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We consider the problem of localizing one or more sources in a two-dimensional waveg-
uide with horizontal flat boundaries and random sound speed fluctuations. Our data
is the acoustic pressure field, measured on a vertical array of hydrophones that may
span the entire depth of the waveguide or a part of it. We use randomness to model
the effect of internal waves on the sound channel. Although the strength of the fluc-
tuations is small, the transmitted signal is significantly affected from the multiple
scattering of the waves with the random inhomogeneities, especially since we consider
large propagation distances between the sources and the receiver array. Source local-
ization is performed following an incoherent approach relying on a transport system
of equations that describes wave propagation in random waveguides and that takes
into account modal dispersion and energy transfer between modes.
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1. Introduction

We consider the problem of multiple source detection and localization in a sea
environment with fluctuations in the sound speed profile caused by internal waves
as in [1, 2]. The fluctuations depend on the direction of propagation, called the
range, as well as on the vertical depth direction. The strength of the fluctuations,
ε, is small but we consider very long distances of propagation between the sources
and the vertical array of hydrophones on which the acoustic pressure field p(t, ~x) is
recorded. In such regimes cumulative scattering due to the medium inhomogeneities
becomes important and p(t, ~x) loses its coherence. This means that its expectation
with respect to the realizations of the random medium, 〈p(t, ~x)〉, decays exponen-
tially with the propagation distance on the scale of the scattering mean free path
and becomes small with respect to the fluctuations p(t, ~x)−〈p(t, ~x)〉. It is therefore
a regime in which coherent imaging methods fail [3].

It is well known that in random acoustic waveguides the modes are coupled
through the random medium fluctuations and there is transfer of energy between
modes due to scattering [1, 2, 4]. In the review paper [5] which considers long
range basin scale observations it is shown that narrow-band and broad-band signals
are affected in a different way when propagating in the random ocean. Another
important factor that should be taken into account to more accurately describe
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shallow-water wave propagation is the presence of energy absorbing sub-bottom
sediment layers as in [6, 7]. We also refer the reader to the recent book [8] for a
review of ocean wave propagation through random media theory.

We consider here an idealized marine environment with flat horizontal boundaries
and a hard bottom boundary condition. The deterministic velocity profile we use
is depth dependent and the fluctuations of the sound speed are two-dimensional.
Although this is a simplified and rather ideal model of a marine acoustic environ-
ment it still carries and exhibits the main features and challenges appearing in
the problem of source localization in the sea. As it was shown in [3] the behavior
of source localization methods depends primarily on the statistics of the propa-
gating modes and for long propagation distances coherent imaging fails. We refer
also to [9] where coherent source imaging was considered for two types of random
waveguides: with fluctuations in the waveguide boundaries or in the interior. In the
random boundary case, the scattering mean free path is much longer for the lower
modes. Therefore successful coherent imaging can be achieved after introducing
weights with which each mode should be included in the imaging procedure. By
reducing the weights of the higher modes stability is gained but also resolution de-
teriorates. Optimal weights can be computed so as to achieve an optimal trade-off
between loss of resolution and stability. However, this does not help in the case
of internal inhomogeneities since in this case all the modes become incoherent at
similar scales. This means that the scattering mean free paths are of the same order
for all propagating modes and therefore coherent imaging cannot be improved by
using weights and an incoherent approach should be used.

We follow in this paper the incoherent source localization methodology proposed
and analyzed in [3, 10] and further developed in [11]. This methodology uses the
theory in [4, 12] and [13] to derive a stochastic system of differential equations
for the modal amplitudes. More precisely, under the assumptions of diffusion and
forward scattering approximation, in the asymptotic scale of small fluctuations
and long propagation distances, a system of transport equations is derived. This
system describes how mode coupling and transfer of energy between modes occurs
in random waveguides (see also [14] and [15]). Taking into account this system
of transport equations an incoherent approach for the source inverse problem has
been developed [3, 11, 16].

In this work we focus on the generalization of this incoherent source localization
methodology to the case of multiple sources, as well as, depth dependent velocity
profiles. We carefully design our numerical experiments and use them in order to as-
sess the performance of the incoherent methodology. In particular, to simulate a sea
water environment we use a numerical model for a waveguide with a rigid bottom
and a mean sound speed profile coming from the YELLOW SHARK ’94 experi-
ment [17]. To model inhomogeneities due to internal waves we add to this profile,
depth and range dependent random fluctuations at the scale of the wavelength.
We consider wave propagation in regimes close to and beyond the equipartition
distance, that is the distance at which energy is uniformly distributed between the
modes, independently of the initial state. Source localization in such regimes is
very challenging.

The key ingredient for the inversion is the dispersion function which expresses
the fact that the energy carried by different modes propagates with a different
speed in the random medium compared to the deterministic unperturbed case.
This difference in the transport speed can be explained from the asymptotic theory
and an analytic form for the dispersion function is derived. Using a model for the
medium’s correlation function we essentially reduce our source localization problem
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to the estimation of four parameters: the propagation distance, the depth of the
source, the amplitude and the correlation length of the random fluctuations.

We illustrate with simulated, incoherent data that the inversion methodology is
very accurate, and stable with respect to the realizations of the random medium.
The source range is recovered, even in the case of only two receivers (see also
[18]). It is not important to know the exact form of the correlation function of the
medium, and very good range estimation is obtained even when the wrong model is
used. Depth estimation is more delicate, and good results are obtained only when
larger bandwidths are used. In that case too we rely on the dispersion function and
assume that the source range has been already recovered.

In this paper the data used for the inversion are derived by solving the full acous-
tic wave equation in two dimensions and this is certainly a very time consuming
process. However, it allows us to check our inversion approach without committing
the inverse crime, that means without having perfect data that follow exactly the
model used in the inversion procedure. Novel approaches relying on random matrix
theory as the one developed in [19] look very promising and time efficient. It would
be very interesting to investigate the use of such approaches in combination with
our inversion methodology.

The paper is organized as follows. In Section 2 we give the mathematical for-
mulation for the source localization problem. In Section 3 we describe briefly two
coherent imaging methods and in Section 4 we show that they both fail to locate
the sources in the wave propagation regime considered in this paper. In Section
5 the incoherent methodology for estimating the source location is presented and
in parallel its performance is illustrated with numerical simulations. In Section 6
we place in context the model for the random waveguide used and summarize the
results. The main conclusions of this work are recovered in Section 7. A description
of the model used in the incoherent methodology, which is an asymptotic model
for wave propagation in random waveguides, is given in Appendix A.

2. Formulation of the Source localization Problem

z

z=0

z=H

x

f(t)

Figure 1. Schematic of the problem setup.

We consider acoustic wave propagation in a two dimensional inhomogeneous
waveguide with planar horizontal boundaries as the one depicted in Figure 1. The
acoustic pressure field p(t, ~x) = p(t, x, z) is governed by the scalar wave equation

∆p(t, x, z)− 1

c2(x, z)

∂2p(t, x, z)

∂t2
= F (t, x, z), (1)

with a pressure release boundary condition at the surface
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p(t, x, z) = 0, z = 0,

and a rigid bottom

∂p(t, x, z)

∂z
= 0, z = H.

