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Abstract

We consider the problem of selective imaging extended reflectors in cluttered media. We propose a random travel

time model for simulating the array response matrix in clutter and we compare it with the full wave solution. Our

simplified model captures very well the full wave random medium behavior as this is illustrated by our numerical

results. The algorithm for selective array imaging uses coherent interferometry on a filtered version of the data.

The filter, which is based on the singular value decomposition of the response matrix, enhances the signal reflected

by the edges of the reflector. We illustrate the performance of the imaging algorithm with numerical simulations

in the regime of ultrasonic non-destructive testing in concrete.
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1. Introduction

In many important applications, such as ultrasound medical imaging [18,19,20,21,27], foliage penetrat-
ing radar [22,30], land and shallow water mine detection [14], seismic inversion [3,16], etc., we seek to
detect and image extended scatterers embedded in inhomogeneous media. We consider here broadband
array imaging in the regime of ultrasonic non-destructive testing in concrete. A typical setup is shown
schematically in Figure 1. The source at xs emits a spherical wave and the time traces of the scattered
echoes Π(xr,xs, t) are recorded at the array receiver locations xr in the array A, for r = 1, . . . , Nr, over
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Figure 1. Schematic for array imaging an extended reflector.

some time window t ∈ [0, T ]. Full array data are obtained by sending sequentially probing signals from Ns

sources and recording in each case the traces Π(xr,xs, t), s = 1, ..., Ns, r = 1, ..., Nr. The characteristic
length scales of the problem, as illustrated in Figure 1, are the range L, the array aperture a, the thickness
h and the diameter b of the reflector.

The imaging problem that we address is to estimate the support of the reflector from the recorded
traces. This can be done with higher accuracy if we recover information about the edges of the reflector,
which are usually masked by the direct or specular reflections from the bulk of the object. A solution
to this problem based on the singular value decomposition (SVD) of the response matrix frequency by
frequency was proposed in [12]. In particular, it was shown that information about the edges is contained
in the singular vectors for singular values that are intermediate between the large ones and zero. These
transition singular vectors are associated with illuminating the edges of the object from sources at the
edges of the array. Using such illumination for imaging with travel time migration gives selective imaging
of the edges of the reflector.

In [12], the extended reflector was embedded in a homogeneous medium. We focus our attention here
on imaging extended reflectors in cluttered media. By clutter we mean inhomogeneities in the medium
that are unknown and cannot be estimated in detail. We model wave propagation in clutter with random
travel times, assuming that rays do not bend significantly. This simplified model, which neglects the
multiple scattering of the waves by the inhomogeneities, captures well the single scattering part of the
wavefront. Numerical simulations show that for spectral characteristics of the response matrix there is
good agreement between the simplified model and full wave simulations. These results are encouraging
and suggest that we can rely on the simplified model for analyzing the performance of imaging algorithms
in cluttered media.

Travel-time migration images in cluttered media are noisy and unstable. To stabilize the imaging
process in clutter, we introduced in [6,8] the coherent interferometric (CINT) imaging functional which
migrates cross-correlations of the traces over appropriate space-time windows [6,7,9]. The choice of the
space-time windows depends on the clutter and it affects both the statistical stability and the resolution
of the image. We showed in [7] that there is a trade-off between these two effects, and we introduced an
adaptive algorithm for selecting the size of the space-time windows so as to achieve an optimal compromise
between gaining statistical stability and losing resolution by blurring.

