
Brief CGAL intro 2D Triangulations in CGAL 2D Apollonius graphs Disk intersection subgraph Looking ahead

Solving problems with :
an example using the 2D Apollonius graph package

Menelaos I. Karavelas

http://www.cgal.org/

Geometric/Topological Software Minisymposium

CG-Week, Chapel Hill, NC, June 19th, 2012

Solving problems with CGAL: an example CG-Week/GTS, Chapel Hill, June 19, 2012 1 / 42

Brief CGAL intro 2D Triangulations in CGAL 2D Apollonius graphs Disk intersection subgraph Looking ahead

1 Brief CGAL intro

2 2D Triangulations in CGAL

3 2D Apollonius graphs

4 Disk intersection subgraph

5 Looking ahead

Solving problems with CGAL: an example CG-Week/GTS, Chapel Hill, June 19, 2012 2 / 42

Brief CGAL intro 2D Triangulations in CGAL 2D Apollonius graphs Disk intersection subgraph Looking ahead

The CGAL project

Open source project

Aims at providing
“easy access to efficient
and reliable geometric
algorithms in the form of
a C++ library”

Development started in
1995 (two Esprit LTR
European projects)

Open source as of
November 2003 (v3.0)

LGPL/GPL v3+ as of
March 2012 (v4.0)

More than 500K lines of
C++ code

Solving problems with CGAL: an example CG-Week/GTS, Chapel Hill, June 19, 2012 3 / 42

Brief CGAL intro 2D Triangulations in CGAL 2D Apollonius graphs Disk intersection subgraph Looking ahead

The (current) world of CGAL in a glance

12 Institutes/Universities/Companies have participated in the

development of CGAL

Europe, Israel, U.S.A.
4 Institutes
6 Universities
2 Companies

GeometryFactory (created in 2003): sells commercial licenses, provides
support, develops customized solutions

Open Source Project run by the Editorial Board

Currently 13 editors
Responsible for guiding the development of the library, developers, and
the user community.

Solving problems with CGAL: an example CG-Week/GTS, Chapel Hill, June 19, 2012 4 / 42

Brief CGAL intro 2D Triangulations in CGAL 2D Apollonius graphs Disk intersection subgraph Looking ahead

The project’s structure

Human resources categories

Editorial Board
Developers
Users

Support for several platforms
(g++ on Linux/MacOS/Windows, VC++ on Windows)

About 20 active developers

3,500 pages manual

6-month release cycle

Solving problems with CGAL: an example CG-Week/GTS, Chapel Hill, June 19, 2012 5 / 42

Brief CGAL intro 2D Triangulations in CGAL 2D Apollonius graphs Disk intersection subgraph Looking ahead

The project’s structure (contd.)

Contributors maintain their identity

Editorial Board manages reviews of submissions

Candidate packages are included in daily test suites

svn is used as version control system

Developer support:

manual for developers
dedicated mailing list
wiki
meetings (1-week long) once or twice per year

Solving problems with CGAL: an example CG-Week/GTS, Chapel Hill, June 19, 2012 6 / 42

Brief CGAL intro 2D Triangulations in CGAL 2D Apollonius graphs Disk intersection subgraph Looking ahead

The design of the library

Major goals

1 Robust construction of geometric entities
2 Efficiency
3 Genericity

Major design ideas:

Separation between algorithms/data structures and predicates
Predicates/Constructions are encapsulated in kernels and traits
classes
Predicate evaluation: Exact Geometric Computation (EGC)
Paradigm ; Robustness
Arithmetic/geometric filtering techniques (interval arithmetic)
; Efficiency
Generic programming via templates & concept/model development
paradigm ; Genericity; at least one model per concept in the library

Solving problems with CGAL: an example CG-Week/GTS, Chapel Hill, June 19, 2012 7 / 42

Brief CGAL intro 2D Triangulations in CGAL 2D Apollonius graphs Disk intersection subgraph Looking ahead

The design of the library

Major goals

1 Robust construction of geometric entities
2 Efficiency
3 Genericity

Major design ideas:

Separation between algorithms/data structures and predicates
Predicates/Constructions are encapsulated in kernels and traits
classes
Predicate evaluation: Exact Geometric Computation (EGC)
Paradigm ; Robustness
Arithmetic/geometric filtering techniques (interval arithmetic)
; Efficiency
Generic programming via templates & concept/model development
paradigm ; Genericity; at least one model per concept in the library

Solving problems with CGAL: an example CG-Week/GTS, Chapel Hill, June 19, 2012 7 / 42

Brief CGAL intro 2D Triangulations in CGAL 2D Apollonius graphs Disk intersection subgraph Looking ahead

Parts of the library

À Arithmetic & algebra layer: framework for utilizing number types,
polynomials, support for kernels (esp. for non-linear objects)

Á Kernel concepts: 2D, 3D, dD kernels

Â Support library: STL extensions, interface with BGL, geometric generators

Ã Packages (bulk of the library):

arrangements, convex hulls, triangulations, Voronoi diagrams,
meshes
geometric optimization, geometry processing, spatial searching
support for Kinetic Data Structures, operations on cell complexes,
operations on polyhedra

Solving problems with CGAL: an example CG-Week/GTS, Chapel Hill, June 19, 2012 8 / 42

Brief CGAL intro 2D Triangulations in CGAL 2D Apollonius graphs Disk intersection subgraph Looking ahead

2D Triangulations overview

� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �

� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �

� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �

� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �

� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �

� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �

� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �

� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �

� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

Triangulation

Delaunay Constrained

Constrained
Delaunay

Regular

Support for 2D triangulations in
CGAL:

Basic triangulations

Delaunay triangulations

Regular triangulations

Constrained triangulations

Constrained Delaunay
triangulations

Built on top of 2D triangulations:

Conforming triangulations &
meshes

Alpha shapes

Apollonius graphs

Segment Delaunay graphs

Solving problems with CGAL: an example CG-Week/GTS, Chapel Hill, June 19, 2012 9 / 42

Brief CGAL intro 2D Triangulations in CGAL 2D Apollonius graphs Disk intersection subgraph Looking ahead

2D Triangulations overview

� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �

� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �

� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �

� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �

� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �

� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �

� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �

� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �

� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

Triangulation

Delaunay Constrained

Constrained
Delaunay

Regular

Support for 2D triangulations in
CGAL:

Basic triangulations

Delaunay triangulations

Regular triangulations

Constrained triangulations

Constrained Delaunay
triangulations

Built on top of 2D triangulations:

Conforming triangulations &
meshes

Alpha shapes

Apollonius graphs

Segment Delaunay graphs

Solving problems with CGAL: an example CG-Week/GTS, Chapel Hill, June 19, 2012 9 / 42

Brief CGAL intro 2D Triangulations in CGAL 2D Apollonius graphs Disk intersection subgraph Looking ahead

The software design of 2D triangulations

Container

Combinatorial operations

Triangulation data structure

Triangulation

Geometry

User interface

Geometric traits

derivation

template parameter

Vbase
User

Fbase
User

Vertex Face

Solving problems with CGAL: an example CG-Week/GTS, Chapel Hill, June 19, 2012 10 / 42

Brief CGAL intro 2D Triangulations in CGAL 2D Apollonius graphs Disk intersection subgraph Looking ahead

The 2D triangulation data structure

i

f

neighbor(ccw(i))

cw(i)

neighbor(i)
ccw(i)

neighbor(cw(i))

Can represent any orientable
triangulated surface

Has containers for faces and
vertices

3 pointers to defining vertices and
3 pointers to neighboring faces
per face

1 pointer to incident face per
vertex

Faces and vertices are accessed
via handles

Edges are represented as pair of a
face and an index

Solving problems with CGAL: an example CG-Week/GTS, Chapel Hill, June 19, 2012 11 / 42

Brief CGAL intro 2D Triangulations in CGAL 2D Apollonius graphs Disk intersection subgraph Looking ahead

The rebind mechanism

The user can plug-in own vertex and face classes

The TDS recovers their types via the rebind mechanism:

template<class Vb = Triangulation_ds_vertex_base_2<> >

class MyVertex : public Vb

{

template <typename TDS2>

struct Rebind_TDS {

typedef typename Vb::template Rebind_TDS<TDS2>::Other Vb2;

typedef MyVertex<Vb2> Other;

};

};

template < class Vb = Triangulation_ds_vertex_base_2<>,

class Fb = Triangulation_ds_face_base_2<> >

class Triangulation_data_structure_2

{

typedef Triangulation_data_structure_2<Vb,Fb> Tds;

typedef typename Vb::template Rebind_TDS<Tds>::Other Vertex;

typedef typename Fb::template Rebind_TDS<Tds>::Other Face;

};

Solving problems with CGAL: an example CG-Week/GTS, Chapel Hill, June 19, 2012 12 / 42

Brief CGAL intro 2D Triangulations in CGAL 2D Apollonius graphs Disk intersection subgraph Looking ahead

