1.1) with at least k local maxima for all 1 < Ty

We then have the next lemma:

Lemma 3.5. There holds:

(i) iz Tosr, for k=1,2,...;

(1) Ty = + 20;

(iii) T, =0, as k— 4+ o0.
Proof. (i) This is an immediate consequence of Definition 3.4 and the fact that the
number of maxima does not increase with time (see [1]).

(ii) We need to show that there are solutions of (1.1) with one maximum which
blow up at arbitrarily large times. Let ¢o(x) be the (unique) positive solution of

u,+u"=0 xel,
w(-1)=u(l)=0.

Using ¢, as the initial data of (1.1), the solution u(x, £; ¢o) = @o(x) exists for all times.
Moreoaver, it is well known that @, is radially symmetric with a single maximum (cl.
e.g. [7]). Consider now the family of initial data @, = (1 + €)po. An easy calculation

shows that
I IET IR ol g g
EL%]—( 3 e )Jwg <0.

Thus, u(x, £; ¢.) blows up at finite time, say T; < + <. Since the blowup time depends
continuously on the initial data (see [18, Proposition 2.17), we conclude that T;
tends to infinity as e —+0.

(ii) This is a consequence of Proposition 3.2. We will prove it by contradiction.
Suppose this is not true. Then for any k=1, 2.. .. there exists a solution u(x, ; @.)
having at least k maxima, and a T, such that T® = T,; here T* is the blowup time
of u,. It follows from Proposition 3.2 that for t < T; and forall k=1,2,... we have

k = nla, 1) < nla, Ty) = N(Tp),

which is a contradiction since N(Ty) is a fixed number. [
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We now consider the general n-dimensional case. It is well known that solutions
of (1.1} which exist for all time, as time tends to infinity, approach zero, or infinity,

or a positive solution of the stationary problem
Au+uP=0, onfQ,
(3.5)
u=_0, on ¢Q.

Let us assume for simplicity that (3.5) admits a unique positive solution. This is
true, for instance, in the case where Q is a ball or an ellipsoid. In particular, it is
true in the one-dimensional case. We then have the next proposition:

PROPOSITION 3.6. Let u,(x, t) be a sequence of pesitive solutions of (1.1}, such that
@, € M Q) and u, blows up at T, < +oc. We assume that T,— + 0 as n— + oo,
Consider a sequence of times t,, such that t,— +cc and T,— 1, +o0asn— + 0. We
then have that

ux, 1) = w(x), in CHQ), asn— +o0; (3.6)
here w(x) is the unique positive selution of (3.5).

Proof. The proof will be given in various steps which we label for convenience.
(a) From Proposition 2.7, we have that

T,—4 .
j ” Mm(',f)“%z dt< Cés (37)
o}

with C; independent of T,.
(b) There exists 7, € [t,/4, t,/3] such that as n— + o0

T, +1
j [ e, ) |72 dt = 0. (3.8)

n

Indeed, if (3.8) were not true, then for all 7, € [¢,/4,1,/3] there would exist a ¢, >0
such that

T+ 1
I [ et(-, D) 12 dt Z €6 > 0.
But then

(i3 "
Z nCo
j Nt (o, )| f2dt 2 —= — +00, asn—+oc,
1,44 12

which is a contradiction. Thus, {3.8) has been proved. We may assume that
Toi1 =T, 2 ... by passing to a subsequence if necessary.
(c) We set

u(X, 1) = (X, £ 4 T).
We then have from (3.8} that

n— +oo

1
lim j o, 112 dE = 0. (3.9}
0

(d) By our compactness Theorem 1.3, we have that there exists a subsequence
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such that
(X, 1) 2 0(%, 1), I C2HQ x (0, 1)) (3.10)
(e) It follows that v, is a solution of
0y = Avy, + 05, ID Q= (0, 1),
with Dirichlet boundary conditions. Moreover, from (3.9) we also have that v, is
independent of time. Thus, v, is a non-negative solution of (3.5).
(f) Here we will show that v.(x) % 0. We claim that if u(x, to; @) < €, for some &g
sufficiently small and some to =0, then u exists for all ime. Let us accept this for

the moment and continue. Suppose that v,, = 0. Then, from (3.10), we get that, given
any ¢, > 0, there exists an # such that

u,(x, t +1,) <€

It then follows that w,(x, 1) exists for all time. But this is a contradiction since, by
hypothesis, u, blows up at T, < + co. Consequently v £0.

We still have to substantiate our claim. We do so by following the arguments of
[20, Proposition 2] where a stronger statement is proved: pick a domain Q) which
strictly contains Q. Let ¢, denote the first eigenfunction of —A in §, with the
normalisation | ¢ l,==1. An easy calculation shows that for € sufficicntly small,
say € <€y, €y 1S 2 supersolution of (1.1). Set

€= ]:ng (€191)
Then, if
lu(-, to; @)= = €2,
for some time f,, then

[lul-, t; @} = = €1,
for all times ¢ = t,. This proves our claim.
Since we have assumed that w(x) is the unique positive solution of (3.5), we have
shown that
1w, (%, 7,3 wix), in CHQ), asn— +oC.
(g) Working similarly as in the steps (c)-(f), we obtain that there exists
s, € [2t,/3, 3t,/4] such that
u,(x, 5,) > w(x), in C3({)), asn— -+

(h) From the identity

3,

E[u,1(sn) — El#)(ra) = — J " Nt 02 dt

and the fact that
lim (E[u,](s,) — E[ () = E[w]—E[w]=0,

n— oo
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it follows in particular that
11
lim J > )13 di = O
n—+ too 1,,—1
(1) Working once more as in {c)—{f), we finally obtain that
u(x, £,y o wix), in CXQ), asn— i,
as claimed. [
We now have the following consequences of the above proposition:

LeMmMA 3.7. Let u(x, t; o), with g€ M), denote a positive solution of (3.1). Then
there exists a constant T such that if u blows up at T='T then the blowup set of u
consists of a single point, say b. Moreover, b tends to zero as T tends to infinity.