In this paper we first filter the data so as to enhance the signal reflected by the edges of the reflector
and then we image with coherent interferometry to mitigate the effect of the clutter. This way we obtain
selective and stable images of the edges of extended reflectors in cluttered media.
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2. Imaging functionals

The travel-time (Kirchhoff) migration functional is given by [16,3]

IKM(ys) =

∫

|ω−ω0|≤B/2

dω

N∑

r=1

e−iωτ(xr,ys)
N∑

s=1

Π̂(xr,xs, ω)e−iωτ(xs,ys). (1)

Here ys is a search point in the region where we form the image and τ(xr,y
s) is the travel time of the

waves from the array element xr to ys, in the background medium with sound speed c0. For a constant
c0, τ(xr,y

s) = |xr − ys|/c0. In general smooth media τ is given by Fermat’s principle [13].
Travel-time migration of traces with significant delay spread due to multiple scattering in clutter

produces images with speckles that are difficult to interpret. The images are also unstable, in the sense
that they change unpredictably with the statistical realizations of the clutter. To stabilize the imaging
process in clutter we introduced in [6,8,9] the coherent interferometry (CINT),

ICINT(ys; Ωd, κd) =

∫

|ω−ω0|≤
B
2

dω

∫

|ω′−ω0|≤
B
2 , |ω−ω′|≤Ωd

dω′
∑ ∑

r,r′∈X
(

ω+ω′

2 ,κd

)
∑ ∑

s,s′∈X
(

ω+ω′

2 ,κd

)
Q̂(xr,xs, ω;ys)Q̂(xr′ ,xs′ , ω′;ys),

(2)

where the bar means complex conjugate and Q̂(xr,xs, ω;ys) is the Fourier transform of the trace
Π(xr,xs, t) migrated to ys

Q̂(xr,xs, ω;ys) = Π̂(xr,xs, ω)e−iω[τ(xs,ys)+τ(xr ,ys)]. (3)

Here the set of indices in the summation is defined by

X (ω, κd) =

{
r, r′ = 1, . . . , N ; |xr − xr′ | ≤ Xd(ω) =

c0

ωκd

}
. (4)

The key point in CINT is that instead of migrating the traces we migrate cross-correlations of the traces
over appropriate space-time windows. The size of the space-time windows is critical, and depends on
two intrinsic and characteristic parameters. These are the decoherence frequency Ωd and the decoherence
length Xd, i.e., the differences in frequencies and receiver locations, respectively, over which the traces
become uncorrelated. The decoherence length Xd(ω), at frequency ω, is determined by the parameter κd

as shown in (4).
In principle, κd and Ωd could be estimated using statistical signal processing techniques, such as the

variogram [15,26]. However, this estimation is very delicate and usually not sharp enough to give the best
image. Instead, we proposed in [7] an adaptive estimation of κd and Ωd that is coupled with the image
formation process. Our algorithm determines κd and Ωd so that there is an optimal trade-off between
statistical stability and blurring.

Instead of working directly with the array data, Π̂(ω), as in the imaging functionals (1) and (2), we

can work with a filtered version of the data D[Π̂(ω); ω]. In that case (1) becomes,

ISM(ys) =

∫

|ω−ω0|≤B/2

dω

N∑

r=1

e−iωτ(xr,ys)
N∑

s=1

(
D[Π̂(ω); ω]

)

r,s
e−iωτ(xs,ys) (5)

and is called subspace migration functional [12]. Similarly by replacing Π̂(ω) by D[Π̂(ω); ω] in (3) we
obtain the subspace coherent interferometric functional. Such filtered versions of the data were used for
example in [10,12] and they are based on the singular value decomposition (SVD) of the response matrix,
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Π̂(ω) =

N∑

j=1

σj(ω)ûj(ω)v̂∗
j (ω).

Here uj and vj are the left and right singular vectors of the response matrix and σ1(ω) ≥ σ2(ω) ≥, . . . ,≥

σN (ω) ≥ 0 are its singular values. The filtered version of the response matrix, D[Π̂(ω); ω], is defined in
the following way,

D[Π̂(ω); ω] =
N∑

j=1

dj(ω)σj(ω)ûj(ω)v̂∗
j (ω), (6)

with dj(ω) ≥ 0 the filter weights that we take as binary,

dj(ω) =





1 if j ∈ J(ω)

0 otherwise ,
(7)

for some set J(ω) ⊂ {1, . . . , N} that determines which singular vectors of Π̂(ω) we keep. The simplest
choice for the filter weights is to take JI(ω) = {1, 2, . . . , N} so that D becomes the identity. Another
choice is to take Jdetect(ω) = {1}, i.e., keep the strongest reflection at each frequency. This is a very good
method for detection because it is robust to noise. However, it is not a good method for imaging. That is
because the largest singular vector corresponds in general to direct or specular reflections from the bulk
of the object and imaging with it will not provide any information about the geometrical details of the
object, such as the edges or the corners.