From the TDS to a triangulation

∞

TDS is of entirely combinatorial
nature

Geometry is added at a higher

level

The geometric traits/kernel
provides the geometrical
information
A fictitious site is added at
infinity

Solving problems with CGAL: an example CG-Week/GTS, Chapel Hill, June 19, 2012 13 / 42

Brief CGAL intro 2D Triangulations in CGAL 2D Apollonius graphs Disk intersection subgraph Looking ahead

Access to features - All vertices iterator

∞

Iterator to all vertices

Tr::All_vertices_iterator it;

for (it = tr.all_vertices_begin();

it != tr.all_vertices_end(); ++it)

{

Tr::Vertex_handle v(it);

//...do what needs to be done with v

}

Solving problems with CGAL: an example CG-Week/GTS, Chapel Hill, June 19, 2012 14 / 42

Brief CGAL intro 2D Triangulations in CGAL 2D Apollonius graphs Disk intersection subgraph Looking ahead

Access to features - All vertices iterator

∞

Iterator to all vertices

Tr::All_vertices_iterator it;

for (it = tr.all_vertices_begin();

it != tr.all_vertices_end(); ++it)

{

Tr::Vertex_handle v(it);

//...do what needs to be done with v

}

Solving problems with CGAL: an example CG-Week/GTS, Chapel Hill, June 19, 2012 14 / 42

Brief CGAL intro 2D Triangulations in CGAL 2D Apollonius graphs Disk intersection subgraph Looking ahead

Access to features - All vertices iterator

∞

Iterator to all vertices

Tr::All_vertices_iterator it;

for (it = tr.all_vertices_begin();

it != tr.all_vertices_end(); ++it)

{

Tr::Vertex_handle v(it);

//...do what needs to be done with v

}

Solving problems with CGAL: an example CG-Week/GTS, Chapel Hill, June 19, 2012 14 / 42

Brief CGAL intro 2D Triangulations in CGAL 2D Apollonius graphs Disk intersection subgraph Looking ahead

Access to features - All vertices iterator

∞

Iterator to all vertices

Tr::All_vertices_iterator it;

for (it = tr.all_vertices_begin();

it != tr.all_vertices_end(); ++it)

{

Tr::Vertex_handle v(it);

//...do what needs to be done with v

}

Solving problems with CGAL: an example CG-Week/GTS, Chapel Hill, June 19, 2012 14 / 42

Brief CGAL intro 2D Triangulations in CGAL 2D Apollonius graphs Disk intersection subgraph Looking ahead

Access to features - All vertices iterator

∞

Iterator to all vertices

Tr::All_vertices_iterator it;

for (it = tr.all_vertices_begin();

it != tr.all_vertices_end(); ++it)

{

Tr::Vertex_handle v(it);

//...do what needs to be done with v

}

Solving problems with CGAL: an example CG-Week/GTS, Chapel Hill, June 19, 2012 14 / 42

Brief CGAL intro 2D Triangulations in CGAL 2D Apollonius graphs Disk intersection subgraph Looking ahead

Access to features - All vertices iterator

∞

Iterator to all vertices

Tr::All_vertices_iterator it;

for (it = tr.all_vertices_begin();

it != tr.all_vertices_end(); ++it)

{

Tr::Vertex_handle v(it);

//...do what needs to be done with v

}

Solving problems with CGAL: an example CG-Week/GTS, Chapel Hill, June 19, 2012 14 / 42

Brief CGAL intro 2D Triangulations in CGAL 2D Apollonius graphs Disk intersection subgraph Looking ahead

Access to features - All vertices iterator

∞

Iterator to all vertices

Tr::All_vertices_iterator it;

for (it = tr.all_vertices_begin();

it != tr.all_vertices_end(); ++it)

{

Tr::Vertex_handle v(it);

//...do what needs to be done with v

}

Solving problems with CGAL: an example CG-Week/GTS, Chapel Hill, June 19, 2012 14 / 42

Brief CGAL intro 2D Triangulations in CGAL 2D Apollonius graphs Disk intersection subgraph Looking ahead

Access to features - All vertices iterator

∞

Iterator to all vertices

Tr::All_vertices_iterator it;

for (it = tr.all_vertices_begin();

it != tr.all_vertices_end(); ++it)

{

Tr::Vertex_handle v(it);

//...do what needs to be done with v

}

Solving problems with CGAL: an example CG-Week/GTS, Chapel Hill, June 19, 2012 14 / 42

Brief CGAL intro 2D Triangulations in CGAL 2D Apollonius graphs Disk intersection subgraph Looking ahead

Access to features - All vertices iterator

∞

Iterator to all vertices

Tr::All_vertices_iterator it;

for (it = tr.all_vertices_begin();

it != tr.all_vertices_end(); ++it)

{

Tr::Vertex_handle v(it);

//...do what needs to be done with v

}

Solving problems with CGAL: an example CG-Week/GTS, Chapel Hill, June 19, 2012 14 / 42

Brief CGAL intro 2D Triangulations in CGAL 2D Apollonius graphs Disk intersection subgraph Looking ahead

Access to features - Finite vertices iterator

∞

Iterator to finite vertices

Tr::Finite_vertices_iterator it;

for (it = tr.finite_vertices_begin();

it != tr.finite_vertices_end(); ++it)

{

Tr::Vertex_handle v(it);

//...do what needs to be done with v

}

Solving problems with CGAL: an example CG-Week/GTS, Chapel Hill, June 19, 2012 15 / 42

Brief CGAL intro 2D Triangulations in CGAL 2D Apollonius graphs Disk intersection subgraph Looking ahead

Access to features - Finite vertices iterator

∞

Iterator to finite vertices

Tr::Finite_vertices_iterator it;

for (it = tr.finite_vertices_begin();

it != tr.finite_vertices_end(); ++it)

{

Tr::Vertex_handle v(it);

//...do what needs to be done with v

}

Solving problems with CGAL: an example CG-Week/GTS, Chapel Hill, June 19, 2012 15 / 42

Brief CGAL intro 2D Triangulations in CGAL 2D Apollonius graphs Disk intersection subgraph Looking ahead

Access to features - Finite vertices iterator

∞

Iterator to finite vertices

Tr::Finite_vertices_iterator it;

for (it = tr.finite_vertices_begin();

it != tr.finite_vertices_end(); ++it)

{

Tr::Vertex_handle v(it);

//...do what needs to be done with v

}

Solving problems with CGAL: an example CG-Week/GTS, Chapel Hill, June 19, 2012 15 / 42

Brief CGAL intro 2D Triangulations in CGAL 2D Apollonius graphs Disk intersection subgraph Looking ahead

Access to features - Finite vertices iterator

∞

Iterator to finite vertices

Tr::Finite_vertices_iterator it;

for (it = tr.finite_vertices_begin();

it != tr.finite_vertices_end(); ++it)

{

Tr::Vertex_handle v(it);

//...do what needs to be done with v

}

Solving problems with CGAL: an example CG-Week/GTS, Chapel Hill, June 19, 2012 15 / 42

Brief CGAL intro 2D Triangulations in CGAL 2D Apollonius graphs Disk intersection subgraph Looking ahead

Access to features - Finite vertices iterator

∞

Iterator to finite vertices

Tr::Finite_vertices_iterator it;

for (it = tr.finite_vertices_begin();

it != tr.finite_vertices_end(); ++it)

{

Tr::Vertex_handle v(it);

//...do what needs to be done with v

}

Solving problems with CGAL: an example CG-Week/GTS, Chapel Hill, June 19, 2012 15 / 42

Brief CGAL intro 2D Triangulations in CGAL 2D Apollonius graphs Disk intersection subgraph Looking ahead

Access to features - Finite vertices iterator

∞

Iterator to finite vertices

Tr::Finite_vertices_iterator it;

for (it = tr.finite_vertices_begin();

it != tr.finite_vertices_end(); ++it)

{

Tr::Vertex_handle v(it);

//...do what needs to be done with v

}

Solving problems with CGAL: an example CG-Week/GTS, Chapel Hill, June 19, 2012 15 / 42

Brief CGAL intro 2D Triangulations in CGAL 2D Apollonius graphs Disk intersection subgraph Looking ahead

Access to features - Finite vertices iterator

∞

Iterator to finite vertices

Tr::Finite_vertices_iterator it;

for (it = tr.finite_vertices_begin();

it != tr.finite_vertices_end(); ++it)

{

Tr::Vertex_handle v(it);

//...do what needs to be done with v

}

Solving problems with CGAL: an example CG-Week/GTS, Chapel Hill, June 19, 2012 15 / 42

Brief CGAL intro 2D Triangulations in CGAL 2D Apollonius graphs Disk intersection subgraph Looking ahead

Access to features - All faces iterator

∞

Iterator to all faces

Tr::All_faces_iterator it;

for (it = tr.all_faces_begin();

it != tr.all_faces_end(); ++it)

{

Tr::Face_handle f(it);