Proof. This is a consequence of Proposition 3.6 and the Maximum Principle (in the
form of Proposition 2.1). First we prove the single-point blowup statement. Suppose
this were not true. Then there would exist solutions u, of (3.1} such that u, blows
up at time T, = »n and the blowup set contains at feast two points.

From Proposition 3.6, it follows that we have

u, (x '—;) Swl(x) in CAQ) asno + o0 (3.11)

Since w(x) is radially symmetric and decreasing, we have that w, (x)<0forall xe I,
therefore it follows from {3.11) that, for n large enough,

") <o I
Upee| X5 | <0 xel.

Thus, u,(x, n/2) has a single maximum, and by the results of [ 1] it will keep having
a single maximum for all re(n/2, T,). It follows that u,(x, t) blows up at a single
puint, contradicting our original assumption.

We still have to show that the blowup point » tends to zero as T increases.
Suppose this were not true. Consider the sequence u, of solutions of (3.1) having the
same properties as before. We then would have that there exists an €, > 0 such that
for all n large enough, u, blows up at a point b, e (— 1, —€,) gy, 1). From (3.11),
we have that

n
Upx (xsi) >0a XE(*], 760)
2
and {(using the notation of Proposition 2.1)

u xE<u x‘ﬁ x,Ae(—1, —¢p)
n )2 n’azy ’ Ll ot

It then follows from Proposition 2.1 that

U6, 1)>0, for xe(—1, —g,) and Le(gT) (3.12)
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Thus, if u, blows up at b, € (— 1, —€y). (3.12) would force u, to blow up (at least) on
the whole interval (b,, —¢,), which is impossible. Similarly, b, cannot be in (e, 1).
We have thus reached a contradiction and this completes the proof. [

Rimark 3.8. The same proof works in higher dimensions in the case where Q has
suitable symmetries. In particular, the same prool works for Theorem 1.6(ii).

To complete the proof of Theorem 1.6, we still have to show the finiteness of the
T,’s. This is an immediate consequence of Lemma 3.7:

LEmMMma 3.9. Let Iy be as defined in Definition 3.4. Then
Ti<+4+w forkz2

Proof. 11 this were not true, then there would exist solutions of (3.1) with more than
one maximum, and arbitrarily large blowup times. But it follows from the proof of
Lemma 3.7 that this is impossible. It also follows that we can take T = T,.

4. Discussion and some open problems

About the hypothesis on the initial values

An unpleasant aspect of our analysis is the hypothesis about the monotonicity
property of the initial values. This hypothesis has been used only in the derivation
of the uniform L' estimate (Proposition 2.2). We wonder whether this is an essential
assumption, or simply a technical one which can somehow be removed.

It is inleresting to note that for the linear heat equation, given any family of non-
negative initial values ¢ from C'(Q), the corresponding family of solutions u(x, t; i)
is uniformly monotone near the boundary for any fixed 1 > 0. More precisely, the
foliowing result has been proved by the authors:

ProrosiTION 4.1, Let Qe R™ be a bounded, strictly convex domain, and u = u(x, ; p),
with ¢ 2 0, and let p(x) e C'(Q) denote the solution of the linear heat equation on Q,
with Dirichlet boundary conditions and o as initial value. Then, for any t = 0, we have
that

H(xa .F} € M.ri[.rl(g!},

where 8(t) is a nonincreasing function which depends only on t and Q. Moreover, 3(1) =
O(t¥) as t - 0.

The proof of this result is based on a careful study of the Green's function near
the boundary, and the Maximum Principle (in the form of Proposition 2.1).
Unfortunately, the proof does not work for the nonlinear problem.

Thus, an interesting question is to know whether a similar property is true for
solutions of the nonlinear problem (1.1). If the answer is positive, the assumption
on the initial values can be removed.

Space dimension one

It is known (cf. [2,12,13]) that for problem (1.1), different blowup patlerns are
possible depending on whether one maximum reaches the blowup time, or two (or
in general k) maxima coalesce at exactly the blowup time. In the first case, we say
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that we have a simple blowup point, whereas in the second we have a double blowup
point (or, in general, a blowup point of multiplicity k).

Consider initial data for which the solution of (3.1) blows up at T* with at lcast
two maxima for all times 1 < T®. By our Theorem 1.6, we have that 7% < T, < + o0.
An interesting question is to characterise the solutions for which T is equal to Ty.

Given the fact that all solutions that blow up after T, blow up nccessarily at a
single (and simple) point, one could conjecture that solutions that blow up at exactly
T, are having two maxima for times t < T, and these two maxima coalesce at lime
t = T,. The same remark applies for all Ty, so that finally we have the following
conjecture:

ConjecTurt 4.2. Consider the fumily of solutions which blow up with at least k maxima
for all times prior to blow up. Among these solutions there is one which maximises the
blowup time (that is, for which T™ = T), and having the property that it blows up at
a single point with muftiplicity k.

Higher dimensions
Here we expect that some version of Theorem 1.6(ii) holds true for a general bounded
smooth and convex domain. More precisely:

CoNIECTURE 4.3. Ler u be a solution of (1.1) which blows up at time T. Then, for all
t =0, there exists a domain Q,c Q such that u has no critical points in L, and
Q,— {x,} as t—» + 0. Moreover, there exists a constunt T depending only on €, n, p,
such that if T>T then u blows up at a single point.
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