The filter Jdetect(ω) is related to the DORT method [27] which is designed to selectively image or focus
energy on well-separated point-like targets. It relies on the fact that the array response matrix for m
such targets has rank m, and that each singular vector corresponds to a different target. For point-like
targets that are not well separated, an optimization approach introduced in [10] can determine weights
dj(ω) that image the targets one by one in a robust way. This optimization approach is coupled with the
adaptive CINT functional and therefore can be used in cluttered media. However, it does not generalize
in an obvious way to extended reflectors.

To focus on the edges of an extended object we follow the approach in [12] and define the filter weights

so that the normalized singular values σj(ω)/σ1(ω) of Π̂(ω) are in some interval [a, b] ⊂ (0, 1),

JSM(ω; [a, b]) =

{
j

∣∣∣∣
σj(ω)

σ1(ω)
∈ [a, b]

}
. (8)

Selectively imaging the edges of extended objects in homogeneous media with the subspace migration
method was extensively studied in [12]. It was shown with numerical simulations that this imaging method
masks the strong specular reflections from the bulk of the object and allows to image its edges quite
effectively. It is also robust to noise for arrays that have a large number of sensors. The analysis of
the imaging method was carried out in the Fraunhofer regime using the theory of generalized prolate
spheroidal wave functions.

Here we will apply this method to selectively image the edges of a crack. This allows us to obtain a
better estimate of its size especially in cluttered media. Numerical simulations using this approach are
shown in Section 4.

3. Simulation setup and mathematical models

In this section we present the various numerical models that we use for simulating the array data.
We consider three types of numerical simulations. In the first we compute the solution of the full wave
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equation using a finite element time domain method. This can be applied both to homogeneous and
cluttered media. It provides the more accurate solution, up to numerical errors, and is more expensive
computationally. In the second type we use the linearized Born approximation to compute the field
scattered by the reflector. In this case the computations are in the frequency domain and the background
medium is homogeneous. A simple additive white noise model is used to simulate instrument noise. The
third type is also a frequency domain computation based on the Born approximation. Here a random
travel time model is used for computing an approximation of the background Green’s function in clutter.

The numerical simulations are in two dimensions, in a regime that is often used in ultrasonic array
imaging in concrete [24,25]. In this paper, elastic wave propagation in concrete is simplified to a scalar
acoustic problem. Therefore, only pressure waves are considered and shear waves, Rayleigh waves, and
mode conversion effects are neglected.

We solve the acoustic wave equation as a first order velocity-pressure system with the finite element,
time domain method given in [2]. The setup is shown in Figures 2 and 3 for imaging in homogeneous
and cluttered media, respectively. We simulate the wave propagation in an unbounded environment by
surrounding the computational domain with a perfectly matched absorbing layer (PML), as shown in
Figure 2.
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absorbing medium
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λ

Figure 2. Schematic of array imaging in a homogeneous medium. The computational set-up is on the left. The traces received
when illuminating from the central element in the array are on the right.

The array is linear with Nr = Ns = 100 transducers at a distance h = λ0/2 from each other. The object
to be imaged is a crack of length 12λ0 located at range L = 90λ0 and at zero cross-range, measured with
respect to the center of the array. We model it as a line segment on which the acoustic pressure field
is zero. In the simulations we use the frequency band 150–450kHz, with bandwidth B = 300kHz. The
reference sound speed is c0 = 3km/s and therefore the wavelength at the central frequency ω0 = 300kHz
is λ0 = 1cm.