While this simplified model problem does not adequately describe most shallow-
water environments, it suffices for illustrating the difficulties in the source localiza-
tion problem resulting from random volume inhomogeneities. We assume a source
term in Eq.(1) of the form

F (t, x, z) = f(t)ρ(x, z),

which models a source with density ρ(x, z) emitting a pulse f(t) towards a vertical
receiver array A, located at xA. Note that we use a coordinate system with range
origin at the array and assume that propagation is from right to left. The pulse
has a central frequency f0 and is supported in the frequency band [f0−B, f0 +B].

We call B the bandwidth and we assume that f0
B ∈ [0.1, 1] so that we can consider

both the narrowband and the broadband cases.
We denote Ωρ the support of the source, a domain centered at ~x? = (x?, z?).

When multiple (ns) sources are considered the source term is of the form,

F (t, x, z) =

ns∑
j=1

fj(t)ρj(x, z).

with Ωρj the support of ρj(x, z) centered at ~x?j = (x?j , z
?
j ) for j = 1, . . . , ns.

We want to model sea water with internal waves caused by changes in tem-
perature and salinity. In such environments the sound speed c(x, z) has an (x, z)
dependent fluctuating part (see [1] and [4]) that can be modeled by

c2
0(z)

c2(x, z)
= 1 + εν

(x
`
,
z

`

)
, (2)

where c0(z) is the unperturbed velocity profile corresponding to ε = 0. Here ν
(
x
` ,

z
`

)
is an isotropic, statistically homogeneous random process with mean zero and in-
tegrable in range correlation function,

R(~x, ~x′) =

〈
ν
(x
`
,
z

`

)
, ν

(
x′

`
,
z′

`

)〉
.

The perturbation parameter, ε, is small and ranges between 1% and 3%. The length
scale, `, is the correlation length of the fluctuations and it is assumed here to be
of the order of the wavelength. Although the fluctuations are weak, after multiple
interactions of the waves with the medium heterogeneities the cumulative effect on
the pressure field is important, especially for waves that travel over long distances
in the waveguide.

The source localization problem that we want to solve is to estimate the number
ns and the locations ~x?j , j = 1, . . . , ns, of the sources, in range and depth, given the
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observed acoustic pressure field pobs(t, xA, zr) on the array A. The observed pres-
sured field could be obtained either by experimental measurements or by numerical
simulation.

3. Coherent Imaging

We define here two coherent imaging functions. We will illustrate in the next sec-
tion how they fail to give useful results in wave propagation regimes where the
cumulative scattering by the random medium inhomogeneities is strong.

The first coherent imaging function is given by

I(~xs) =

∫
dω

2π

∑
zr∈A

p̂ ∗(ω, xA, zr)Ĝ0(ω, xA, zr; ~x
s), (3)

where ∗ denotes complex conjugation and Ĝ0(ω, x, z; ~xs) is the Green’s function
for the Helmholtz equation in the unperturbed waveguide between points ~xs and
(x, z) at circular frequency ω. Here ~xs denotes the search point that takes values
in the imaging window at which we evaluate the imaging function I(~xs). Eq. (3)
can be interpreted as the back-propagation of the recorded pressure field from
each receiver on the array (xA, zr) to the hypothetical source location ~xs. In the
absence of the random fluctuations, the back-propagation performed in I(~xs) is
exact since the Green’s function G0(ω, xA, zr; ~x

s) is the correct Green’s function in
the background medium. In that case I(~xs) produces an image that has a peak at
the correct source location ~xs = ~x?.

The second method we consider is Coherent INTerferometry (CINT) that was
introduced in [20, 21] for imaging in random, open environments. CINT back prop-
agates to ~xs cross correlations of the acoustic pressure field recorded at the array,
instead of back-propagating the recorded pressure field as in I(~xs). The cross cor-
relations are over suitable time and receiver offset windows, and they introduce a
statistical smoothing in the imaging process for achieving stability [22]. The opti-
mal smoothing is determined by two decoherence parameters intrinsic to the data:
the decoherence length Zd and frequency Ωd [21, 22]. The decoherence length is the
receiver offset |zr−zr′ | over which p̂(ω, xA, zr) and p̂(ω, xA, zr′) become statistically
uncorrelated. Similarly, Ωd is the frequency lag |ω−ω′| over which p̂(ω, xA, zr) and
p̂(ω′, xA, zr) become uncorrelated. It follows from [4, 12, 13] that in random waveg-
uides, at long source-array ranges, there is no decorrelation over the receiver offset,
but there is rapid decorrelation over the frequency (Ωd is small). Thus, CINT re-
duces to back propagating the cross correlation of the received pressure field across
the array, over long time windows of support (2Ωd)

−1,

ICINT (~xs) =

∫
|ω−ω0|≤2πB

dω

2π

∫
|ω−ω′|≤2πΩd

dω′

2π

∑
zr∈A

p̂(ω, xA, zr)Ĝ
∗
0(ω, xA, zr; ~x

s)

×
∑
zr′∈A

p̂ ∗(ω′, xA, zr′)Ĝ0(ω′, xA, zr′ ; ~x
s).

(4)
The CINT imaging function behaves better than the backpropagation method of
Eq.(3) and its expected value does not decay exponentially with range as is the
case for Eq.(3). However, due to the dispersion induced by the random medium
fluctuations, it does not give reliable results in the incoherent wave propagation
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regime considered in this paper. For a detailed theoretical analysis of the resolution
and stability properties of these two methods we refer the interested reader to [3].

There are other imaging methods that employ signal processing tools for miti-
gating additive noise [23]. As long as these methods rely on a coherent p(t, xA, zr)
(or p̂(ω, xA, zr)), they are not expected to give reliable results when p(t, xA, zr)
becomes incoherent as is the case for the numerical simulations considered in the
next section. It would be interesting to examine how the adaptive normal mode
back-propagation method proposed in [24] performs with incoherent data such as
the ones considered next. However this is beyond the scope of the present paper.

4. Numerical simulations

In this paper, we obtain the observed field pobs(t, xA, zr) (data) by computing
numerically the solution of the time dependent wave equation as a first order
velocity-pressure system using the finite element method described in [25] coupled
with two perfectly matched layers (PMLs) [26] on the vertical boundaries of the
waveguide.
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Figure 2. The sound speed profile.

We choose either a constant background speed profile with c0 = 1500m/s or
the depth dependent c0(z) shown in Figure 2. This variable sound speed profile is
coming from the YELLOW SHARK ’94 experiment in South Elba, in Italy, cf. [17].
We take fluctuations of the sound speed as in Eq.(2) with ε = 2% or 3%, using a
Gaussian correlation function

RG(~x, ~x′) = αe−
|x−x′|2+|z−z′|2

2`2 . (5)

We generate the process ν numerically using random Fourier series [27]. For each
source configuration, we compute eight data sets corresponding to different realiza-
tions of the random medium. The correlation length is ` = 0.5λc with λc = c0/fc
the wavelength and fc the central frequency. The amplitude of the Gaussian is
α = 1.