//...do what needs to be done with f

}

Solving problems with CGAL: an example CG-Week/GTS, Chapel Hill, June 19, 2012 16 / 42

Brief CGAL intro 2D Triangulations in CGAL 2D Apollonius graphs Disk intersection subgraph Looking ahead

Access to features - All faces iterator

∞

Iterator to all faces

Tr::All_faces_iterator it;

for (it = tr.all_faces_begin();

it != tr.all_faces_end(); ++it)

{

Tr::Face_handle f(it);

//...do what needs to be done with f

}

Solving problems with CGAL: an example CG-Week/GTS, Chapel Hill, June 19, 2012 16 / 42

Brief CGAL intro 2D Triangulations in CGAL 2D Apollonius graphs Disk intersection subgraph Looking ahead

Access to features - All faces iterator

∞

Iterator to all faces

Tr::All_faces_iterator it;

for (it = tr.all_faces_begin();

it != tr.all_faces_end(); ++it)

{

Tr::Face_handle f(it);

//...do what needs to be done with f

}

Solving problems with CGAL: an example CG-Week/GTS, Chapel Hill, June 19, 2012 16 / 42

Brief CGAL intro 2D Triangulations in CGAL 2D Apollonius graphs Disk intersection subgraph Looking ahead

Access to features - All faces iterator

∞

Iterator to all faces

Tr::All_faces_iterator it;

for (it = tr.all_faces_begin();

it != tr.all_faces_end(); ++it)

{

Tr::Face_handle f(it);

//...do what needs to be done with f

}

Solving problems with CGAL: an example CG-Week/GTS, Chapel Hill, June 19, 2012 16 / 42

Brief CGAL intro 2D Triangulations in CGAL 2D Apollonius graphs Disk intersection subgraph Looking ahead

Access to features - All faces iterator

∞

Iterator to all faces

Tr::All_faces_iterator it;

for (it = tr.all_faces_begin();

it != tr.all_faces_end(); ++it)

{

Tr::Face_handle f(it);

//...do what needs to be done with f

}

Solving problems with CGAL: an example CG-Week/GTS, Chapel Hill, June 19, 2012 16 / 42

Brief CGAL intro 2D Triangulations in CGAL 2D Apollonius graphs Disk intersection subgraph Looking ahead

Access to features - All faces iterator

∞

Iterator to all faces

Tr::All_faces_iterator it;

for (it = tr.all_faces_begin();

it != tr.all_faces_end(); ++it)

{

Tr::Face_handle f(it);

//...do what needs to be done with f

}

Solving problems with CGAL: an example CG-Week/GTS, Chapel Hill, June 19, 2012 16 / 42

Brief CGAL intro 2D Triangulations in CGAL 2D Apollonius graphs Disk intersection subgraph Looking ahead

Access to features - All faces iterator

∞

Iterator to all faces

Tr::All_faces_iterator it;

for (it = tr.all_faces_begin();

it != tr.all_faces_end(); ++it)

{

Tr::Face_handle f(it);

//...do what needs to be done with f

}

Solving problems with CGAL: an example CG-Week/GTS, Chapel Hill, June 19, 2012 16 / 42

Brief CGAL intro 2D Triangulations in CGAL 2D Apollonius graphs Disk intersection subgraph Looking ahead

Access to features - All faces iterator

∞

Iterator to all faces

Tr::All_faces_iterator it;

for (it = tr.all_faces_begin();

it != tr.all_faces_end(); ++it)

{

Tr::Face_handle f(it);

//...do what needs to be done with f

}

Solving problems with CGAL: an example CG-Week/GTS, Chapel Hill, June 19, 2012 16 / 42

Brief CGAL intro 2D Triangulations in CGAL 2D Apollonius graphs Disk intersection subgraph Looking ahead

Access to features - All faces iterator

∞

Iterator to all faces

Tr::All_faces_iterator it;

for (it = tr.all_faces_begin();

it != tr.all_faces_end(); ++it)

{

Tr::Face_handle f(it);

//...do what needs to be done with f

}

Solving problems with CGAL: an example CG-Week/GTS, Chapel Hill, June 19, 2012 16 / 42

Brief CGAL intro 2D Triangulations in CGAL 2D Apollonius graphs Disk intersection subgraph Looking ahead

Access to features - All faces iterator

∞

Iterator to all faces

Tr::All_faces_iterator it;

for (it = tr.all_faces_begin();

it != tr.all_faces_end(); ++it)

{

Tr::Face_handle f(it);

//...do what needs to be done with f

}

Solving problems with CGAL: an example CG-Week/GTS, Chapel Hill, June 19, 2012 16 / 42

Brief CGAL intro 2D Triangulations in CGAL 2D Apollonius graphs Disk intersection subgraph Looking ahead

Access to features - All faces iterator

∞

Iterator to all faces

Tr::All_faces_iterator it;

for (it = tr.all_faces_begin();

it != tr.all_faces_end(); ++it)

{

Tr::Face_handle f(it);

//...do what needs to be done with f

}

Solving problems with CGAL: an example CG-Week/GTS, Chapel Hill, June 19, 2012 16 / 42

Brief CGAL intro 2D Triangulations in CGAL 2D Apollonius graphs Disk intersection subgraph Looking ahead

Access to features - All faces iterator

∞

Iterator to all faces

Tr::All_faces_iterator it;

for (it = tr.all_faces_begin();

it != tr.all_faces_end(); ++it)

{

Tr::Face_handle f(it);

//...do what needs to be done with f

}

Solving problems with CGAL: an example CG-Week/GTS, Chapel Hill, June 19, 2012 16 / 42

Brief CGAL intro 2D Triangulations in CGAL 2D Apollonius graphs Disk intersection subgraph Looking ahead

Access to features - All faces iterator

∞

Iterator to all faces

Tr::All_faces_iterator it;

for (it = tr.all_faces_begin();

it != tr.all_faces_end(); ++it)

{

Tr::Face_handle f(it);

//...do what needs to be done with f

}

Solving problems with CGAL: an example CG-Week/GTS, Chapel Hill, June 19, 2012 16 / 42

Brief CGAL intro 2D Triangulations in CGAL 2D Apollonius graphs Disk intersection subgraph Looking ahead

Access to features - Vertex circulator

∞

u

Circulator for vertices neighboring a
vertex

Tr::Vertex_circulator vc_start =

tr.incident_vertices(u);

Tr::Vertex_circulator vc = vc_start;

do {

Tr::Vertex_handle v(vc);

//...do what needs to be done with v

++vc;

} while (vc != vc_start);

Can also circulate clockwise:

Tr::Vertex_circulator vc_start =

tr.incident_vertices(u);

Tr::Vertex_circulator vc = vc_start;

do {

Tr::Vertex_handle v(vc);

//...do what needs to be done with v

--vc;

} while (vc != vc_start);

Solving problems with CGAL: an example CG-Week/GTS, Chapel Hill, June 19, 2012 17 / 42

Brief CGAL intro 2D Triangulations in CGAL 2D Apollonius graphs Disk intersection subgraph Looking ahead

Access to features - Vertex circulator

∞

u

Circulator for vertices neighboring a
vertex

Tr::Vertex_circulator vc_start =

tr.incident_vertices(u);

Tr::Vertex_circulator vc = vc_start;

do {

Tr::Vertex_handle v(vc);

//...do what needs to be done with v

++vc;

} while (vc != vc_start);

Can also circulate clockwise:

Tr::Vertex_circulator vc_start =

tr.incident_vertices(u);

Tr::Vertex_circulator vc = vc_start;

do {

Tr::Vertex_handle v(vc);

//...do what needs to be done with v

--vc;

} while (vc != vc_start);

Solving problems with CGAL: an example CG-Week/GTS, Chapel Hill, June 19, 2012 17 / 42

Brief CGAL intro 2D Triangulations in CGAL 2D Apollonius graphs Disk intersection subgraph Looking ahead

Access to features - Vertex circulator

∞

u

Circulator for vertices neighboring a
vertex

Tr::Vertex_circulator vc_start =

tr.incident_vertices(u);

Tr::Vertex_circulator vc = vc_start;

do {

Tr::Vertex_handle v(vc);

//...do what needs to be done with v

++vc;

} while (vc != vc_start);

Can also circulate clockwise:

Tr::Vertex_circulator vc_start =

tr.incident_vertices(u);

Tr::Vertex_circulator vc = vc_start;

do {

Tr::Vertex_handle v(vc);

//...do what needs to be done with v

--vc;

} while (vc != vc_start);

Solving problems with CGAL: an example CG-Week/GTS, Chapel Hill, June 19, 2012 17 / 42

Brief CGAL intro 2D Triangulations in CGAL 2D Apollonius graphs Disk intersection subgraph Looking ahead

Access to features - Vertex circulator

∞

u

Circulator for vertices neighboring a
vertex

Tr::Vertex_circulator vc_start =

tr.incident_vertices(u);