We model the clutter as a random process and we write the square of the index of refraction n(x) =
c0/c(x) as

n2(x) = n2
0(x)

[
1 + σν

(x

ℓ

)]
. (9)

Here n0(x) is the smooth and known index of refraction of the background medium. We take n0(x) = 1 for
simplicity, so that the wave speed c(x) fluctuates about the constant value c0. The normalized fluctuations
are modeled by ν(x), which is a statistically homogeneous random process with mean zero and rapidly
decaying correlation. The fluctuations have a characteristic length scale ℓ, the correlation length, which
can be considered to be the typical size of the inhomogeneities. The parameter σ controls the strength of
the fluctuations. The fluctuation process ν(x) is isotropic with Gaussian correlation
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Figure 3. Array imaging in clutter. The computational set-up is shown on the left. The fluctuations in the sound speed are
shown in color and the color-bar is in km/s. The traces received when illuminating from the central element in the array
are on the right.

R(x,x′) = R (|x− x′|) = e−
|x−x

′|2

2ℓ2 .

In the medium shown in Figure 3 we have ℓ = λ0 and σ = 0.03. Note that we are in a regime with
small fluctuations σ ≪ 1, as is expected in concrete structures. Nevertheless, because the range L is large
with respect to λ0 and ℓ, there is significant delay spread in the traces, as seen in Figure 3-right. The
estimated transport mean free path [28,31] in the clutter is 75λ0. This is to be contrasted with the time
reversal experiments in [17], where the range is about 10 transport mean free paths and all coherence
is effectively lost in the echoes. Here the range L is comparable to the mean free path so there is some
residual coherence in the data and coherent interferometric imaging can be effective.

Coherent imaging in strongly scattering media can be made effective by filtering prior to imaging the
unwanted echoes that are due to the cluttered medium. We have analyzed two such filtering approaches:
The first one distinguishes the echoes due to the reflector we wish to image from reflections due to layered
interfaces using as tool the dependence of travel times on the offset between sources and receivers in the
array. This filter, which can be applied only to layered media, annihilates single (primary) reflections
at isolated, strong (layered) interfaces in a medium [4], as well as, the incoherent back-scattered field
from random layering [5]. The second filtering approach is more general and can be applied to arbitrary
cluttered media. The main idea is to identify the time windows that contain the coherent echoes from S
by doing a spectral decomposition of the local cosine (LC) transform of the response matrix recorded at
the array [1].

Simulation models based on the linearized Born approximation The simplest way for comput-
ing the scattered field by an object in a homogeneous medium is by using the linearized Born approxi-
mation [13] which neglects multiple scattering. Using this approximation we get the following expression
for the response matrix,

Π̂(xr,xs, ω) = k2

∫
dyρ(y)Ĝ0(xs,y, ω)Ĝ0(xr,y, ω). (10)

In (10) the reflectivity ρ(y) is assumed to be constant and equal to one on the crack and zero elsewhere
and Ĝ0 is the free space Green’s function

Ĝ0(x,y, ω) =
e

iω|x−y|
c0

4π|x − y|
. (11)
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The integral in (10) is evaluated with the mid-point rule which is equivalent to modeling the crack as a
collection of points. In the computations we use 101 points placed uniformly, at distance 0.12λ0 apart.
We generated data for Nfreq = 101 equally spaced frequencies ωi in the bandwidth, which are 30kHz
apart.

To simulate instrument noise we added to Π̂(ω) a noise matrix W (ω) ∈ CNr×Ns with zero mean
uncorrelated Gaussian distributed entries having variance ǫp. Here ǫ > 0 and p is the average power
received at the array per source, receiver and frequency

p =
1

NrNsNfreq

Nfreq∑

i=1

∥∥∥Π̂(ωi)
∥∥∥

F
,

where ‖ · ‖F is the Frobenius matrix norm. The expected power of the noise W (ω) over all frequencies,
receivers and sources is

E




Nfreq∑

i=1

‖W (ωi)‖F



 = ǫNrNrNfreqp.

Since the total power of the signal received over all frequencies, receivers and sources is NrNsNfreqp, the
signal to noise ratio (SNR) in dB is −10log10ǫ.