The depth of the waveguide is H = 20λc and our data are computed on an array
with 201 equidistant receivers, with the first and last receiver of the array being
λc/4 far from the horizontal and flat boundaries of the considered waveguide. We
use data either with two unknown sources, one at ~x?1 = (15λc, 393λc) and the other
at ~x?2 = (5λc, 493λc) or with one source at ~x?2. The direct arrival from the source at
~x?2 to the array in a homogeneous waveguide is at time x?2/c0 = 0.986s. The data
are computed in the time window t ∈ (0, 6.3306)s.
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The source excitation used is a Ricker wavelet

f(t) = −2π2f2
c (1− 2(t− t0)2π2f2

c ) exp (−π2f2
c (t− t0)2)

with central frequency fc = 500Hz and t0 = 1/fc. This pulse is mainly supported
in the frequency range 50 − 950Hz. For the case of the two sources we have used
the same pulse for both sources (same strength, phase and frequency). The Fourier
coefficients p̂obs(ω, xA, zr) of the data are computed using the Fast Fourier Trans-
form algorithm. For the source localization we will consider data in sub-bands
[f0−B, f0 +B] for B = 62.5Hz and for different values of f0 to study how the cen-
tral frequency affects the results. We will also consider data for several sub-bands
to study the effect of a larger bandwidth.

For the density of the source, in the numerical simulations we have used

ρe(x, z) = e
− |x−x

?|2+|z−z?|2

2σ2e ,

with σe =
√

2λc/20.
In Figures 3 and 4 we present the images obtained with the two coherent func-

tionals I(~xs) and ICINT (~xs) for the simulated data. We compute the functionals
in Eqs. (3) and (4), using p̂ = p̂obs.
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Figure 3. I(~xs) (top row) and ICINT (~xs) (bottom row), with f0 = 500Hz, ε = 2% (left) and f0 = 887Hz,

ε = 3% (right). The bandwidth is B = 62.5Hz and Ωd = 14.8Hz. Data for two sources and the variable
sound speed profile. The correct source location is indicated with a white circle.

In Figure 3 we use the data for the two sources and the variable sound speed
profile. The bandwidth is B = 62.5Hz and Ωd = 14.8Hz. On the left plots we
show results at f0 = 500Hz with ε = 2% (close to the equipartition distance
defined in Eq. (A7), see also Figure A1-left) and on the right at f0 = 887Hz
with ε = 3% (beyond the equipartition distance, see Figure A1-right). The range
interval contains both sources ([315,575]λc). We take a step of λc in range and λc/4
in depth. The correct value of the sources’ location is indicated with a white circle.
We show here results for one realization of the random medium but the results
are similar for other realizations of the medium fluctuations. We observe that both
coherent methods fail to locate the sources correctly. A rough estimation about
range may be obtained but the images look noisy and have several spurious peaks.
As the frequency and/or the strength of the fluctuations increases, determining the
sources’ location becomes more challenging.

In Figure 4 we use the data for one source located at ~x?2 = (5λc, 493λc) for
a constant sound speed profile. We use now a larger bandwidth B = 212.5Hz,
Ωd = 50Hz and central frequency f0 = 600Hz. We show results with ε = 2% (on

7



May 22, 2018 Waves in Random and Complex Media BKT˙2017

Range in λ
c

D
e

p
th

 i
n

 λ
c

470 480 490 500 510 520

5

10

15

Range in λ
c

D
e

p
th

 i
n

 λ
c

470 480 490 500 510 520

5

10

15

Range in λ
c

D
e

p
th

 i
n

 λ
c

470 480 490 500 510 520

5

10

15

Range in λ
c

D
e

p
th

 i
n

 λ
c

470 480 490 500 510 520

5

10

15

Figure 4. I(~xs) (top row) and ICINT (~xs) (bottom row), with ε = 2% (left) and 3% (right), at f0 = 600Hz.

The bandwidth is B = 212.5Hz and Ωd = 50Hz. Data for one source and the constant sound speed profile.

The correct source location is indicated with a white circle.

the left plots) and 3% (on the right plots). We display the image for a shorter
range interval [463,523]λc. The imaging window dicsretization steps are as before.
We observe that despite the large bandwidth used, both coherent methods fail to
locate the source correctly when we increase the strength of the fluctuations from
ε = 2% to 3%. We will present in the next section an incoherent source localization
methodology that provides robust results in this challenging wave propagation
regime.

5. Incoherent Source Localization Methodology

We assume that the density of the source is of separable form ρ(x, z) = ξ(z)η(x) and
seek to extract information about the functions ξ(z) and η(x). Since the source is
located at a large distance from the array, of the order of hundreds of wavelengths,
the range profile of the source can be accurately approximated by a delta function
at the correct range, η(x) ≈ δ(x). We want to estimate the range of the sources
xest
j and their depth profiles ξest

j (z). Concerning the depth profile we will see below
that we can invert for the absolute values of its Fourier coefficients defined by

ξ̂j =

∫ H

0
dz ξ(z)φj(ω0, z), j = 1, . . . N, (6)

with N := N(ω0) the number of propagating modes, φj , in the unperturbed waveg-
uide (see Appendix A) and ω0 being the central frequency of the considered band-
width.

We first project the Fourier coefficients of the acoustic pressure field on the array
onto the propagating modes and define

P̂j(ω, xA) =
∑
zr∈A

p̂(ω, xA, zr)φj(ω, zr), j = 1, . . . N.

Then by taking the cross-correlations of P̂j(ω) over long time windows of support
(2Ωd)

−1 we compute the following function which we call dispersion function

Dj(χ) =

∫
|ω−ω0|≤2πB

dω

2π

∫
|ω−ω′|≤2πΩd

dω′

2π
P̂j(ω, xA)P̂ ∗j (ω′, xA)e−i(βj(ω)−βj(ω′))χ,

(7)
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where χ = τ/β′j(ω0) with β′j(ω) the derivative of βj(ω) with respect to ω, τ be-
ing the arrival time and Ωd the decoherence frequency, that is the frequency lag
|ω − ω′| over which P̂j(ω) and P̂j(ω

′) become uncorrelated. The decoherence fre-
quency Ωd is a-priori unknown as it depends on the statistical properties of the
random medium. It can be estimated directly from the data using statistical signal
processing techniques like the variogram [28]. However, optimal imaging results are
obtained when Ωd is estimated during the image formation process as in adaptive
CINT [21]. Here we follow the latter approach.

In an unperturbed waveguide (ε = 0), for all modes j the Dj(χ) are aligned and
they all peak at the same location which corresponds to the range of the source
X. In a random medium, however, each Dj(χ) peaks at a different χj , which in
general is not equal to X. This is a form of dispersion with respect to the modes
and is due to the fact that in the random waveguide the transport speed is not
β′j(ω). We will use this dispersion function for estimating the sources’ location.