Tr::Vertex_circulator vc = vc_start;

do {

Tr::Vertex_handle v(vc);

//...do what needs to be done with v

++vc;

} while (vc != vc_start);

Can also circulate clockwise:

Tr::Vertex_circulator vc_start =

tr.incident_vertices(u);

Tr::Vertex_circulator vc = vc_start;

do {

Tr::Vertex_handle v(vc);

//...do what needs to be done with v

--vc;

} while (vc != vc_start);

Solving problems with CGAL: an example CG-Week/GTS, Chapel Hill, June 19, 2012 17 / 42

Brief CGAL intro 2D Triangulations in CGAL 2D Apollonius graphs Disk intersection subgraph Looking ahead

Access to features - Vertex circulator

∞

u

Circulator for vertices neighboring a
vertex

Tr::Vertex_circulator vc_start =

tr.incident_vertices(u);

Tr::Vertex_circulator vc = vc_start;

do {

Tr::Vertex_handle v(vc);

//...do what needs to be done with v

++vc;

} while (vc != vc_start);

Can also circulate clockwise:

Tr::Vertex_circulator vc_start =

tr.incident_vertices(u);

Tr::Vertex_circulator vc = vc_start;

do {

Tr::Vertex_handle v(vc);

//...do what needs to be done with v

--vc;

} while (vc != vc_start);

Solving problems with CGAL: an example CG-Week/GTS, Chapel Hill, June 19, 2012 17 / 42

Brief CGAL intro 2D Triangulations in CGAL 2D Apollonius graphs Disk intersection subgraph Looking ahead

Access to features - Vertex circulator

∞

u

Circulator for vertices neighboring a
vertex

Tr::Vertex_circulator vc_start =

tr.incident_vertices(u);

Tr::Vertex_circulator vc = vc_start;

do {

Tr::Vertex_handle v(vc);

//...do what needs to be done with v

++vc;

} while (vc != vc_start);

Can also circulate clockwise:

Tr::Vertex_circulator vc_start =

tr.incident_vertices(u);

Tr::Vertex_circulator vc = vc_start;

do {

Tr::Vertex_handle v(vc);

//...do what needs to be done with v

--vc;

} while (vc != vc_start);

Solving problems with CGAL: an example CG-Week/GTS, Chapel Hill, June 19, 2012 17 / 42

Brief CGAL intro 2D Triangulations in CGAL 2D Apollonius graphs Disk intersection subgraph Looking ahead

Access to features - Vertex circulator

∞

u

Circulator for vertices neighboring a
vertex

Tr::Vertex_circulator vc_start =

tr.incident_vertices(u);

Tr::Vertex_circulator vc = vc_start;

do {

Tr::Vertex_handle v(vc);

//...do what needs to be done with v

++vc;

} while (vc != vc_start);

Can also circulate clockwise:

Tr::Vertex_circulator vc_start =

tr.incident_vertices(u);

Tr::Vertex_circulator vc = vc_start;

do {

Tr::Vertex_handle v(vc);

//...do what needs to be done with v

--vc;

} while (vc != vc_start);

Solving problems with CGAL: an example CG-Week/GTS, Chapel Hill, June 19, 2012 17 / 42

Brief CGAL intro 2D Triangulations in CGAL 2D Apollonius graphs Disk intersection subgraph Looking ahead

Access to features - Vertex circulator

∞

u

Circulator for vertices neighboring a
vertex

Tr::Vertex_circulator vc_start =

tr.incident_vertices(u);

Tr::Vertex_circulator vc = vc_start;

do {

Tr::Vertex_handle v(vc);

//...do what needs to be done with v

++vc;

} while (vc != vc_start);

Can also circulate clockwise:

Tr::Vertex_circulator vc_start =

tr.incident_vertices(u);

Tr::Vertex_circulator vc = vc_start;

do {

Tr::Vertex_handle v(vc);

//...do what needs to be done with v

--vc;

} while (vc != vc_start);

Solving problems with CGAL: an example CG-Week/GTS, Chapel Hill, June 19, 2012 17 / 42

Brief CGAL intro 2D Triangulations in CGAL 2D Apollonius graphs Disk intersection subgraph Looking ahead

Access to features - Vertex circulator

∞

u

Circulator for vertices neighboring a
vertex

Tr::Vertex_circulator vc_start =

tr.incident_vertices(u);

Tr::Vertex_circulator vc = vc_start;

do {

Tr::Vertex_handle v(vc);

//...do what needs to be done with v

++vc;

} while (vc != vc_start);

Can also circulate clockwise:

Tr::Vertex_circulator vc_start =

tr.incident_vertices(u);

Tr::Vertex_circulator vc = vc_start;

do {

Tr::Vertex_handle v(vc);

//...do what needs to be done with v

--vc;

} while (vc != vc_start);

Solving problems with CGAL: an example CG-Week/GTS, Chapel Hill, June 19, 2012 17 / 42

Brief CGAL intro 2D Triangulations in CGAL 2D Apollonius graphs Disk intersection subgraph Looking ahead

Access to features - Vertex circulator

∞

u

Circulator for vertices neighboring a
vertex

Tr::Vertex_circulator vc_start =

tr.incident_vertices(u);

Tr::Vertex_circulator vc = vc_start;

do {

Tr::Vertex_handle v(vc);

//...do what needs to be done with v

++vc;

} while (vc != vc_start);

Can also circulate clockwise:

Tr::Vertex_circulator vc_start =

tr.incident_vertices(u);

Tr::Vertex_circulator vc = vc_start;

do {

Tr::Vertex_handle v(vc);

//...do what needs to be done with v

--vc;

} while (vc != vc_start);

Solving problems with CGAL: an example CG-Week/GTS, Chapel Hill, June 19, 2012 17 / 42

Brief CGAL intro 2D Triangulations in CGAL 2D Apollonius graphs Disk intersection subgraph Looking ahead

The 2D Apollonius diagram
(aka additively-weighted Voronoi diagram)

Input: set of n weighted sites
Si = (ci, ri) (circles with center ci
and radius ri)

Distance: δ(x, Si) = ‖x− ci‖2 − ri
Output: Voronoi diagram (defined
the usual way)

Three sites can have up to two
Voronoi circles

Bisectors are [branches of] hyperbolas

A site can have empty Voronoi region;
such a site is called hidden

The 1-skeleton may have multiple
connected components (that are
connected at infinity)

Solving problems with CGAL: an example CG-Week/GTS, Chapel Hill, June 19, 2012 18 / 42

Brief CGAL intro 2D Triangulations in CGAL 2D Apollonius graphs Disk intersection subgraph Looking ahead

The 2D Apollonius diagram
(aka additively-weighted Voronoi diagram)

Input: set of n weighted sites
Si = (ci, ri) (circles with center ci
and radius ri)

Distance: δ(x, Si) = ‖x− ci‖2 − ri
Output: Voronoi diagram (defined
the usual way)

Three sites can have up to two
Voronoi circles

Bisectors are [branches of] hyperbolas

A site can have empty Voronoi region;
such a site is called hidden

The 1-skeleton may have multiple
connected components (that are
connected at infinity)

Solving problems with CGAL: an example CG-Week/GTS, Chapel Hill, June 19, 2012 18 / 42

Brief CGAL intro 2D Triangulations in CGAL 2D Apollonius graphs Disk intersection subgraph Looking ahead

The Apollonius_graph_2 package

∞

The algorithm is dynamic

Dual of the Voronoi diagram
(a.k.a. Apollonius graph) is
computed and stored; actually the
compactified version

The Apollonius graph (up to
degeneracies) is planar and has
triangular faces

Two triangles can have two edges
in common

Two sites can be connected with
multiple edges

A site can appear multiple times
on the convex hull

Solving problems with CGAL: an example CG-Week/GTS, Chapel Hill, June 19, 2012 19 / 42

Brief CGAL intro 2D Triangulations in CGAL 2D Apollonius graphs Disk intersection subgraph Looking ahead

The dynamic algorithm

Insertion: to insert the new site S = (c, r)

We perform point-location of c in the existing Voronoi diagram

We determine whether S is hidden or not

If S is not hidden, find the portion of the Voronoi diagram to be
destroyed (conflict region)

Destroy the conflict region and create the Voronoi region of S.

Deletion: to delete an existing site S = (c, r)

Construct the “small” Voronoi diagram of the neighbors of S

Destroy the star of S in the “big” Voronoi diagram

Use the “small” diagram to fill-in the hole just created

Finally, insert in the new diagram the sites than were hidden by S

Solving problems with CGAL: an example CG-Week/GTS, Chapel Hill, June 19, 2012 20 / 42

Brief CGAL intro 2D Triangulations in CGAL 2D Apollonius graphs Disk intersection subgraph Looking ahead

The dynamic algorithm

Insertion: to insert the new site S = (c, r)

We perform point-location of c in the existing Voronoi diagram

We determine whether S is hidden or not

If S is not hidden, find the portion of the Voronoi diagram to be
destroyed (conflict region)

Destroy the conflict region and create the Voronoi region of S.