Finally we used the following random travel time model which amounts to replacing in (10) the homo-
geneous Green’s function by,

Ĝγ(x,y, ω) =
e

iω|x−y|(1+γ(x,y))
c0

4π|x− y|
; γ(x,y) =

∫ 1

0

ds ν

(
(1 − s)x + sy

l

)
. (12)

Here ν are the normalized fluctuations as in (9). The model (12) can be derived by assuming that rays
do not bend, i.e., by assuming that the ray between x and y is a straight line. This random travel time
model is much simpler to implement and analyze than the full wave equation in random media. It does not
model, however, the multiple scattering of the waves by the inhomogeneities of the medium and therefore
there is no delay spread in the traces, as seen in Figure 4-bottom.

Simulated data sets We will show results for the following five data sets:

(i) Homogeneous: the response matrix is computed by solving the two-dimensional wave equation in a
homogeneous medium with wave speed c0 = 3km/s. The traces for the central source illumination
are shown in Figure 2-right.

(ii) Clutter: the response matrix is computed by solving the two-dimensional wave equation in the real-
ization of the random medium shown in Figure 3-left. The traces for the central source illumination
are shown in Figure 2-right.

(iii) Born with infinite SNR: the response matrix is computed using the linearized Born model (10) with
Ĝ0 given by (11) and infinite SNR (no additive noise). The traces for the central source illumination
are shown in Figure 4-top left.

(iv) Born with 0dB SNR: in this case zero mean uncorrelated Gaussian noise W (ω) with variance p
(ǫ = 1) is added to the Born data. The traces for the central source illumination are shown in
Figure 4-top right.

(v) Random travel time model: the response matrix is computed using the linearized Born model (10)
with Ĝ0 replaced by Gγ defined in (12). The traces for the central source illumination are shown in
Figure 4-bottom.
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Born data with infinite SNR Born data with 0dB SNR

Data with the random travel time model

Figure 4. Traces on the array for the central source illumination. Top: the response matrix is simulated using the linearized
Born model. Bottom: the random travel time model is used to simulate the response matrix.

Results on the singular value distribution of the response matrix

The problem of selective imaging extended reflectors in homogeneous media was considered in [11,12]
in a so-called Fraunhofer diffraction regime. This regime is realized when we have very long distances of
propagation, L, and arrays of large aperture, a, when compared with the cross-range diameter, b, of the
reflectors. The reflectors are extended in the sense that b can be large with respect to the array spot
size (λL)2/|A|. One of the main results in [11,12] is that the linear (Born) approximation of the response
matrix, Π̂(ω), can be written in terms of a space and wave-number limiting Hilbert Schmidt operator. The
properties of these operators are analyzed in detail in the work of Slepian, Landau and Pollack [23,29].
Using their results the following properties were obtained for the singular values and the singular vectors
of the response matrix [12],

– The singular values of the response matrix, σj , are nearly constant for small j and plunge to zero at

the critical index n⋆ =
⌊

|B|
(λL)2/|A|

⌋
. This says that the effective rank of the response matrix is the

number of spot sizes that fit in the object.
– The singular vectors corresponding to the leading singular values, define illuminations that return the

strongest echoes to the array. The corresponding images are well concentrated inside the reflector.
The opposite holds for singular vectors with index above the threshold n∗. Therefore, if we want
singular vectors that peak on the edges of the reflector we should consider the plunge region, which
corresponds to the intermediate singular values.

Next we look at the behavior of the singular values of the response for the five data sets described
in Section 3. We will see that the numerical results are in excellent agreement with the theory. The
corresponding imaging results are given in Section 4.

In Figure 5 we compare the normalized singular value distribution for the full wave data in the ho-
mogeneous medium and for the Born data. We consider three frequencies 200kHz, 300kHz and 400kHz.
We note that the two curves are almost identical. Similar results are obtained for all frequencies in the
bandwidth. We conclude that for this example the multiple scattering on the reflector does not play a
significant role. We also observe in the plots the behavior predicted by the theory: the singular values are
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constant at the beginning and then they plunge to zero at the critical value N(ω) = b/(λL/a).
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Figure 5. The normalized singular values of Π̂(ω) for the full wave data (continuous line) and the Born data (.− line)
for frequencies 200kHz (left), 300kHz (middle) and 400kHz (right). The vertical line is the theoretical transition value
N(ω) = b/(λL/a) which is approximately 5, 7 and 9 respectively.