To do so, we substitute the Fourier coefficients p̂obs of the observed field pobs

into Eq.(7) and obtain the dispersion function for the data, Dobsj . Moreover, using
the asymptotic model for the random waveguide (described in Appendix A and
derived under the diffusion approximation and neglecting backscattering, in the
asymptotic scale of small fluctuations and long propagation distances) we deduce
the following theoretical expression for the dispersion function

Dmodj (χ;Xs) ≈
N∑

q,l=1

|ξ̂l|2
βlβq

Q2
jqW(l)

q (ω0, β
′
jχ,X

s), (8)

where

W(l)
q (ω0, β

′
jχ,X

s) =

∫
dh

2π
Ŵ(l)
q (ω0, h,X

s)e−ihβ
′
jχ,

is the inverse Fourier transform of Eq.(A3) and Xs the hypothetical scaled range
of the source that we seek to determine. Here we have assumed a small bandwidth,
so that N(ω) ≈ N(ω0) = N and βj(ω) ≈ βj(ω0) = βj , for j = 1, . . . N . Note that
we have introduced Q, the mode coupling matrix on the array A with entries

Qjq =

∫
A
dzφj(z)φq(z). (9)

Remark 1. In the data dispersion function Dobsj we consider cross-correlations of

p̂obs projected onto the waveguide modes. Phase information appears as the differ-
ence (βj(ω) − βj(ω′))χ in the dispersion function (see Eq.(7)). In the model dis-
persion function Dmodj only the central circular frequency ω0 of the source’s pulse
appears, as can be seen from Eq.(8). Phase information is contained in the second

argument of W(l)
q which is evaluated at β′jχ.

5.1. Range estimation methodology

By comparing the theoretical model Dmodj with the data Dobjj an estimation for

the range location of the source is obtained. As pointed out in [11], this method is
basically an arrival time analysis which takes into account the modal dispersion.
Although the model Eq.(8) depends on the absolute value of the Fourier coefficients
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Figure 5. Results for the source at ~x?1 with f0 = 887Hz and ε = 3%. Data for two sources and the

constant sound speed profile. Top row: Left: Normalized Dobsj (χj) and the threshold δ = 0.2 for de-

termining the set S of indexes. Middle: Dobsj (χ)/Dobsj (χj). Right: Dmodj (χ;X, `, α)/Dmodj (χmodj ;X, `, α)

with X = ε2393λc, ` = 0.5λc, α = 1m2, the correct values of the unknown parameters. Bottom row:
Dmodj (χ;Xs, `s, αs)/Dmodj (χmodj ;X, `, α) for the correct values of the parameters, unless specified other-

wise. Left: Xs = X + ε220λc. Middle: `s = `/2.5. Right: αs = 2.5α.

|ξ̂j | (defined in Eq.(6)), range estimation is not really affected by the value of |ξ̂j |
which can be replaced by a constant in Eq.(8).

What really affects Dmodj is the matrix Γ = Γ(ω0) which is a-priori unknown
since it depends on the correlation function of the medium’s fluctuations. We can
however use a parametric model, such as the Gaussian correlation function in Eq.(5)
with amplitude α and correlation length `, and estimate the model’s parameters as
well as the unknown range X of the source by minimizing the following objective
function over the search space (Xs, `s, αs)

OD(Xs, `s, αs) =
∑
j∈S

∫ χ2

χ1

dχ

∣∣∣∣∣ Dobsj (χ)

Dobsj (χj)
−
Dmodj (χ;Xs, `s, αs)

Dmodj (χmodj ;Xs, `s, αs)

∣∣∣∣∣
2

, (10)

where

Dobsj (χj) = max
χ

∣∣∣Dobsj (χ)
∣∣∣

and

Dmodj (χmodj ;Xs, `s, αs) = max
χ

∣∣∣Dmodj (χ;Xs, `s, αs)
∣∣∣ .

The set S of the modes used in Eq.(10) is determined by Dobsj (χj) > δ, with δ a
user defined tolerance. The integral in χ in Eq.(10) is computed over the range
interval of interest [χ1, χ2]. An adaptive refinement approach is followed, where at
first we scan a large range interval with a big discretization step, and then, after
the source(s) location is approximately determined, we narrow the search in a small
window around the detected range using a finer discretization step.

The cost function in Eq.(10) measures the discrepancy between the dispersion

10
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function Dobsj (χ) coming from the data and Dmodj (χ;Xs, `s, αs) which comes from
our asymptotic model. To illustrate their behavior we plot in Figure 5 the data
and the model dispersion functions for the source at ~x?1 with f0 = 887Hz and
ε = 3%. We used here the data for the two sources and the constant sound speed
profile. The bandwidth is B = 62.5Hz and Ωd = 14.8Hz. In the top left plot in
Figure 5 we show how Dobsj (χj) varies with the mode index j and indicate the
threshold value δ = 0.2 that defines the set S to be used in the estimation. The
set S contains the mode indexes j with peak amplitudes above this threshold. The
middle picture in the top row is a plot of Dobsj (χ)/Dobsj (χj), for j ∈ S. The abscissa

in the plot is ε−2χ in units of λc. The ordinate is the mode index in S. Note how the
dispersion effects induced by the random medium causes Dobsj (χ)/Dobsj (χj) to peak
at different ranges than the true one, indicated by the vertical black line. The right
picture in the top row of Figure 5 shows Dmodj (χ;X, `, α)/Dmodj (χmodj ;X, `, α), with

X = ε2393λc, α = 1m2, ` = 0.5λc, the correct values of the unknown parameters
for j ∈ S. Compare this picture with the ones in the second row, where we fix two
parameters at the correct values, but vary the third one. We set from left to right
Xs = X + ε220λc, `

s = `/2.5 and αs = 2.5α. We observe that as we increase X
the dispersion function is shifted to the right. We also observe that the variation in
the parameters ` and α introduce a change in the form of the dispersion function.
It is obvious, that the range X affects more the dispersion function than the other
two parameters ` and α.

Remark 2. It was shown in [10] that the range estimation methodology is not
sensitive to the model that we use for the correlation function. In particular, for
a medium with a Gaussian correlation function an exponential model was used
instead and this did not affect the range estimation results. It affects however the
estimation of the model parameters which may not be close to their true values
when the wrong model for the correlation function is used.

We illustrate next with numerical simulations that range estimation is robust in
the incoherent zone, close to the equipartition distance and beyond this.

5.1.1. Range estimation results

We present here range estimation results, for the simulation setup described in sec-
tion 4, for the two sources case and the variable sound speed profile. The bandwidth
is B = 62.5Hz and Ωd = 14.8Hz.
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Figure 6. First pass of range estimation with f0 = 500Hz, ε = 2% (left) and f0 = 887Hz, ε = 3%
(right). Data for two sources and the variable sound speed profile. The correct value of the sources range

is indicated with a red circle.
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Figure 7. Cross-sections of the objective function OD. First row: f0 = 500Hz, ε = 2%. Second row:

f0 = 887Hz, ε = 3%. Data for two sources and the variable sound speed profile. Left: ~x?1. Right: ~x?2. The

correct values of (X, `, α) are indicated with a red circle.