Deletion: to delete an existing site S = (c, r)

Construct the “small” Voronoi diagram of the neighbors of S

Destroy the star of S in the “big” Voronoi diagram

Use the “small” diagram to fill-in the hole just created

Finally, insert in the new diagram the sites than were hidden by S

Solving problems with CGAL: an example CG-Week/GTS, Chapel Hill, June 19, 2012 20 / 42

Brief CGAL intro 2D Triangulations in CGAL 2D Apollonius graphs Disk intersection subgraph Looking ahead

The functionality of the package

Basically the same with triangulations (+ some differences):

4 Provides iterators for all/finite vertices/edges/faces

4 Provides circulators for neighboring vertices
• neighboring vertices may be reported multiple times

4 Provides circulators for edges/faces incident to a vertex

4 Provides access to hidden/visible sites (via iterators)

4 Supports nearest-neighbor queries for points (these are
point-location queries in the Apollonius diagram)

7 Does not support point-location queries on the Apollonius graph
• this is possible in basic, Delaunay and regular triangulations

7 Degeneracies are handled via an implicit perturbation scheme that
depends on order of insertion
4 but we are working on a canonical perturbation scheme

4 In the incremental-only scenario, it is possible to save storage by not
keeping track of the hidden sites
• done at the level of the vertex base class

Solving problems with CGAL: an example CG-Week/GTS, Chapel Hill, June 19, 2012 21 / 42

Brief CGAL intro 2D Triangulations in CGAL 2D Apollonius graphs Disk intersection subgraph Looking ahead

The functionality of the package

Basically the same with triangulations (+ some differences):

4 Provides iterators for all/finite vertices/edges/faces

4 Provides circulators for neighboring vertices
• neighboring vertices may be reported multiple times

4 Provides circulators for edges/faces incident to a vertex

4 Provides access to hidden/visible sites (via iterators)

4 Supports nearest-neighbor queries for points (these are
point-location queries in the Apollonius diagram)

7 Does not support point-location queries on the Apollonius graph
• this is possible in basic, Delaunay and regular triangulations

7 Degeneracies are handled via an implicit perturbation scheme that
depends on order of insertion
4 but we are working on a canonical perturbation scheme

4 In the incremental-only scenario, it is possible to save storage by not
keeping track of the hidden sites
• done at the level of the vertex base class

Solving problems with CGAL: an example CG-Week/GTS, Chapel Hill, June 19, 2012 21 / 42

Brief CGAL intro 2D Triangulations in CGAL 2D Apollonius graphs Disk intersection subgraph Looking ahead

The functionality of the package

Basically the same with triangulations (+ some differences):

4 Provides iterators for all/finite vertices/edges/faces

4 Provides circulators for neighboring vertices
• neighboring vertices may be reported multiple times

4 Provides circulators for edges/faces incident to a vertex

4 Provides access to hidden/visible sites (via iterators)

4 Supports nearest-neighbor queries for points (these are
point-location queries in the Apollonius diagram)

7 Does not support point-location queries on the Apollonius graph
• this is possible in basic, Delaunay and regular triangulations

7 Degeneracies are handled via an implicit perturbation scheme that
depends on order of insertion
4 but we are working on a canonical perturbation scheme

4 In the incremental-only scenario, it is possible to save storage by not
keeping track of the hidden sites
• done at the level of the vertex base class

Solving problems with CGAL: an example CG-Week/GTS, Chapel Hill, June 19, 2012 21 / 42

Brief CGAL intro 2D Triangulations in CGAL 2D Apollonius graphs Disk intersection subgraph Looking ahead

The design of the package

Follows the same design with triangulations (+ some differences again):

Apollonius_graph_2 class is templated by the traits and the data
structure, which much be models of corresponding concepts

The data structure concept is the same as for triangulations

however, we need to use a vertex base that is different from that for
triangulations

The traits concept lists requirements for predicates and constructions

unlike the case of triangulations, the CGAL 2D kernels are not models:
more predicates and constructions are needed

There is a hierarchical version of the Apollonius_graph_2 class
(analogous to the Delaunay hierarchy), which can speed up the
computation of the diagram for large enough data sets.

Solving problems with CGAL: an example CG-Week/GTS, Chapel Hill, June 19, 2012 22 / 42

Brief CGAL intro 2D Triangulations in CGAL 2D Apollonius graphs Disk intersection subgraph Looking ahead

The design of the package

Follows the same design with triangulations (+ some differences again):

Apollonius_graph_2 class is templated by the traits and the data
structure, which much be models of corresponding concepts

The data structure concept is the same as for triangulations

however, we need to use a vertex base that is different from that for
triangulations

The traits concept lists requirements for predicates and constructions

unlike the case of triangulations, the CGAL 2D kernels are not models:
more predicates and constructions are needed

There is a hierarchical version of the Apollonius_graph_2 class
(analogous to the Delaunay hierarchy), which can speed up the
computation of the diagram for large enough data sets.

Solving problems with CGAL: an example CG-Week/GTS, Chapel Hill, June 19, 2012 22 / 42

Brief CGAL intro 2D Triangulations in CGAL 2D Apollonius graphs Disk intersection subgraph Looking ahead

The design of the package

Follows the same design with triangulations (+ some differences again):

Apollonius_graph_2 class is templated by the traits and the data
structure, which much be models of corresponding concepts

The data structure concept is the same as for triangulations

however, we need to use a vertex base that is different from that for
triangulations

The traits concept lists requirements for predicates and constructions

unlike the case of triangulations, the CGAL 2D kernels are not models:
more predicates and constructions are needed

There is a hierarchical version of the Apollonius_graph_2 class
(analogous to the Delaunay hierarchy), which can speed up the
computation of the diagram for large enough data sets.

Solving problems with CGAL: an example CG-Week/GTS, Chapel Hill, June 19, 2012 22 / 42

Brief CGAL intro 2D Triangulations in CGAL 2D Apollonius graphs Disk intersection subgraph Looking ahead

The design of the package

Follows the same design with triangulations (+ some differences again):

Apollonius_graph_2 class is templated by the traits and the data
structure, which much be models of corresponding concepts

The data structure concept is the same as for triangulations

however, we need to use a vertex base that is different from that for
triangulations

The traits concept lists requirements for predicates and constructions

unlike the case of triangulations, the CGAL 2D kernels are not models:
more predicates and constructions are needed

There is a hierarchical version of the Apollonius_graph_2 class
(analogous to the Delaunay hierarchy), which can speed up the
computation of the diagram for large enough data sets.

Solving problems with CGAL: an example CG-Week/GTS, Chapel Hill, June 19, 2012 22 / 42

Brief CGAL intro 2D Triangulations in CGAL 2D Apollonius graphs Disk intersection subgraph Looking ahead

The vertex base class – Part 1

template <class Gt, bool StoreHidden = true, class Vb = Triangulation_ds_vertex_base_2<> >

class Apollonius_graph_vertex_base_2

: public Vb

{

private:

typedef typename Vb::Triangulation_data_structure AGDS;

public:

// TYPES

//------

typedef Gt Geom_traits;

typedef Vb Base;

typedef typename Gt::Site_2 Site_2;

typedef AGDS Apollonius_graph_data_structure_2;

typedef typename AGDS::Face_handle Face_handle;

typedef typename AGDS::Vertex_handle Vertex_handle;

enum {Store_hidden = StoreHidden};

template < typename AGDS2 >

struct Rebind_TDS {

typedef typename Vb::template Rebind_TDS<AGDS2>::Other Vb2;

typedef Apollonius_graph_vertex_base_2<Gt,StoreHidden,Vb2> Other;

};

private:

// local types

typedef std::list<Site_2> Container;

Solving problems with CGAL: an example CG-Week/GTS, Chapel Hill, June 19, 2012 23 / 42

Brief CGAL intro 2D Triangulations in CGAL 2D Apollonius graphs Disk intersection subgraph Looking ahead

The vertex base class – Part 2

public:

// TYPES (continued)

//------------------

typedef typename Container::iterator Hidden_sites_iterator;

public:

// CREATION

//---------

Apollonius_graph_vertex_base_2() : Vb() {}

Apollonius_graph_vertex_base_2(const Site_2& p) : Vb(), _p(p) {}

Apollonius_graph_vertex_base_2(const Site_2& p, Face_handle f) : Vb(f), _p(p) {}

~Apollonius_graph_vertex_base_2() { clear_hidden_sites_container(); }

// ACCESS METHODS

//---------------

const Site_2& site() const { return _p; }

Site_2& site() { return _p; }

Face_handle face() const { return Vb::face(); }

std::size_t number_of_hidden_sites() const { return hidden_site_list.size(); }

Hidden_sites_iterator hidden_sites_begin() { return hidden_site_list.begin(); }

Hidden_sites_iterator hidden_sites_end() { return hidden_site_list.end(); }

Solving problems with CGAL: an example CG-Week/GTS, Chapel Hill, June 19, 2012 24 / 42

Brief CGAL intro 2D Triangulations in CGAL 2D Apollonius graphs Disk intersection subgraph Looking ahead

The vertex base class – Part 3

public:

// SETTING AND UNSETTING

//----------------------

void set_site(const Site_2& p) { _p = p; }

void add_hidden_site(const Site_2& p)

{

if (StoreHidden) {

hidden_site_list.push_back(p);

}

}

void clear_hidden_sites_container()

{

hidden_site_list.clear();

}

public:

// VALIDITY CHECK

bool is_valid(bool verbose = false, int level = 0) const {

return Vb::is_valid(verbose, level);

}

private:

// class variables

Container hidden_site_list;

Site_2 _p;

};

Solving problems with CGAL: an example CG-Week/GTS, Chapel Hill, June 19, 2012 25 / 42

Brief CGAL intro 2D Triangulations in CGAL 2D Apollonius graphs Disk intersection subgraph Looking ahead

Our “toy” problem

Suppose we are given a set D of n disks D1, . . . , Dn, we want to build a data
structure that supports (efficiently) the following query:

Let be the intersection graph of.

