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We show how to construct four-dimensional anti-self-dual conformal structures
from solutions of a parameter family of partial differential equations which gener-
alize the Ernst equation of General Relativity. Anti-self-dual vacuum metrics may
be obtained as well by restricting appropriately the values of the parameters.

1. Introduction

Consider the following Lagrangian 1

L[U ] = (v − u)
U 2
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where U is a scalar function of (u, v) and α, β are parameters. Varying the

function U we get the fourth order partial differential equation (PDE)
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The above parameter family PDE admits a linear representation (Lax pair)

by introducing two auxiliary variables P and R from the relationA = P−R.

The Lax pair is given by the linear operators in a parameter λ ∈ CP
1

L = (u∂u −A)− λ∂u, M = (v∂v −B)− λ∂v, (4)

where

A =

(
β − PU,u U,u

P (n− PU,u) PU,u

)
, B =

(
−RU,v U,v

R(m−RU,v) RU,v − α

)
. (5)
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The commutativity condition [L, M ] = 0 for every value of λ leads to the

following system of PDEs

P,v =
P −R

u− v
(α + (P −R)U,v) , (6)

R,u =
P −R

u− v
(β − (P −R)U,u) , (7)

U,uv =
1

u− v
(βU,v − αU,u − 2(P −R)U,uU,v) . (8)

By decoupling the dependent variables one finds that U satisfies equation

(2), while the auxiliary variables P, R satisfy the same forth order PDE

and defer only by specific changes of the parameters (m, n). Thus, the

above system may be regarded as representing an involution form for a

PDE which was called the regular PDE (RPDE) by its inventors 1. Its

significance stems from the fact that it encodes the entire hierarchy of KdV

equations which is the prototype of the soliton equations. By applying

appropriate reality conditions on the generally complex valued variables

and parameters, one may obtain from the system (6)-(8) the hyperbolic

Ernst equation of General Relativity in the presence of neutrino fields 2.

Here we reveal yet another link of the RPDE with geometry and physics

by presenting a method of constructing anti-self–dual metrics in 2 + 2 di-

mensions from its solutions. This is the subject of the last section. In the

following two sections we briefly recall some basic definitions regarding the

anti–self–dual (ASD) Yang-Mills equations and ASD curved spacetimes.

For a comprehensive exposure on the subject we refer to the monographs

by Mason and Woodhouse3 and by Ward and Wells4.

2. The anti–self–dual Yang–Mills equations

Consider the four dimensional complex Minkowski spacetime CM with dou-

ble null coordinates xa = (w, z, w̃, z̃) and metric

d s2 = d z ⊗ d z̃ + d z̃ ⊗ d z − d w ⊗ d w̃ − d w̃ ⊗ d w . (9)

The connection Φ on a rank r vector bundle over C4 is a gl(r, C)–valued

1–form on CM and the corresponding curvature F is the gl(r, C)–valued

2–form F = d Φ + Φ ∧ Φ.

The connection Φ is said to be anti-self-dual if and only if F is Hodge

anti-self-dual with respect to the metric (9) i.e. F = − ∗ F. Choosing

an orientation the anti-self-duality condition is equivalent to the following

system of equations

Fzw = 0, Fzz̃ − Fww̃ = 0, Fz̃w̃ = 0, (10)
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which are called the anti–self–dual Yang–Mills (ASDYM) equations. Equa-

tions (10) are equivalent to the commutativity of the following linear oper-

ator 5

L̃ = ∂w + Φw − ζ(∂z̃ + Φz̃), M̃ = ∂z + Φz − ζ(∂w̃ + Φw̃), (11)

for every value of the parameter ζ ∈ CP
1.

3. Anti–self–dual metrics

LetM be a four dimensional manifold with a local holomorphic coordinate

basis xa = (x1, x2, x3, x4) and a holomorphic metric g with respect to xa.

(M, g) is said to be anti-self-dual if and only if the Weyl tensor is Hodge

anti-self-dual with respect to g.

Since the Weyl tensor is a conformally invariant object, the above ASD

condition is defined up to conformal transformation g 7→ e2σ(p)g, where σ is

a holomorphic function onM. Such transformations define an equivalence

relation among the set of metrics on M and the equivalence class (M, [g])

is called ASD conformal structure.

A convenient way of constructing ASD metrics is as follows 6,7. Suppose

that we choose the local basis {ei} of TM to be a null tetrad such that

g(e1, e4) = −g(e2, e3) and let {θi} be the dual basis. Define

ℓ = e3 − λ e1, m = e4 − λ e2 , (12)

where λ ∈ CP
1. If ℓ and m commute for every value of λ then the metric

g given by the line element

d s2 = θ1 ⊗ θ4 + θ4 ⊗ θ1 − θ2 ⊗ θ3 − θ3 ⊗ θ2 , (13)

is a representative of an ASD conformal structure.