In Figure 6 we plot OD(Xs, `s, αs) for the estimated values of `s = `est and
αs = αest at f0 = 500Hz with ε = 2% (close to the equipartition distance de-
fined in Eq. (A7), see also Figure A1-left) and f0 = 887Hz with ε = 3% (be-
yond the equipartition distance, see Figure A1-right), over a range interval that
contains both sources. The first pass is done by using a large range interval
[χ1, χ2] = [315, 575]λcε

2 with a step of 4λcε
2. The correct value of the sources’

range is indicated with a red circle. In Figure 6 we show results for one realiza-
tion of the random medium, however, similar results have been obtained for other
realizations. The two minima we observe, indicate that we have two sources. We
can locally compute OD(Xs, `s, αs) around each source to determine their location
more accurately. This is done by restricting the integral in Eq.(10) in range (ε−2χ)
at ±30λc around each source with a step of λc.

In Figure 7 we show cross-sections of OD(Xs, `s, αs) over these shorter range
intervals that contain each source, separately. The correct values of (X, `, α) are
indicated with a red circle. In each plot we fix two parameters at the estimated
values and display the variation in the third parameter. We show results for f0 =
500Hz with ε = 2%, and f0 = 887Hz with ε = 3%, for the data with the two
sources and the variable sound speed profile. We observe that the range estimation
is extremely robust even for the highest frequency in our bandwidth. The results are
stable, that means that the estimated quantities do not fluctuate, when we change
the realization of the random medium as illustrated by the results in Figure 8(a)
where we plot the estimated results for the source at ~x?1 for three realizations of
the random medium. The results are similar for the source located at ~x?2.

Our results illustrate that we have a convex functional and therefore the mini-
mization process is easy. In general, our objective functional has a clear minimum
close to the correct values of the unknown parameters. The value of `est and αest can
be slightly off but this does not significantly affect the range estimation. Here we
assumed a Gaussian model for the correlation function (see Eq.(5)) of the medium
and searched for ` and α. As mentioned in Remark 2 the range estimation is not
sensitive to the value of these parameters and can be successfully recovered even
when the wrong model for the correlation function of the medium is used [3, 10].

To further illustrate the robustness of the range estimation we show in Figure
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(a) Full array aperture results.
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(b) Results obtained using only 2 receivers located at 9.8050λc and 10.1950λc.

Figure 8. Cross-sections of the objective function OD for ~x?1 for three realizations of the random medium

fluctuations. Data for two sources and the variable sound speed profile for f0 = 887Hz and ε = 3%. The
correct values of (X, `, α) are indicated with a red circle.

8(b) the results for the source at ~x?1, obtained for a vertical array with only 2
receivers located in the middle of the waveguide, at 9.8050λc and 10.1950λc.

We observe that for the source at ~x?1 the range estimation continues to be accu-
rate, although the parameters of the correlation function are slightly off. For the
source at ~x?2 the range estimation has a 15% error and the correlation function pa-
rameters become ambiguous, so we do not show them here. If we decrease however
f0 to 400Hz, we recover the range for the source at ~x?2. Remember that for ε = 3%
with f0 = 887Hz, ε2Lequip ∼ 200λc and with f0 = 400Hz, ε2Lequip ∼ 300λc. The
source at ~x?2 is 493λc far from the array, that is with f0 = 887Hz we are already
more than two times beyond the equipartition distance Lequip defined in Eq. (A7)
(see Figure A1-right).

5.2. Depth estimation methodology

The depth estimation is more delicate than range estimation. We suppose that we
have previously obtained an accurate estimate of the range X with the method
described in Section 5.1.

First, we note that the Fourier coefficients of the depth profile ξ̂j do not depend
on χ. This is because we assumed a source density of separable form. Moreover,
we expect

Dobsj (χ) ≈ Dmodj (χ;Xest, `est, αest) (11)

due to the fact that Dobsj (χ) is close to its statistical mean by self-averaging. This
is due to integration over frequencies and rapid statistical decorrelation over fre-
quencies [11]. By integrating in range both parts of Eq.(11) and using Eq.(8) and

13



May 22, 2018 Waves in Random and Complex Media BKT˙2017

Eq.(A3), we get

∫ χ2

χ1

dχDobsj (χ) := X obsj ≈ C
N∑

q,l=1

|ξ̂l|2
βlβq

Q2
jq[e

ΓXest

]jl, (12)

for j = 1, . . . N . The constant C in Eq.(12) depends mainly on the pulse and the
integration intervals used to define Dj(χ) in Eq.(7). However, we do not need to
know the value of C for the depth estimation since as we will see below we nor-
malize by the average with respect to the modes in the objective function Eq.(16).
The range interval over which we integrate the data in Eq.(12) is centered at the
estimated range Xest and its width should be several wavelengths (> 50λc).

Using now the eigenvalue decomposition of Γ, we can write the following expres-
sion for the matrix exponential in Eq.(12)

eΓXest

=

N∑
j=1

e−|Λj |X
est

uju
T
j ,

with Λj being the eigenvalues (energy conservation implies that Λj ≤ 0) and uj
the eigenvectors of the matrix Γ.

We are interested in ranges beyond the equipartition distance, X > Lequip =
1/|Λ2|, and in this case we have

[eΓX ]jl =

N∑
r=1

e−|Λr|Xujrulr ≈
1

N
,

where ujr is the j-th component of the eigenvector ur. Thus, we can write Eq.(12)
in the following form

X obs ≈ θQ

 1/β1
...

1/βN

 , θ =
1

N

N∑
j=1

|ξ̂j |2
βj

, (13)

where Q is the matrix with entries Q2
jl and Qjl has been defined in Eq.(9). Remark

that the matrix Q is the identity when the array spans the whole depth of the
waveguide, due to the orthogonality of the modes. We observe that it is impossible
to recover |ξ̂j |2 from Eqs.(13). Nevertheless, we can extract the weighted average
θ from our processed data X obs and write Eqs.(13) as

θ ≈ 1

N
(β1, . . . , βN ) Q−1X obs, |ξ̂1|2

β1
+ . . .+

|ξ̂N |2
βN

= Nθ. (14)

Considering now M different sub-bands with central circular frequencies ωj , num-
ber of propagating modes Nj := N(ωj) and j = 1, . . . ,M , we can obtain from

14
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Eqs.(14) the following system 1/β1(ω1) · · · 1/βNj (ωj) 0 · · · 0
...

. . .

1/β1(ωM ) · · · 1/βNM (ωM )


 |ξ̂1|2

...

|ξ̂NM |2

 ≈
 N1θ1

...
NMθM

 . (15)

This is an underdetermined system, since it has more unknowns than equations,
NM > M . Note that as we add sub-bands, we increase the number of equations
and therefore we can hope for an improvement in our estimate of the unknowns.

Remark 3. For a constant sound speed profile the eigenfunctions φj, j = 1, . . . , N

do not depend on the frequency and therefore ξ̂j, j = 1, . . . , N as defined in Eq.(6)

do not depend on ω0. Consequently, the unknowns |ξ̂j |2, j = 1, . . . , Nl are the same
for all sub-bands corresponding to different central frequencies ωl, l = 1, . . . ,M and
it is the higher frequency that determines the length of the unknown which is NM .
On the other hand the βj’s depend on frequency. Eq.(15) takes advantage of this

remark. Since the unknowns |ξ̂j |2, j = 1, . . . , NM are the same for all frequency
bands, we obtain a system with NM unknowns and M equations. This approach
will work only for constant or slowly varying φj over the bandwidth so that the

assumption that the unknowns |ξ̂j |2 are the same for all frequency bands holds.