Query

Given two disks Di and Dj in D, do they belong to the same connected
component of the union ∪n

i=1Di?

The solution that will be presented today is based on the
Apollonius_graph_2 CGAL package.

We will assume that there are no hidden sites

We will describe a static solution (i.e., all sites are known in advance)

The query time will be O(1).

Solving problems with CGAL: an example CG-Week/GTS, Chapel Hill, June 19, 2012 26 / 42

Brief CGAL intro 2D Triangulations in CGAL 2D Apollonius graphs Disk intersection subgraph Looking ahead

Our “toy” problem

Suppose we are given a set D of n disks D1, . . . , Dn, we want to build a data
structure that supports (efficiently) the following query:

Let ID be the intersection graph of D.

Query

Given two disks Di and Dj in D, do they belong to the same connected
component of ID?

The solution that will be presented today is based on the
Apollonius_graph_2 CGAL package.

We will assume that there are no hidden sites

We will describe a static solution (i.e., all sites are known in advance)

The query time will be O(1).

Solving problems with CGAL: an example CG-Week/GTS, Chapel Hill, June 19, 2012 26 / 42

Brief CGAL intro 2D Triangulations in CGAL 2D Apollonius graphs Disk intersection subgraph Looking ahead

Our “toy” problem

Suppose we are given a set D of n disks D1, . . . , Dn, we want to build a data
structure that supports (efficiently) the following query:

Let ID be the intersection graph of D.

Query

Given two disks Di and Dj in D, do they belong to the same connected
component of ID?

The solution that will be presented today is based on the
Apollonius_graph_2 CGAL package.

We will assume that there are no hidden sites

We will describe a static solution (i.e., all sites are known in advance)

The query time will be O(1).

Solving problems with CGAL: an example CG-Week/GTS, Chapel Hill, June 19, 2012 26 / 42

Brief CGAL intro 2D Triangulations in CGAL 2D Apollonius graphs Disk intersection subgraph Looking ahead

Our “toy” solution

Let AG(D) denote the Apollonius
graph of D.

There exists a subgraph G of

AG(D) having the same

connected components as ID.

in fact, we will compute G to
be a spanning forest FD of G.

We will compute FD by

performing a DFS-like search on

AG(D):

for each non-visited disk v, we
will find, among v’s neighbors
in AG(D), all disks with which
v intersects; call this set Iv
we will mark v as visited
we will proceed recursively
with all disks in Iv

Solving problems with CGAL: an example CG-Week/GTS, Chapel Hill, June 19, 2012 27 / 42

Brief CGAL intro 2D Triangulations in CGAL 2D Apollonius graphs Disk intersection subgraph Looking ahead

Our “toy” solution

Let AG(D) denote the Apollonius
graph of D.

There exists a subgraph G of

AG(D) having the same

connected components as ID.

in fact, we will compute G to
be a spanning forest FD of G.

We will compute FD by

performing a DFS-like search on

AG(D):

for each non-visited disk v, we
will find, among v’s neighbors
in AG(D), all disks with which
v intersects; call this set Iv
we will mark v as visited
we will proceed recursively
with all disks in Iv

Solving problems with CGAL: an example CG-Week/GTS, Chapel Hill, June 19, 2012 27 / 42

Brief CGAL intro 2D Triangulations in CGAL 2D Apollonius graphs Disk intersection subgraph Looking ahead

Our “toy” solution

Let AG(D) denote the Apollonius
graph of D.

There exists a subgraph G of

AG(D) having the same

connected components as ID.

in fact, we will compute G to
be a spanning forest FD of G.

We will compute FD by

performing a DFS-like search on

AG(D):

for each non-visited disk v, we
will find, among v’s neighbors
in AG(D), all disks with which
v intersects; call this set Iv
we will mark v as visited
we will proceed recursively
with all disks in Iv

Solving problems with CGAL: an example CG-Week/GTS, Chapel Hill, June 19, 2012 27 / 42

Brief CGAL intro 2D Triangulations in CGAL 2D Apollonius graphs Disk intersection subgraph Looking ahead

Our “toy” solution

Let AG(D) denote the Apollonius
graph of D.

There exists a subgraph G of

AG(D) having the same

connected components as ID.

in fact, we will compute G to
be a spanning forest FD of G.

We will compute FD by

performing a DFS-like search on

AG(D):

for each non-visited disk v, we
will find, among v’s neighbors
in AG(D), all disks with which
v intersects; call this set Iv
we will mark v as visited
we will proceed recursively
with all disks in Iv

Solving problems with CGAL: an example CG-Week/GTS, Chapel Hill, June 19, 2012 27 / 42

Brief CGAL intro 2D Triangulations in CGAL 2D Apollonius graphs Disk intersection subgraph Looking ahead

Our “toy” solution

Let AG(D) denote the Apollonius
graph of D.

There exists a subgraph G of

AG(D) having the same

connected components as ID.

in fact, we will compute G to
be a spanning forest FD of G.

We will compute FD by

performing a DFS-like search on

AG(D):

for each non-visited disk v, we
will find, among v’s neighbors
in AG(D), all disks with which
v intersects; call this set Iv
we will mark v as visited
we will proceed recursively
with all disks in Iv

Solving problems with CGAL: an example CG-Week/GTS, Chapel Hill, June 19, 2012 27 / 42

Brief CGAL intro 2D Triangulations in CGAL 2D Apollonius graphs Disk intersection subgraph Looking ahead

Our “toy” solution

Let AG(D) denote the Apollonius
graph of D.

There exists a subgraph G of

AG(D) having the same

connected components as ID.

in fact, we will compute G to
be a spanning forest FD of G.

We will compute FD by

performing a DFS-like search on

AG(D):

for each non-visited disk v, we
will find, among v’s neighbors
in AG(D), all disks with which
v intersects; call this set Iv
we will mark v as visited
we will proceed recursively
with all disks in Iv

Solving problems with CGAL: an example CG-Week/GTS, Chapel Hill, June 19, 2012 27 / 42

Brief CGAL intro 2D Triangulations in CGAL 2D Apollonius graphs Disk intersection subgraph Looking ahead

Our “toy” solution

Let AG(D) denote the Apollonius
graph of D.

There exists a subgraph G of

AG(D) having the same

connected components as ID.

in fact, we will compute G to
be a spanning forest FD of G.

We will compute FD by

performing a DFS-like search on

AG(D):
for each non-visited disk v, we
will find, among v’s neighbors
in AG(D), all disks with which
v intersects; call this set Iv
we will mark v as visited
we will proceed recursively
with all disks in Iv

Solving problems with CGAL: an example CG-Week/GTS, Chapel Hill, June 19, 2012 27 / 42

Brief CGAL intro 2D Triangulations in CGAL 2D Apollonius graphs Disk intersection subgraph Looking ahead

Implementing our solution

We will implement the forest FD in-place. To do this we will:

Ê Modify the vertex base class of AG(D) by adding fields for storing

À the in-place forest (as a set of rooted trees)
Á the root of the tree that the vertex belongs to (rep. vertex)

Ë Create a new traits class with the additional predicates needed for
computing FD

Ì Implement the Disk_intersection_subgraph_2 class that will

À compute FD
Á support the same-connected-component queries
Á provide access to the connected components of FD via iterators

Solving problems with CGAL: an example CG-Week/GTS, Chapel Hill, June 19, 2012 28 / 42

Brief CGAL intro 2D Triangulations in CGAL 2D Apollonius graphs Disk intersection subgraph Looking ahead

Implementing our solution

We will implement the forest FD in-place. To do this we will:
Ê Modify the vertex base class of AG(D) by adding fields for storing

À the in-place forest (as a set of rooted trees)
Á the root of the tree that the vertex belongs to (rep. vertex)