Moreover, if the vector fields ei are divergence free with respect to a

4-form ν on M then the rescaled metric Λ g has vanishing Ricci tensor,

where Λ = ν(e1, e2, e3, e4).

4. From solutions of the RPDE to ASD metrics

Suppose that the ASD connection Φ on a rank 2 vector bundle over CM

remains invariant under the action of the two dimensional group of trans-

formations generated by the following conformal Killing vector fields

X = w∂w + z̃∂z̃, Y = z∂z + w̃∂w̃. (14)
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Let u = w
z̃
, v = z

w̃
be the invariant coordinates and impose gauge condi-

tions such that Φz = 0, Φw = 0. The remaining invariant components of

the connection have the form

Φz̃ =
1

z̃
A(u, v), Φw̃ =

1

w̃
B(u, v). (15)

The reduced ASDYM equations are equivalent to the commutativity of the

following operators

L = (u∂u −A)− λ∂u, M = (v∂v −B)− λ∂v, (16)

for every value of λ. Choosing the matrices A and B from (5), the relation

[L, M ] = 0 is equivalent to the equations (6)–(8). In this sense the RPDE

is a two–dimensional reduction of the ASDYM equations 8.

As such, one may reinterpret the ASD condition on the curvature F as

the ASD condition on the conformal curvature C, by employing the switch

map 3. The explicit link is provided by observing that equations (6)-(8)

are equivalent to the commutativity of the linear operators given by (16),

and the commutativity of the linear vector fields ℓ, m in λ given by (12) is

sufficient for a four dimensional metric to be ASD. To be more specific, first

we make the identification e1 = ∂u, e2 = ∂v. Next, using the infinitesimal

representation of the natural action of GL(2, C) on C2, one may represent

the matrices A, B as vector fields on C2 with coordinates (p, q). Explicitly,

an arbitrary element M ∈ gl(2, C) may by represented by a vector field

VM ∈ diff(C2) as follows

M =

(
a11 a12

a21 a22

)
←→ VM = (a12 q − a11 p)∂p + (a21 p− a22 q)∂q. (17)

Using the above correspondence it is straightforward to represent the op-

erators (16) by vector fields of the form (12) respectively, where

e1 = ∂u , e3 = u∂u + β p ∂p + f,q ∂p − f,p ∂q , (18)

e2 = ∂v , e4 = v∂v − α q ∂q + g,q ∂p − g,p ∂q (19)

In the above vector fields the scalar functions f, g are given by the follow-

ing second degree homogeneous polynomials in p, q with (u, v) dependent

coefficients

f = − 1
2U,u(q + Pp)2 + β

2 Pp2 , g = − 1
2U,v(q + Rp)2 + α

2 Rp2. (20)

The dual basis is given by the following 1-forms

θ1 = du− u θ3, θ3 =
(
(α q + g,p)d p + g,qd q

)
/∆, (21)

θ2 = d v − v θ4, θ4 = −
(
(β p + f,q)d q + f,pd p

)
/∆, (22)
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where

∆ = α β p q + α q f,q + β p g,p + {f, g} . (23)

We easily verify that

e1 ∧ e2 ∧ e3 ∧ e4 = −∆∂u ∧ ∂v ∧ ∂p ∧ ∂q (24)

and since the vector fields ei should be independent we assume that ∆ 6= 0

holds. The above considerations are summarized in the following.

Proposition 4.1. Let the basis {ei} given by (18), (19) be a null tetrad on

C4 with coordinates (u, v, p, q), and {θi} the dual basis. If (U, P, R) satisfy

equations (6)-(8) then the metric g given by (13) is a representative of an

ASD conformal structure. If α = −β = 1 then there exists a conformal

factor Λ such that Λg is a ASD vacuum metric.

Proof. The first part is readily shown by the preceding construction. For

the vacuum case, let ν = du∧d v∧d p∧d q be the natural volume element

on C4. By direct calculation we find that

Le1
ν = 0, Le3

ν = (β + 1) ν, (25)

Le2
ν = 0, Le4

ν = −(α− 1) ν, (26)

where L denotes the Lie derivative and ν(e1, e2, e3, e4) = −∆. Hence, the

vector fields ei are divergence free with respect to ν whenever α = −β = 1.

As such, the rescaled metric −∆g has vanishing Ricci tensor. �

It is worth noticing that when α = −β = 1 the hyperbolic Ernst equa-

tion is “switched off”2. Accordingly, using the above construction we may

employ the plane wave solutions of the Ernst equation to construct, in

principle, four dimensional ASD metrics but not vacuum ones.
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