The effect of the different types of noise on the singular value distribution can be seen in Figure 6. On
the left panel we observe that the additive Gaussian noise affects only the lower part of the spectrum.
Therefore we expect that this type of noise will not have a significant impact on any of the imaging
methods presented in Section 2. On the contrary, when the medium is cluttered the whole spectrum is
affected as can be seen in the central and right panels of Figure 6. In this case we do not observe a plateau
in the behavior of the singular values but a rather smoother transition to zero.
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Figure 6. The singular values of Π̂(ω) at frequency 300kHz. Left: the continuous line is for the Born data with infinite SNR
and the .− line is for the data with 0dB SNR. Middle: The continuous line is for the Born data with infinite SNR and the .−
line is for the data obtained with the random travel time model. Right: The continuous line is for the homogeneous medium
and .− line for the cluttered medium. The vertical line is the theoretical transition value N(ω) = ⌊b/(λL/a)⌋ which is 7.

To better compare the singular value distribution between the random travel time model and the
full wave solution in the cluttered medium we plotted the results for the two models in Figure 7. The
two models present a similar behavior which is surprising at first because the random travel model
completely neglects the multiple scattering of the waves by the inhomogeneities. This result is encouraging
and suggests that we may be able to explain the spectral behavior of the response matrix in cluttered
media using the simpler random travel time model. The analysis of this model although simpler is not
straightforward and will be carried out in a forthcoming paper.

Finally we show in Figure 8 the first singular value of the response matrix as a function of frequency
for the different data sets. In the results shown on the left panel we normalized the singular values by the
maximal value of σ1(ω) for the Born data with infinite SNR. In the results shown on the right panel we
normalized the singular values by the maximal value of σ1(ω) for the data in the homogeneous medium.
We observe, as expected, that the additive Gaussian noise does not affect the largest singular value. Both
for the random travel time model and the full wave solution in the cluttered medium we observe a decrease
in the value of σ1(ω) which expresses the fact that some energy is lost due to the scattering of the waves
by the inhomogeneities.
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Figure 7. The singular values of Π̂(ω) for the cluttered medium (continuous line) and the random travel time model (.−
line) for frequencies 200kHz (left), 300kHz (middle) and 400kHz (right). The vertical line in the figures is the theoretical
transition value N(ω) = ⌊b/(λL/a)⌋ which is 5, 7 and 9, respectively.
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Figure 8. The largest singular values of the response matrix Π̂(ω) as a function of frequency. Left: the continuous line is for
the Born data with infinite SNR, the .− line is for the data with 0dB SNR and the −− line is for the data obtained with
the random travel time model. Right: The continuous line is for the homogeneous medium and the .− line for the cluttered
medium.

Remark 1 In the numerical simulations the realization of ν in (12) is different than the one in (9).

4. Imaging results

In this section we show the subspace migration imaging results for the five data sets described in Section
3. We consider a search domain which is a rectangle of size 5λ0×20λ0 centered on the crack and the pixel
size is λ0/2×λ0/2. In the images the true object is shown with a white line. In each of the following figures
we show 4 panels, the left panel corresponds to keeping the normalized singular values which belong to
the interval [0.001, 1]. This is a simple denoising approach as we neglect only the singular values which
are below the noise level 0.001. The second panel corresponds to the detection method Jdetect(ω) = {1}.
The other panels correspond to keeping the normalized singular values which belong to the some interval
[a, b] with the values of a and b defined in each figure.