Ë Create a new traits class with the additional predicates needed for
computing FD

Ì Implement the Disk_intersection_subgraph_2 class that will

À compute FD
Á support the same-connected-component queries
Á provide access to the connected components of FD via iterators

Solving problems with CGAL: an example CG-Week/GTS, Chapel Hill, June 19, 2012 28 / 42

Brief CGAL intro 2D Triangulations in CGAL 2D Apollonius graphs Disk intersection subgraph Looking ahead

Implementing our solution

We will implement the forest FD in-place. To do this we will:
Ê Modify the vertex base class of AG(D) by adding fields for storing

À the in-place forest (as a set of rooted trees)
Á the root of the tree that the vertex belongs to (rep. vertex)

Ë Create a new traits class with the additional predicates needed for
computing FD

Ì Implement the Disk_intersection_subgraph_2 class that will

À compute FD
Á support the same-connected-component queries
Á provide access to the connected components of FD via iterators

Solving problems with CGAL: an example CG-Week/GTS, Chapel Hill, June 19, 2012 28 / 42

Brief CGAL intro 2D Triangulations in CGAL 2D Apollonius graphs Disk intersection subgraph Looking ahead

Implementing our solution

We will implement the forest FD in-place. To do this we will:
Ê Modify the vertex base class of AG(D) by adding fields for storing

À the in-place forest (as a set of rooted trees)
Á the root of the tree that the vertex belongs to (rep. vertex)

Ë Create a new traits class with the additional predicates needed for
computing FD

Ì Implement the Disk_intersection_subgraph_2 class that will

À compute FD
Á support the same-connected-component queries
Á provide access to the connected components of FD via iterators

Solving problems with CGAL: an example CG-Week/GTS, Chapel Hill, June 19, 2012 28 / 42

Brief CGAL intro 2D Triangulations in CGAL 2D Apollonius graphs Disk intersection subgraph Looking ahead

The new vertex base class

Must be a model of the ApolloniusGraphVertexBase_2 concept

Additional fields:

rep_vertex (the representative vertex)
parent (the parent vertex in the tree)
children (the children in the tree)

The children will be implemented as

std::set<Vertex_handle,Vertex_less>

Vertex_less is the comparator functor used in the std::set

Solving problems with CGAL: an example CG-Week/GTS, Chapel Hill, June 19, 2012 29 / 42

Brief CGAL intro 2D Triangulations in CGAL 2D Apollonius graphs Disk intersection subgraph Looking ahead

The Disk_intersection_subgraph_vertex_base_2 class – Part 1

template<class Gt, bool StoreHidden = false, class Vb = Apollonius_graph_vertex_base_2<Gt,StoreHidden> >

class Disk_intersection_subgraph_vertex_base_2

: public Vb

{

private:

typedef Vb Base;

public:

// public types (required by the ApolloniusGraphVertexBase_2 concept)

typedef typename Base::Geom_traits Geom_traits;

typedef typename Base::Site_2 Site_2;

typedef typename Base::Apollonius_graph_data_structure_2

Apollonius_graph_data_structure_2;

typedef typename Base::Face_handle Face_handle;

typedef typename Base::Vertex_handle Vertex_handle;

static const bool Store_hidden = StoreHidden;

// the rebind mechanism

template < typename AGDS2 >

struct Rebind_TDS {

typedef typename Vb::template Rebind_TDS<AGDS2>::Other Vb2;

typedef

Disk_intersection_subgraph_vertex_base_2<Gt,Store_hidden,Vb2> Other;

};

Solving problems with CGAL: an example CG-Week/GTS, Chapel Hill, June 19, 2012 30 / 42

Brief CGAL intro 2D Triangulations in CGAL 2D Apollonius graphs Disk intersection subgraph Looking ahead

The Disk_intersection_subgraph_vertex_base_2 class – Part 2

private:

// the comparator functor that will be used in the std::set;

// it uses the Compare_site_2 which is a new predicate (it is not

// provided by the model of the ApolloniusGraphTraits_2 concept

struct Vertex_less

{

typedef typename Geom_traits::Compare_site_2 Compare_site_2;

bool operator()(const Vertex_handle& v1,

const Vertex_handle& v2) const

{

return Compare_site_2()(v1->site(), v2->site()) == SMALLER;

}

};

// type for the set of children nodes

typedef std::set<Vertex_handle,Vertex_less> Children_set;

// the representative vertex

Vertex_handle rep_vertex;

// the parent vertex

Vertex_handle v_parent;

// the children

Children_set children;

public:

// type for the iterator on the children

typedef typename Children_set::const_iterator Children_iterator;

Solving problems with CGAL: an example CG-Week/GTS, Chapel Hill, June 19, 2012 31 / 42

Brief CGAL intro 2D Triangulations in CGAL 2D Apollonius graphs Disk intersection subgraph Looking ahead

The Disk_intersection_subgraph_vertex_base_2 class – Part 3

public:

// constructors

Disk_intersection_subgraph_vertex_base_2() : Base(), rep_vertex(), v_parent() {}

Disk_intersection_subgraph_vertex_base_2(const Site_2& p) : Base(p), rep_vertex(), v_parent() {}

Disk_intersection_subgraph_vertex_base_2(const Site_2& p, Face_handle f)

: Base(p, f), rep_vertex(), v_parent() {}

// set/get the representative vertex

inline void representative(Vertex_handle rep) { rep_vertex = rep; }

inline Vertex_handle representative() const { return rep_vertex; }

// set/get the parent vertex

inline void parent(Vertex_handle vp) { v_parent = vp; }

inline Vertex_handle parent() const { return v_parent; }

// add a new child

inline void add_child(Vertex_handle n) { children.insert(n); }

// test if v is a child of *this vertex

inline bool has_child(Vertex_handle v) const { return children.find(v) != children.end(); }

// iterators for children

inline Children_iterator children_begin() const { return children.begin(); }

inline Children_iterator children_end() const { return children.end(); }

// the number of children

inline typename Children_set::size_type number_of_children() const { return children.size(); }

// clear the container of the child nodes

inline void clear_children_container() { children.clear(); }

};

Solving problems with CGAL: an example CG-Week/GTS, Chapel Hill, June 19, 2012 32 / 42

Brief CGAL intro 2D Triangulations in CGAL 2D Apollonius graphs Disk intersection subgraph Looking ahead

The additional predicates

Two additional predicates required:

Ê A functor that compares two disks (returns a Comparison_result); must

produce total order of D
this predicate is somehow optional since it depends on our choice of data
structure for the Children_set in the vertex base class

Ë A functor that returns true if two disks intersect and false otherwise

given two disks Di = ((xi, yi), ri), i = 1, 2, this predicate amounts to
computing the sign of quantity:

(x1 − x2)
2 − (y1 − y2)

2 − (r1 − r2)
2

Solving problems with CGAL: an example CG-Week/GTS, Chapel Hill, June 19, 2012 33 / 42

Brief CGAL intro 2D Triangulations in CGAL 2D Apollonius graphs Disk intersection subgraph Looking ahead

The disk comparator functor

Really simple, and based on existing predicates
• Gt stands for the disk intersection subgraph traits class

template<class Gt>

class Compare_site_2

{

public:

typedef typename Gt::Comparison_result Comparison_result;

typedef typename Gt::Site_2 Site_2;

protected:

typedef typename Gt::Compare_x_2 Compare_x_2;

typedef typename Gt::Compare_y_2 Compare_y_2;

typedef typename Gt::Compare_weight_2 Compare_weight_2;

public:

typedef Site_2 argument_type;

typedef Comparison_result result_type;

Comparison_result operator()(const Site_2& p, const Site_2& q) const

{

Comparison_result cr_w = Compare_weight_2()(p, q);

if (cr_w != EQUAL) { return cr_w; }

Comparison_result cr_x = Compare_x_2()(p, q);

if (cr_x != EQUAL) { return cr_x; }

return Compare_y_2()(p, q);

}

};

Solving problems with CGAL: an example CG-Week/GTS, Chapel Hill, June 19, 2012 34 / 42

Brief CGAL intro 2D Triangulations in CGAL 2D Apollonius graphs Disk intersection subgraph Looking ahead

The disk intersection predicate

Again simple; will use as much kernel functionality as possible
• again Gt stands for the disk intersection subgraph traits class

template<class Gt>

class Do_intersect_2

{

protected:

typedef Gt Geom_traits;

typedef typename Geom_traits::Site_2 Site_2;

// functor, taken from the CGAL kernel, that computes the squared

// distance of two 2D points

typedef typename Geom_traits::Kernel::Compute_squared_distance_2 Distance_2;

public:

typedef bool result_type;

typedef Site_2 argument_type;

// returns true if the (closures of the) disks s and t have

// non-empty intersection, false otherwise

inline

bool operator()(const Site_2& s, const Site_2& t) const

{

return CGAL::compare(CGAL::square(s.weight() + t.weight()),

Distance_2()(s.point(), t.point())