Assuming now that the depth profile of the source ξ(z) is the indicator function
of the interval 1[z?−σ/2,z?+σ/2], we introduce the following model for its Fourier
coefficients

ξ̂modj (zs, σs) =
1

σs

∫ zs+σs/2

zs−σs/2
dzφj(ω0, z).

We can recover z? and σ by minimizing the following objective function, Oξ(z
s, σs),

which measures the misfit between the estimated |ξ̂j |2 and the model |ξ̂modj |2 values
of the Fourier coefficients, divided by their average value over j to remove the
unknown multiplicative constant C appearing in Eq.(12):

Oξ(z
s, σs) =


N∑
j=1

 |ξ̂modj (zs, σs)|2〈
|ξ̂mod(zs, σs)|2

〉 − |ξ̂j |2〈
|ξ̂|2
〉
2

1/2

. (16)

In Eq.(16) we have used 〈·〉 to denote the average of the numerators with respect
to j,

〈|ξ̂mod(zs, σs)|2〉 =
1

N

N∑
j=1

|ξ̂modj (zs, σs)|2

〈|ξ̂|2〉 =
1

N

N∑
j=1

|ξ̂j |2.

When σ is very small we can write approximately

ξ̂modj (zs) ≈ φj(ω0, z
s)

15
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and Eq.(16) takes the following form

Oξ(z
s) =


N∑
j=1

[
|φj(ω0, z

s)|2
〈|φ(ω0, zs)|2〉

− |ξ̂j |
2

〈|ξ̂|2〉

]2


1/2

, (17)

so that we have only one parameter to estimate, the depth of the source zs.
In the case of multiple sub-bands the objective function in Eq.(17) becomes

OM
ξ (zs) =


NM∑
j=1

[
|φj(ωM , zs)|2
〈|φ(ωM , zs)|2〉

− |ξ̂j |
2

〈|ξ̂|2〉

]2


1/2

, (18)

where we use 〈·〉 as before to denote the average values of the numerators with

respect to j. Note that for the multiple sub-bands we recover one vector of |ξ̂j |2,
j = 1, . . . , NM corresponding to the band with the higher central frequency ωM
and assuming that the φj are frequency independent the functional that we are

using compares the recovered |ξ̂j |2 with the corresponding φj in this band (M).
We will examine next, how this estimation performs in our numerical simulation
setup.

5.2.1. Depth estimation results

We consider here the method with the multiple sub-bands described above, for the
depth estimation. More precisely, we estimate the Fourier coefficients of the depth
profile by solving the ill-posed system of Eq.(15) via a least squares method using

the MATLAB function Isqnonneg. Using the estimated |ξ̂j |2 in Eq.(18) we obtain
an estimate for the depth location of the source. The range interval over which we
integrate the data in Eq.(12) to obtain X obsj is [χ1, χ2] = [Xest − 30λcε

2, Xest +

30λcε
2]. In each sub-band, the bandwidth is B = 62.5Hz and Ωd = 14.8Hz. In all

plots of Figures 9 and 10 we indicate the correct values of the source locations with
a vertical, red, dashed line.

First we show in Figure 9 results for one source located at ~x?2 = (5λc, 493λc),
with ε = 2% and a constant sound speed profile. On the top row, the left plot cor-
responds to using one sub-band and as we can see the result is quite bad. However
by increasing the number of sub-bands used, the objective function becomes less
ambiguous and very good results are obtained for six or seven sub-bands (center
and right plots on the second row of Figure 9). The two minima of the objective
function OM

ξ (zs) on the bottom right plot of Figure 9 correspond to the source’s
depth at 5λc and its mirror location with respect to the center of the waveguide.
Note that we cannot uniquely recover the source location since from Eq.(15) we
recover |ξj | and not ξj .

In Figure 10(a), we show the results for the data with the two sources and ε = 3%
for the case of a constant sound speed profile. The results with ε = 2% are similar,
so we do not show them here. We observe that the method finds the location of
the sources up to the symmetric ghost that we obtain similarly to the one source
case. For the partial array aperture case the inversion of the matrix Q needed in
Eq.(14) is performed using the regularized pseudoinverse.

Finally, in Figure 10(b), we show the results for the data with the two sources
and ε = 3% for the case of the variable sound speed profile. We observe that now
the method correctly locates the source at ~x?2 but not the one at ~x?1, even though
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Figure 9. The objective function OMξ (zs), with fj+1 = fj + 50Hz, for j = 1, . . . ,M − 1. First row:

f1 = 500Hz, M = 1 (left), M = 2 (middle), M = 3 (right). Second row: M = 4, f1 = 500Hz (left), M = 6,
f1 = 500Hz (middle), M = 7, f1 = 450Hz (right). Data for one source at ~x?2, with ε = 2% and a constant

sound speed profile. The correct values of the source locations are indicated with a vertical, red, dashed

line.

this is the one closer to the array. This may be due to the sound speed profile we
have used which destroys the symmetry and guides the energy towards the bottom
of the waveguide [17]. Note also that in this case the eigenfunctions φj depend on
the frequency and therefore Eq.(15) holds only approximately (see also Remark 3).
It is remarkable that we obtain very good results using only partial array aperture
as shown in the results of Figure 10, where we decrease the number of receivers
successively from 201 to 101 and 11 by removing array elements symmetrically
from the top and the bottom.

To resume, this multiple band approach which requires a large bandwidth seems
to be quite robust and gives a good estimation for the depth of point-like sources,
close to and beyond the equipartition distance.

6. Discussion

In this work we consider a water column with small inhomogeneities in the in-
dex of refraction which can be due to internal waves. For convenience, we use a
simple model of random ocean with flat and horizontal boundaries, depth/range
isotropy and no attenuation. We want to focus on the saturated regime where
acoustic waves have lost their initial state because of strong scattering. We chose
the correlation length to be of the order of the wavelength so that we can reach the
saturation regime at a relative short propagation distance of the order of hundreds
of wavelengths.

To make this more precise we show in Figure 11 how the correlation length of
the fluctuations affects the scattering mean path and the equipartition distance
(see also Figure A1 in Appendix A). For a correlation length of the order of ten
wavelengths, as is the case in the ocean, we will have to consider the array at
very large distance from the sources in order to investigate the performance of the
incoherent method in the equipartition regime (see the right plot in Figure 11).
This would be extremely expensive in terms of computational time and memory
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(a) Results for the constant sound speed profile and 3% fluctuations.
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(b) Results for the varriable sound speed profile and 3% fluctuations.