First we show in Figure 9 the subspace migration imaging results for the Born data with infinite SNR.
We observe that the whole crack is imaged when the whole spectrum is used (left panel) while only the
central part of the crack is reconstructed when the first singular vector is used. By using the intervals
[0.001, 0.1] or [0.1, 0.2] we obtain similar results which selectively image the tips of the crack. We can also
use other intervals and the results remain the same as long as we stay away from 1. This is expected as
the theory suggests that the information about the edges of the reflector is redundant. For the intervals
[0.001, 0.1] or [0.1, 0.2] the imaging results are perfect even for the low SNR ratio as can be seen in the
results of Figure 10. However, as we move to the lower part of the spectrum the images deteriorate. For
the intervals [0.001, 0.01] and [0.001, 0.05] we observe that the focusing moves outside the object and the
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Figure 9. Subspace migration results for the Born data with infinite SNR.

image becomes corrupted by the noise for the low SNR data.
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Figure 10. Subspace migration results for the Born data with 0dB SNR.

In Figure 11 we show the subspace migration results for the data obtained by solving the full wave
equation in the homogeneous medium. We observe that there is no significant difference compared with
the images obtained for the Born data shown in Figure 9.

The imaging results for the data obtained with the random travel time model are illustrated in Figure
12. The migration results shown on the top panels look quite noisy and the smoothing introduced by the
coherent interferometric functional (2) is visible on the bottom panels of Figure 12. Here the decoherence
parameters were obtained with the adaptive CINT approach [7] and are Ωd = B/5 and κd = 0.12.

Finally in Figure 13 we display the imaging results for the data obtained by solving the full wave
equation in clutter. In this case the image changes significantly when we change the interval [a, b] in
which the normalized singular values belong (see third and fourth panels in Figure 13). In particular,
selective imaging of the tips of the crack is achieved for intervals [a, b] that are close to the value 0.4.
We can also remark that the subspace migration images (top line of Figure 13) are more noisy than the
corresponding ones for the random travel time model (see top line images of Figure 12). In this case
coherent interferometry significantly improves the quality of the image as can be seen by the images in
the bottom line of Figure 13. The decoherence parameters here are Ωd = B/3 and κd = 0.12.

Comparing Figures 12 and 13 we observe that the best imaging results for the random travel time data
are obtained for the interval [0.1, 0.2] while the interval [0.4, 0.5] gives the best image for the full wave
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Figure 11. Subspace migration results for the data obtained by solving the full wave equation in a homogeneous medium.
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Figure 12. Imaging results for the data obtained with the random travel time model. Top line: the imaging method used is
migration. Bottom line: the imaging method used is coherent interferometry.

data in clutter. This difference can be explained by the fact that the singular value curves for the random
travel time model are below the curves for the full wave data in Figure 7. To better illustrate this we
show in Figure 14 the normalized singular values of Π̂(ω) for the cluttered medium (continuous line) and
the random travel time model (.− line) for the frequency of 400kHz. The vertical line corresponds to the
13-th normalized singular value which is about 0.2 for the random travel time model while it is about 0.4
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Figure 13. Imaging results for the data obtained by solving the full wave equation in the cluttered medium shown in the
left panel of Figure 2. Top line: the imaging method used is migration. Bottom line: the imaging method used is coherent
interferometry.

for the full wave data.
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Figure 14. The normalized singular values of Π̂(ω) for the cluttered medium (continuous line) and the random travel time
model (.− line) for the frequency of 400kHz. The vertical line corresponds to the 13-th normalized singular value.

5. Summary and conclusions

In this paper we addressed the problem of selective imaging of extended reflectors in cluttered media. We
introduce a random travel time model for approximating the Green’s function in clutter. Our numerical
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results show that this simplified model captures well the behavior of wave propagation in random media
as far as the imaging of edges is concerned. Edge enhancement in imaging is achieved with the use of a
subspace projection filter which masks the strong reflections due to the bulk of the object. The imaging
functional used is coherent interferometry, which is a smoothed version of travel time migration and
gives statistically stable results in clutter. The effectiveness of the algorithm is illustrated with numerical
simulations in the regime of ultrasonic non-destructive testing in concrete.
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