) != SMALLER;

}

};

Solving problems with CGAL: an example CG-Week/GTS, Chapel Hill, June 19, 2012 35 / 42

Brief CGAL intro 2D Triangulations in CGAL 2D Apollonius graphs Disk intersection subgraph Looking ahead

Putting the traits together

K is a model of the CGAL 2D kernel concept

template<class K>

class Disk_intersection_subgraph_traits_2 : public Apollonius_graph_traits_2<K>

{

typedef Disk_intersection_subgraph_traits_2<K> Self;

protected:

typedef Apollonius_graph_traits_2<K> Base;

public:

typedef K Kernel;

typedef typename Kernel::Comparison_result Comparison_result;

typedef typename Base::Site_2 Site_2;

// types for the two new predicates

typedef CGAL::Do_intersect_2<Self> Do_intersect_2;

typedef CGAL::Compare_site_2<Self> Compare_site_2;

// access to the two new predicates

inline Compare_site_2

compare_site_2_object() const { return Compare_site_2(); }

inline Do_intersect_2

do_intersect_2_object() const { return Do_intersect_2(); }

};

Solving problems with CGAL: an example CG-Week/GTS, Chapel Hill, June 19, 2012 36 / 42

Brief CGAL intro 2D Triangulations in CGAL 2D Apollonius graphs Disk intersection subgraph Looking ahead

Implementing the Disk_intersection_subgraph_2 class

Will derive from the Apollonius_graph_2 class in a protected manner

Instantiate the TDS with our own vertex base class

Use our augmented traits

template<class Gt>

class Disk_intersection_subgraph_2

: protected Apollonius_graph_2<Gt, Triangulation_data_structure_2<

Disk_intersection_subgraph_vertex_base_2<Gt,false>, Triangulation_face_base_2<Gt> > >

{

typedef Apollonius_graph_2<Gt, Triangulation_data_structure_2<

Disk_intersection_subgraph_vertex_base_2<Gt,false>, Triangulation_face_base_2<Gt> > >

Base;

public:

typedef typename Base::Finite_vertices_iterator Vertex_iterator;

typedef typename Base::Vertex_circulator Vertex_circulator;

typedef typename Base::Vertex_handle Vertex_handle;

typedef typename Base::Geom_traits Geom_traits;

typedef typename Base::size_type size_type;

typedef typename Base::Site_2 Site_2;

typedef typename Base::Point_2 Point_2;

protected:

typedef std::queue<Vertex_handle> Queue;

Solving problems with CGAL: an example CG-Week/GTS, Chapel Hill, June 19, 2012 37 / 42

Brief CGAL intro 2D Triangulations in CGAL 2D Apollonius graphs Disk intersection subgraph Looking ahead

The main part of the class implementation

protected:

void compute_intersection_subgraph(); // to be implemented

void compute_intersection_subgraph(Queue& q, Vertex_handle v_rep); // to be implemented

size_type n_components; // the number of connected components

public:

// constructors

Disk_intersection_subgraph_2(const Geom_traits& gt = Geom_traits()) : Base(gt) {}

template<class Input_iterator>

Disk_intersection_subgraph_2(Input_iterator first, Input_iterator beyond,

const Geom_traits& gt = Geom_traits()) : Base(first, beyond, gt)

{ compute_intersection_subgraph(); }

inline bool in_same_connected_component(Vertex_handle v1, Vertex_handle v2) const {

return v1->representative() == v2->representative();

}

bool is_valid(bool verbose = false, int level = 1) const

{

for (Vertex_iterator vit = vertices_begin(); vit != vertices_end(); ++vit) {

if (vit->representative() == Vertex_handle()) { return false; }

for (Children_iterator it = vit->children_begin(); it != vit->children_end(); ++it) {

if ((*it)->parent() != Vertex_handle(vit)) { return false; }

if (!vit->has_child(*it)) { return false; }

}

}

return Base::is_valid(verbose, level);

}

Solving problems with CGAL: an example CG-Week/GTS, Chapel Hill, June 19, 2012 38 / 42

Brief CGAL intro 2D Triangulations in CGAL 2D Apollonius graphs Disk intersection subgraph Looking ahead

The various iterators

typedef typename Base::Triangulation_data_structure::Vertex::Children_iterator Children_iterator;

inline Vertex_iterator vertices_begin() const { return Base::finite_vertices_begin(); }

inline Vertex_iterator vertices_end() const { return Base::finite_vertices_end(); }

typedef Connected_comp_vertex_iterator<Vertex_iterator,Vertex_handle>

Connected_component_vertex_iterator;

typedef Connected_comp_iterator<Vertex_iterator,Vertex_handle>

Connected_component_iterator;

typedef Connected_component_iterator Connected_component_handle;

inline Connected_component_iterator connected_components_begin() const {

return Connected_component_iterator(vertices_end(), vertices_begin());

}

inline Connected_component_iterator connected_components_end() const {

return Connected_component_iterator(vertices_end());

}

inline Connected_component_vertex_iterator vertices_begin(Connected_component_handle ch) const {

return Connected_component_vertex_iterator(vertices_end(), ch->representative(), vertices_begin());

}

inline Connected_component_vertex_iterator vertices_end(Connected_component_handle ch) const

{

return Connected_component_vertex_iterator(vertices_end(), ch->representative());

}

Solving problems with CGAL: an example CG-Week/GTS, Chapel Hill, June 19, 2012 39 / 42

Brief CGAL intro 2D Triangulations in CGAL 2D Apollonius graphs Disk intersection subgraph Looking ahead

Counting vertices and connected components

inline size_type number_of_connected_components() const { return n_components; }

inline size_type number_of_connected_component_vertices(Connected_component_handle ch) const

{

size_type nv = number_of_vertices();

if (nv < 2) { return nv; }

Queue q;

q.push(ch->representative());

size_type n(0);

while (!q.empty()) {

Vertex_handle v = q.front();

q.pop();

++n;

for (Children_iterator it = v->children_begin(); it != v->children_end(); ++it) {

q.push(*it);

}

}

return n;

}

inline size_type number_of_vertices() const { return Base::number_of_vertices(); }

};

Solving problems with CGAL: an example CG-Week/GTS, Chapel Hill, June 19, 2012 40 / 42

Brief CGAL intro 2D Triangulations in CGAL 2D Apollonius graphs Disk intersection subgraph Looking ahead

Time to do the “dirty” job

Files from the web site if you have not downloaded them yet

CGAL is already setup in the VirtualBox image

Can compile the files right away (demo and examples directories)

What to do:

Open the file Disk_intersection_subgraph_2.h (include/CGAL
directory) and fill-in the code for the two
compute_intersection_subgraph() methods.

Will be walking around to help

Solving problems with CGAL: an example CG-Week/GTS, Chapel Hill, June 19, 2012 41 / 42

Brief CGAL intro 2D Triangulations in CGAL 2D Apollonius graphs Disk intersection subgraph Looking ahead

Going one step further

7 The traits class presented assumes an exact predicates/exact
constructions CGAL kernel (due to the computations in the
Do_intersect_2 predicate)

4 A traits class that supports arithmetic filtering should also be

implemented

easy and straightforward to do; it is a purely technical issue

4 The implementation could easily be made incremental: use the

Union-Find data structure to compute the spanning forest

there is an implementation of Union-Find in the Support Library of CGAL

This is it for today. Thank you

Solving problems with CGAL: an example CG-Week/GTS, Chapel Hill, June 19, 2012 42 / 42

Brief CGAL intro 2D Triangulations in CGAL 2D Apollonius graphs Disk intersection subgraph Looking ahead

Going one step further

7 The traits class presented assumes an exact predicates/exact
constructions CGAL kernel (due to the computations in the
Do_intersect_2 predicate)

4 A traits class that supports arithmetic filtering should also be

implemented

easy and straightforward to do; it is a purely technical issue

4 The implementation could easily be made incremental: use the

Union-Find data structure to compute the spanning forest

there is an implementation of Union-Find in the Support Library of CGAL

This is it for today. Thank you

Solving problems with CGAL: an example CG-Week/GTS, Chapel Hill, June 19, 2012 42 / 42

Brief CGAL intro 2D Triangulations in CGAL 2D Apollonius graphs Disk intersection subgraph Looking ahead

Going one step further

7 The traits class presented assumes an exact predicates/exact
constructions CGAL kernel (due to the computations in the
Do_intersect_2 predicate)

4 A traits class that supports arithmetic filtering should also be

implemented

easy and straightforward to do; it is a purely technical issue

4 The implementation could easily be made incremental: use the

Union-Find data structure to compute the spanning forest

there is an implementation of Union-Find in the Support Library of CGAL

This is it for today. Thank you

Solving problems with CGAL: an example CG-Week/GTS, Chapel Hill, June 19, 2012 42 / 42

	Brief CGAL intro
	2D Triangulations in CGAL
	2D Apollonius graphs
	Disk intersection subgraph
	Looking ahead