Figure 10. The objective function OMξ (zs), with fj+1 = fj + 50Hz, for j = 1, . . . ,M − 1 with M = 7 and

f1 = 450Hz. From left to right: results obtained with full array aperture, half array aperture and using an
array with 11 receivers located at the center of the waveguide. In each sub-figure the first row is for ~x?1
and the second row for ~x?2. The correct values of the source locations are indicated with a vertical, red,

dashed line.

requirements. Considering correlation lengths of the order of the wavelength, we
reach the saturated regime at smaller propagation distances.

Both range and depth estimations have been tested extensively for different re-
alizations of the random medium fluctuations. The accuracy of the estimation is
of the order λc for the range and λc/4 for the depth. Range estimation uses one
frequency band (sub-band) with small bandwidth B = 62.5Hz. Depth estimation
requires multiple sub-bands which corresponds to effectively using a larger band-
width (B = 187.5Hz and B = 212.5Hz for M = 6 and M = 7 bands, respectively).
The results obtained by the incoherent methodology are robust and reliable. There
is a significant improvement compared to the coherent imaging results shown in
Section 4. To make our model more realistic we should consider in the future
depth/range anisotropy and attenuation.
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Figure 11. The scales −1/Λj(ω0), for j = 2, . . . , N(ω0), the scattering mean free paths Sj(ω0), for j =

1, . . . , N(ω0) and the scaled range of an hypothetical source at X = 2Lequip(ω0), with f0 = 887Hz and
ε = 3%. Left: ` = 0.5λc, X = 466.4λcε−2. Middle: ` = 5λc, X = 1.331 · 105λcε−2. Right: ` = 10λc,

X = 1.897 · 1017λcε−2. Constant sound speed profile. The ordinate is in λcε−2.

7. Conclusion

In this work we exhibited the performance of the incoherent methodology pro-
posed and analyzed in [3, 11], for multiple source localization in a two dimensional
acoustic waveguide with random inhomogeneities in the bulk medium.

We have seen that the incoherent approach for the range estimation of the source
is very robust and gives accurate and reliable results even in the case where the
distance between the source and the array is beyond equipartition, that is the dis-
tance at which energy is uniformly distributed between the modes, independently
of the initial state. The estimation of the source’s depth is more delicate. It re-
quires knowledge of the source’s range which has to be estimated first and a larger
bandwidth compared to the range estimation.

Both range and depth estimations results are reliable and statistically stable,
that means that they are independent of the realization of the random medium
considered. Our numerical simulations illustrate the potential of the approach for
underwater acoustic applications.
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Appendix A. The Asymptotic Model

We explain in this section our asymptotic model for describing the acoustic pressure
field recorded on the array. We first review the case of the unperturbed waveguide
with velocity c0(z) and then we consider the random waveguide case.

A.1. The case of the unperturbed waveguide

We know that for the unperturbed velocity profile c0(z), and for a point harmonic
source, energy is transmitted by independent guided modes so that the following
model can be obtained.

We introduce λj(ω) the eigenvalues and φj(ω, z) the orthogonal eigenfunctions
of the symmetric differential operator ∂2

z + ω2/c2
0(z) with a Dirichlet boundary

condition at the top of the waveguide z = 0 and a Neumann boundary condition
at the bottom z = H. The wavenumbers, βj(ω), are given by

βj(ω) =

{√
λj(ω), j = 1, 2, . . . N(ω),√
−λj(ω), j > N(ω),

where N(ω) is the number of propagating modes at frequency ω. The modes in-
dexed by j > N(ω) are evanescent. In this case the acoustic pressure field recorded
on the array and due to a point source at (x′, z′) is

p0(t, xA, zr) ≈
∫
dω
f̂(ω)

2π

N(ω)∑
j=1

a+
j,0(ω, z′)√
βj(ω)

φj(ω, zr)e
iβj(ω)(xA−x′)−iωt,

which is a superposition of propagating modes obtained by neglecting the evanes-
cent modes for j > N(ω) since the array is far from the source. The amplitude of
the modes a+

j,0 does not depend on the range and is given by

a+
j,0(ω, z′) =

1

2i
√
βj(ω)

φj(ω, z
′). (A1)

When the background speed c0 is constant, the number of propagating modes is

N(ω) =
⌊
ωH
c0π

+ 1
2

⌋
and we have, for j = 1, 2, . . . N(ω),

λj(ω) =

(
ω

c0

)2

−
(
π(j − 1/2)

H

)2

, φj(z) =

√
2

H
sin

(
π(j − 1/2)z

H

)
.

For a depth dependent wave speed c0(z), we do not know in general the analytic
expression for the eigenvalues λj(ω) and the eigenfunctions φj(ω, z) but we can
always compute them numerically.

A.2. The case of random waveguides

Assuming now one extended source and following [13] and [11] we can write the
Fourier coefficients of the random pressure field at frequency ω, recorded at the
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receivers (xA, zr) as

p̂ε(ω, xA, zr) ≈
∫ ∫

Ωρ

dx′dz′ρ(x′, z′)f̂ ε(ω)

N(ω)∑
j=1

a+
j (ω,X/ε2, x′, z′)√

βj(ω)
φj(ω, zr)e

iβj(ω)(x′−X/ε2),

where we introduced the scaled range X = ε2|x? − xA| and the forward random
amplitudes a+

j , for j = 1, . . . N(ω), given by

a+
j (ω,X/ε2, x′, z′) =

N(ω)∑
l=1

1

2i
√
βl(ω)

φl(ω, z
′)T εjl(ω,X, x

′).

Note that we have also scaled the bandwidth B relative to ε at central frequency
ω0 = 2πf0 and define

f̂ ε(ω) =
1

εµ
f̂

(
ω − ω0

εµ

)
,

for 1 < µ ≤ 2. The scaling is performed with respect to the small parameter
ε that controls the strength of the fluctuations of the random medium Eq.(2).
The difference with respect to the unperturbed waveguide case is that the mode

amplitudes aε =
(
a+

1 , . . . a
+
N(ω)

)T
are random functions that depend also on the

range (not only on frequency and z′ as in Eq.(A1)) and satisfy the following system
of linear stochastic differential equations (see also [3, 13])

∂

∂x
aε(ω, x) =

[
1

ε
P(a,a)

(
ω,

x

ε2

)
+ E(a,a)

(
ω,

x

ε2

)]
aε(ω, x), x > 0,

aε(ω, 0) = a0(ω, z′) =
(
a+

1,0(ω, z′), . . . a+
N(ω),0(ω, z′)

)T
. (A2)

Since the stochastic differential equations (A2) are linear, we can write

aε(ω, x) = Tε(ω, x)a0(ω, z′),

where Tε is the transfer or propagator matrix and satisfies

∂

∂x
Tε(ω, x) =

[
1

ε
P(a,a)

(
ω,

x

ε2

)
+ E(a,a)

(
ω,

x

ε2

)]
Tε(ω, x), x > 0,

with initial condition

Tε(ω, 0) = I,

where I is the identity matrix.
The N(ω)×N(ω) matrices P(a,a) and E(a,a) are given by

P
(a,a)
jl (ω, x) =

iω2

2c̄0
2

νjl(x)√
βj(ω)βl(ω)

ei[βl(ω)−βj(ω)]x,
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and

E
(a,a)
jl (ω, x) =

iω4

4c̄0
4

∑
l′>N(ω)

∫ ∞
−∞
ds

νjl′(x)νll′(x+ s)

βl′(ω)
√
βj(ω)βl(ω)

eiβl(ω)(x+s)−iβj(ω)x−βl′ (ω)|s|,

respectively, in terms of the random stationary processes

νjl

(x
`

)
=

∫ H

0
dz

c̄0
2

c2
0(z)

ν
(x
`
,
z

`

)
φj(ω0, z)φl(ω0, z), j, l = 1, 2, . . . .

In the definition of νjl, c̄0 denotes a reference constant wave propagation speed, the
same reference speed appears also in Eq.(A4), while c0(z) is the depth dependent
velocity profile. In the case of a constant sound speed profile in the water column,
c0(z) ≡ c̄0 and the ratio c̄0

2/c2
0(z) (index of refraction) is equal to 1.

In the asymptotic limit ε→ 0, the expectation of the transfer matrix is given by

lim
ε→0
〈T εjl〉 = δjl e

− 1

Sj(ω)
X+i 1

Lj(ω)
X
,

where δjl is the Kronecker delta symbol. The expectation of the mode amplitudes
is

lim
ε→0
〈a+
j 〉 =

1

2i
√
βj(ω)

φj(ω, z
′) e
− 1

Sj(ω)
X+i 1

Lj(ω)
X
,

where we recover the mode amplitude in the unperturbed waveguide a+
j,0 multiplied

by a factor that exponentially decays in range at the scale of Sj(ω) and with a phase
shift that increases with range on the scale Lj(ω). We give below the definition
of Sj(ω) and refer to [9] for the definition of Lj(ω) which is not needed in our
computations. We denote by S1(ω0) the scattering mean free path for the first
mode which is the largest of all Sj(ω0). We consider in this paper ω0 for which
the array is at distance X ≥ S1(ω0) from the source. In that case we are in an
incoherent regime and the source location cannot be determined by any method
that relies on the coherent part of the pressure field. To successfully determine the
source location we rely on an incoherent methodology that describes how energy
propagates in the random waveguide.

We refer below to the results needed for the source localization. These are the
second moments of the transfer matrix Tε(ω,X) at nearby frequencies. At large
distances (X > S1) the only second moments that remain large are the mean
energies of the modes.

To obtain the behavior for the second moments of the modes amplitudes we need
to study the two-frequency asymptotics of the propagator matrix. Thus we define

U εjl(ω, h, x) = T εjm(ω, x)T ε∗ln (ω − ε2h, x)

and its Fourier transform

V ε
jl(ω, τ, x) =

1

2π

∫
dhU εjl(ω, h, x)e−ih(τ−β′l(ω)x).

Applying the diffusion approximation theorem we can obtain the limiting equation
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for V ε
jl as ε→ 0 which satisfies the following system of transport equations[

∂

∂x
+ β′j(ω)

∂

∂τ

]
W(l)
j (ω, τ, x) =

∑
n6=j

Γjn(ω)
[
W(l)
n (ω, τ, x)−W(l)

j (ω, τ, x)
]
, x > 0,

with initial condition

W(l)
j (ω, τ, 0) = δ(τ)δjl,

and δ(τ) being a Dirac delta distribution.
This system describes the expectation of the energy of the j-th mode when the

initial excitation is on the l-th mode. Its solution in the Fourier domain is given by

Ŵ(l)
j (ω, h, x) =

∫
dτW(l)

j (ω, τ, x)eihτ = [e[Γ(ω)+ihB′(ω)]x]jl (A3)

with B′(ω) = diag(β′1(ω), . . . , β′N (ω)) a diagonal matrix and β′j(ω) the derivative
of βj(ω) with respect to ω. The matrix Γ(ω) depends on the frequency and the
correlation function of the random fluctuations and can be written in the following
form,

Γjl(ω) =
ω4`

4c̄0
4βj(ω)βl(ω)

R̂νjl [(βj(ω)− βl(ω)) `] , j 6= l,

Γjj(ω) = −
N(ω)∑

l′ 6=j,l′=1

Γjl′(ω), (A4)

for j, l = 1, . . . , N(ω) and with R̂νjl the power spectral density of νjl
We can also define the scales SPj (ω)

SPj (ω) = − 2

Γjj(ω)
, (A5)

and write for the scattering mean free paths

1

Sj(ω)
=

ω4`

8c̄0
4βj(ω)

N(ω)∑
l=1

1

βl(ω)
R̂νjl [(βj(ω)− βl(ω)) `] . (A6)

Let Λj(ω) be the eigenvalues of the matrix Γ(ω), in descending order, and uj(ω) the
corresponding eigenvectors. Conservation of energy implies that all the eigenvalues
are less or equal to zero. In the long range limit the matrix exponential

E(ω, x) = eΓ(ω)x =

N(ω)∑
j=1

eΛj(ω)xuj(ω)uTj (ω)

is determined by the null space of Γ(ω). Under the assumption that the power
spectral density does not vanish for any of the arguments in Eq.(A4), then Γ(ω)
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is a Perron-Frobenius matrix with simplest largest eigenvalue Λ1(ω) = 0 and the
leading eigenvector is

u1(ω) =
1√
N

(1, 1, . . . , 1)T .

As the propagation distance grows we have

sup
j,l=1,...,N

∣∣∣∣Ejl − 1

N

∣∣∣∣ ≤ O(eΛ2x),

which implies that the energy is uniformly distributed over the modes for distances

x ≥ Lequip(ω) := −1/Λ2(ω), (A7)

where we introduced the equipartition distance Lequip(ω).
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Figure A1. The scales −1/Λj(ω0), for j = 2, . . . , N(ω0), SPj (ω0), the scattering mean free paths Sj(ω0),

for j = 1, . . . , N(ω0) and the scaled ranges X1 and X2. Left: f0 = 500Hz, ε = 2%. Right: f0 = 887Hz,
ε = 3%. Constant sound speed profile. The ordinate is in λcε−2.

To illustrate in which regime our numerical simulations have been carried out
in terms of these length scales, we plot in Figure A1 the eigenvalues −1/Λj(ω0),
for j = 2, . . . , N , the scales SPj (ω0) defined in Eq.(A5) and the scattering mean
free paths Sj(ω0) (see Eq.(A6)) for j = 1, . . . , N . We also plot the scaled ranges
X1 = ε2|x?1−xA| and X2 = ε2|x?2−xA| for the sources at ~x?1 and ~x?2, respectively. We
use either f0 = 500Hz with ε = 2% or f0 = 887Hz with ε = 3%. We observe that
X1 and X2 are above the scattering mean free paths in both plots. This means that
we expect our data to be incoherent for f0 ≥ 500Hz and ε ≥ 2%. As we increase
the frequency and the strength of the fluctuations ε, we expect our data to become
more and more incoherent, since the distance between X1 or X2 and Sj increases.
We also observe that for ε = 3%, X1 and X2 are beyond the equipartition distance
−1/Λ2(ω0), whereas for ε = 2%, X2 is close to this limit.
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